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Abstract—An effective identification framework has 

presented to build a more accurate nonlinear model for 

brushless DC motors, which are frequently used as drive 

systems of micro electromechanical unmanned aerial 

vehicles. The identification method uses a two-step 

procedure to obtain a fully parametric model. First, the 

initial model of system is estimated. Next, a coefficient 

shrinkage method is used for model structure selection. 

There are two main highlight processes in this paper. One is 

the use of Hammerstein series models for identification, 

which leads to a trade-off between model accuracy and 

complexity. Another is the use of modified nonnegative 

garrote method for model reduction and finding the true 

model order. The proposed method is validated on simulated 

system and finally used to identify a brushless DC motor 

system. The obtained nonlinear model of brushless DC 

motor is of high performance and controllable model 

complexity. 

Keywords- Nonlinear system, Parametric identification, 

Brushless DC motor, Hammerstein series, Nonnegative garrote 

I. INTRODUCTION  

Brushless DC (BLDC) motors are broadly used as the 

drive systems in electromechanical unmanned aerial 

vehicles (UAV). BLDC motor is a typical nonlinear 

system [1]. However, most previous works rather treat it 

as a simpler linear dynamical system [2], [3]. Some 

nonparametric and semi parametric identification methods 

for Hammerstein series models are already presented in 

[5], [6]. As our goal is to control the rotor speed utilizing 

the identified model, a parametric identification method is 

needed to obtain a fully parametric model. 

A basic problem in parametric identification is the 

judicious order selection for the given model so that the 

effects of under or over parameterization can be avoided 

[7]. To solve this problem, a parametric identification 

method of Hammerstein series models using minimum 

description length (MDL) criterion is presented in [8]. 

However, this method can only determine the memory 

length of model, and it is helpless for selecting the model 

order. A bootstrap method to determine the order and 

memory length of Hammerstein series model is proposed 

in [9]. But this method can not determine the memory 

length for each model order. The result of this method is 

just the maximum memory length of the model. 
In this paper, a coefficient shrinkage method is used to 

determine the order and memory length of Hammerstein 
series model, based which a parametric identification 
strategy is proposed. The identification problem is then 
divided into two sub problems. First, the initial 
Hammerstein series model is estimated. Next, a coefficient 
shrinkage method called nonnegative garrote [10] is act on 
the initial model. This procedure will give insight into 
which parameters are the most important ones for giving a 
good fit to data. 

II. THE HAMMERSTEIN SERIES MODELS 

The Hammerstein series model was introduced in [4] as 

a model for identification of nonlinear systems having 

diagonal Volterra kernels. The Hammerstein series model 

is defined by the input-output relationship 

1
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
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where ( )u t  and ( )y t  is the input and output of the system, 

respectively. Functions  ( ) , 1,2,...ng n  , characterize 

the linear, quadratic, and higher order response of the 

system, and are called the Hammerstein kernels.  

In practice, we consider a Hammerstein series model 

with nonlinearity order p and finite memory length m, 

then (1) can be rewritten as 
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where ( )e t  is a zero-mean additional white Gaussian 

noise, and independent from the input ( )u t  and the output 
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( )y t . The Hammerstein series model in (2) is depicted in 

Fig.1. 

Suppose an input-output dataset 

 (1), (1),..., ( ), ( )NZ u y u N y N  is obtained. Given the 

model order p and memory length m, (2) can be rewritten 

in vector form 
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Figure 1. Hammerstein series model scheme 

The least-squares estimate (LES) of θ  is then obtained 

from 

 
1ˆ T T


θ Φ Φ Φ y     (10) 

when the inverse exists. It is remarkable that, if (3) is 
ill-conditioned or the input observations are noisy, the 
estimated Hammerstein kernels from (10) will be far away 
from their true values. In these situations, other LES 
methods such as total least-squares can be used to obtain 
accurate estimation of Hammerstein kernels from (3). 

III. MODIFIED NONNEGATIVE GARROTE METHOD 

A. The Nonnegative Garrote Method 

The Nonnegative Garrote (NNG) method was first 

presented in [10]. At first it is considered as a coefficient 

shrinkage method for linear regression models in statistics. 

Recently this method is modified and used for order 

selection of ARX (AutoRegressive with eXogenous input) 

models in [11]. The NNG method penalizes the model 

parameters by attaching weights to it, which in turn are 

regularized. Given the LES θ̂  of a Hammerstein series 

model (3), the NNG problem can be described as: with the 

constraints 

0, 1,..., , 0,...,ijw i n j m      (11) 

minimizing follow formula with respect to  ijw  
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where  ijw  is weights and   is the model complexity 

parameter, different   values indicate different 

penalization strength. As   increases, the strength of 

penalization of parameters increase, correspondingly 

weights of the less important parameters will shrink, and 

finally end up zero. For each given  , the NNG problem 

(11) and (12) has the optimal solution  ijw , and the 

NNG parameter estimate obtains new model parameters 

ˆ( ) ( )ij ij ig w g j  . 

B. Modification on Original NNG Method 

In system identification fields, dynamical systems are 

characterized by dynamical linear or nonlinear models, 

which is quite different from static models used in 

statistics. In dynamical linear models, the parameters are 

naturally ordered by their memory length [11]. In the 

nonlinear case, the parameters are not only ordered by 

memory length, but also by their nonlinearity order. The 

higher nonlinearity order, the more complex model is 

obtained, and the longer memory length, the more saved 

data is need. However, the original NNG method does not 

take such ordering into consideration. In order to obtain 

models as simple as possible, the NNG method is 

expected to be able to penalize higher nonlinearity order 

and long memory parameters first. For this purpose, we 

modified constraint (11) by adding some constraints on 

the weights. For Hammerstein series model (3), these 

constraints can be 
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  (13) 

This is a natural extension of the original NNG method, 

for order selection of Hammerstein series model in 

parametric system identification. It is remarkable that the 

adjustment of parameters of each nonlinearity order is 

independent. This yields automatic order selection, and 

natural way to choose the importance among nonlinearity 

order and memory length, since the lower nonlinearity 

order and short memory length get a better chance. 

The modified NNG problem (12) and (13) can be 

rewritten as a quadratic program problem with linear 

inequality constraints as follow 

1
min   

2

s.t.    

T T  



w Qw f w w

Aw b

   (14) 

where  10 1 20,..., , ,...,
T

m nmw w w ww  is weights vector, 

ˆ ˆ2 TQ ΘΦ ΦΘ , ˆ2 T f ΘΦ y  with ˆ ˆ( )diagΘ θ , A  and 
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b  are the matrix and vector derived from the inequality 

constraints (13), respectively. 

Given the solution w  of (14), for a specific  , the 

modified NNG parameter estimate is ˆ ˆ
 θ Θw . There 

are many algorithms to solve the quadratic program 

problem with linear inequality constraints as (14). Here 

we use path following parametric optimization algorithm. 

For more information about this algorithm, see e.g. [12]. 

IV. PRACTICAL IMPLEMENTATION 

A. Excitation Design 

In identification experiment, a random multi-sine 

signal will be used. This excitation is a broadband, 

periodic signal: 

max

0
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k k
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K
 



 
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 
   (15) 

where 
maxf  is the maximum frequency of the excitation 

and K is the number of frequency components. The phases 

 k  are independent uniformly distributed random 

variables on  0,2 , such that   0kj
E e


 . 

0A  is the 

equilibrium state of system that will be excited. The 

amplitudes  kA  are real independent, identically, 

distributed random variables. Then the higher order 

moments of 
kA  should remain bounded for any finite 

order. These signals can cancel leakage effects due to 

their periodic property. They also provide a prefect cut-off 

of power spectrum, which can avoid aliasing. 

B. Evaluation of Model 

In order to provide more information about identified 

model to help user making selection, a fitness function is 

defined as [11] 
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where ( )y t  and ˆ( )y t  are the actual and model output, 

respectively, and ( )y t  is the mean value of actual output. 

The fitness function can validate the different model 

outcomes, and provided a measure of how much better the 

model describes the real system compared to the mean of 

the actual output. 

C. Identification Procedures 

The complete parametric identification procedures for 

Hammerstein series model is outlined as below: 

Step 1: Choose 
maxf  and K, so that the interesting 

behaviors of the system under study are in the frequency 

range  max max,f K f . 

Step 2: Determine the sampling frequency 
sf  to avoid 

aliasing effects. 

Step 3: Generate independent random phase  k  and 

required amplitudes  kA , construct the input and test 

signals using (15) independently. 

Step 4: Apply the input and test signals to the system 

and collect the time series record of steady-state, construct 

dataset N

eZ  and N

vZ . 

Step 5: Estimate the initial model of system using N

eZ  

via (10). 

Step 6: Plugging initial model into the NNG problem 

(14) yields a piecewise affine solution path w  and 

fitness function (16). 

Finally user can select model structure base on model 

performance and parametric complexity. 

V. VALIDATION OF THE METHOD 

To validate the proposed identification method, 

consider the dynamic nonlinear system given by 

2 2

( ) 0.64 ( ) ( 2)

         0.9 ( ) ( 1) ( )

y t u t u t

u t u t e t

   

   
   (17) 

where ( )e t  is a zero-mean additional white Gaussian 

noise, and independent from ( )u t . Let 
eP  denote the 

power of ( )e t , and 
yP  denote the power of system output, 

the signal-noise-ratio (SNR) is defined as 

 1010log y eSNR P P     (18) 

and in this stage the SNR is set 13dB. 

Follow the procedures in section IV.3, and let 

max 1.25f  , K=32, 1, 1,...,kA k K  , N=2500. Set the 

nonlinearity order and memory length of initial model to 

be 3 and 4, respectively. Then the initial model is an over 

fitted model of (17). Plugging the initial model into the 

NNG problem (14) yields a piecewise affine solution path 

w  and fitness function (16), calculated for validation 

dataset N

vZ . 

The NNG parameter estimates ˆ
θ  for some 

breakpoints   are given in TableⅠ. It can be seen that 

there is a maximum in fitness function at 
13  , which 

corresponds to the correct model order according to (17). 

Thus, it is proved that the proposed method was able to 

find the correct model order in this case, and the estimates 

for this   value are quite near the true parameters. 

VI. PARAMETRIC IDENTIFICATION OF BRUSHLESS 

MOTORS 

In the real system identification experiments, a random 

multi-sine excitation with 32 frequency components is 

used with max 2.5Hzf  , 25kA  , 0 200A   and 

sampling frequency 10Hzsf  . Estimating an initial 

Hammerstein series model with nonlinearity order p=3 

and memory length m=10, and plugging it into the 

modified NNG algorithm, results in the one step ahead 

prediction fitness function (16), on validation data, are 

shown in Fig. 2, which is a p=2, n=3 model. 
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Another MDL order selection method in [8] is applied 

on the system for a comparative study. The choice of the 

MDL selection method is a p=3, n=5 model, also can be 

seen in Fig .2. 

For validation, the simulation output on validation 

dataset for the different models is presented in Fig. 3 and 

Fig. 4. It can be seen that the modified NNG method can 

provide more flexible model structure selection scheme 

than traditional ones.  

A comparison of performance between linear and 

nonlinear models is also made. As can be seen in Fig. 5 

and TABLE II, the nonlinear model is more accurate than 

linear model, and as the use of proposed identification 

method, the complexity of nonlinear models can be 

controlled. 
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Figure 2. The fitness function values for the breakpoints, calculated 

on validation data, for the identification of brushless motor 

TABLE II. FITNESS COMPARISON OF DIFFERENT MODELS 

 
MDL chosen 

model 

NNG chosen 

model 
Linear model 

Fitness 83.43% 82.78% 70.22% 
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Figure 3. Simulation for MDL chosen model order on validation 

data with p=3, m=5 
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Figure 4. Simulation for NNG chosen model order on validation 

data with p=2, m=3 
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Figure 5. Simulation for linear model order on validation data with 

m=2 

VII. CONCLUSIONS 

In this paper, a new method for nonlinearity order and 

memory length selection of Hammerstein series models 

was proposed. The method is a modified variant of the 

NNG method, where constraints on the weights of 

different order and memory length were added. Based on 

this method a parametric identification strategy for 

Hammerstein series models was presented. The proposed 

identification strategy is validated on a simulated system, 

and the result look reliable for finding the true model 

order. A brushless motor system is also identified using 

the identification procedure, and the results show that 1) 

the nonlinear model can achieve higher performance than 

linear model. 2) By using the proposed model structure 

selection method, the complexity of nonlinear models can 

be effectively controlled. 
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TABLE I. THE ESTIMATED NNG PARAMETERS IN THE SIMULATION IN SECTION V FOR THE SOME BREAKPOINTS AND THEIR 

FITNESS FUNCTION VALUE 

 true 
1  

0 

8  

0.7313 

10  

6.0550 

11  

6.5209 

13  

53.0879 

1(0)g  -0.64 -0.7284 -0.7194 -0.6913 -0.6890 -0.6599 

1(1)g   0.0468 0.0454 0.0410 0.0406 0.0405 

1(2)g  1 1.1333 1.0997 0.9928 0.9824 0.9805 

1(3)g   -0.2456 -0.1933 -0.0160 0 0 

1(4)g   0.1273 0.0980 0.0083 0 0 

2 (0)g  0.9 0.8998 0.8998 0.8998 0.8998 0.8998 

2 (1)g  1 1.0058 1.0049 1.0044 1.0044 1.0040 

2 (2)g   -0.0063 -0.0040 -0.0012 -0.0009 0 

2 (3)g   0.0067 0.0043 0.0013 0.0010 0 

2 (4)g   -0.0010 0 0 0 0 

3(0)g   0.0013 0.0012 0.0006 0.0006 0 

3(1)g   -0.0011 -0.0008 0 0 0 

3(2)g   0.0008 0.0006 0 0 0 

3(3)g   0.00008 0 0 0 0 

3(4)g   -0.0002 0 0 0 0 

fitness  98.4141 98.4375 98.5307 98.5325 98.7213 
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