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Abstract—Component decomposition and physical 

interpretation of shell vibration signal of ball mill in 

grinding process is very difficult. Aim to this problem, 

several multi-scales decomposition algorithms are used to 

analyze shell vibration signal in this paper. Empirical mode 

decomposition, ensemble empirical mode decomposition and 

Hilbert vibration decomposition algorithms decompose shell 

vibration signal to a series of multi-scale sub-signals. 

Correlation coefficients between these sub-signals and 

original vibration signal were calculated. Power density 

spectrums of different multi-scale sub-signals used also to 

analyze and explain the shell vibration signal. Results show 

that different decomposition algorithms have different 

advantages and shortcomings. The further research 

direction is that how to fuse these sub-signals and model load 

parameters inside the ball mill.  

Keywords-multi-scale decompositon; Empirical mode 

decomposition; ensemble empirical decomposition; Hilbert 

vibration decomposition; shell vibration signal  

I. INTRODUCTION 

Mechanical devices of complex industrial process, 
especially rotating mechanical device in fire plant and 
grinding process, produce strong vibration and acoustical 
signals.  These signals contain interesting information for 
diagnose mechanical devices’ health statue and measure 
some difficulty-to-measure key process parameters, such 
as mill load of the ball mill in mineral grinding process. 
However, these signals have characteristics of nonlinearity, 
non-stationary and multi-scale [1]. How to effective 
decompose and interpret these signals using multi-scale 
decomposition algorithm has become a new focus recently. 
In this paper, the focus is how to decompose and explain 
the shell vibration signal of the ball mill in grinding 
process. 

In the complex mineral grinding process, ball mills are 
the most important key devices in maintaining the stability, 
improving the grinding production rate and the products 
quality [2]. However, it is very difficult to maintain an 
optimized grinding condition for the grinding process. 
Accurate measure load parameters inside the ball mill can 
help realize grinding process operational optimization. 
However, as the rotating work characteristic of ball mill 
and complex grinding mechanism inside ball mill, it is 
difficulty to measure these parameters directly and 
calculate them in the first principal model. Thus, the shell 
vibration and acoustical signals have been one of the 
mainly indirect methods to measure these load parameters 
[3]. Many researches have been done on wet ball mill [4], 

dry ball mill [5] and SAG mill [6]. However, most of the 
above methods used the extract and select features from 
frequency spectrum obtained by traditional Fast Fourier 
Transform (FFT) method. They are difficult to explain and 
the soft sensor models cannot be interpreted clearly.  

The numbers of the steel balls inside the mill are 
hundreds of thousands, which arranges hierarchically. The 
impact forces and periods of different layers’ balls are 
different. Thus, the shell vibration signal of the ball mill 
has strong non-stationary and multi-scale characteristics. 
Empirical mode decomposition (EMD) is one effective 
adaptively decompose method, which can decompose the 
time-domain original signal into some intrinsic mode 
functions (IMFs) [7]. Tang et al. proposed an EMD, PSD 
and partial least squares (PLS) based approach to analyze 
the shell vibration signal and modeling load parameters of 
the ball mill [8]. However, the above EMD based soft 
sensor models have poor generalization and the prediction 
error even high than single-scale frequency spectrum based 
soft sensor model.    

In order to construct multi-scale sub-signals based load 
parameters measuring soft sensor models with high 
accuracy, the first step is to obtain reliable multi-scale 
frequency spectrum. The original proposed EMD has 
many shortcomings, such as lacking a theoretical 
foundation, end effects, sifting stop criterion, extremum 
interpolation etc. Besides the shortcomings discussed 
above, another outstanding disadvantage of EMD method 
is the mode-mixing phenomenon. It is the result of 
intermittency. However, the newly proposed ensemble 
EMD (EEMD) can overcome mode-mixing problem. This 
method calculate the mean of an ensemble of 
decompositions that have different instances of noise 
added to the signal [9]. However, two decomposition 
parameters have to select for EEMD method. Thus, the 
adaptive ability of EMD algorithm is lost. Moreover, more 
computer time needs than EMD method. More recently, 
one of the authors proposed HVD [10]. The HVD method 
is theoretically based on the Hilbert-Transform (HT) 
presentation of the instantaneous frequency (IF) and does 
not involve a spline fitting and empirical algorithms. 
Moreover, it is natural that every inherent components of 
HVD may have physical and mathematical significance.  

There is one common shortcoming for the above three 
multi-scales decomposition method. It is that only a finite 
small number of separated valued components can be 
obtained. Normally, EMD does not exceed 3~4, and HVD 
dose not exceed 6~8. The sub-components of EMD and 
EEMD methods order from high frequency to low 
frequency. However, these sub-components orders from 
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high energy to low energy for HVD method. Thus, 
different sub-components contain different valued 
information. Comparison and analysis of these methods 
decomposition results can help us understand of the multi-
scales vibration signal. 

Therefore, EMD, EEMD and HVD methods 
decompose the shell vibration signal of ball mill in 
different grinding condition to a series of multi-scale sub-
signals. Correlation coefficients between these sub-signals 
and original vibration signal were calculated. Power 
density spectrum of different multi-scales sub-signals used 
also to analyze and explain shell vibration. Results show 
that different sub-signals contain different information. 

II. DESCRIPTION OF SEVERAL MULTI-SCALES 

DECOMPOSITON ALGORITHMS 

The original EMD decomposition algorithm has been 
applied widely in the last decade. More modified EMD 
algorithms, such as ensemble EMD (EEMD), is also used 
successfully in different background. More recently, one of 
the authors proposed HVD. These algorithms can 
decompose multi-scale non-stationary signal to sub-signals 
with different interesting information. 

A. Emperical Decomposition Algorithm (EMD) 

The EMD method decompose original signal 
automatically to a serial of intrinsic mode functions (IMFs). 
These IMFs satisfy two conditions: (a) in a complete data 
set, the number of extreme and the number of zero 
crossings must either be equal or differ not more than by 
one; (b) at any point, the mean value of the envelope 
defined by the local maxima and the envelope defined by 
the local minima is zero.  

The EMD algorithm is based on iteration, with the 
following steps:  

(1)Estimation of all local extrema;  
(2)Spline fitting of all local minima and maxima, 

ending up with two (the top and the bottom) extrema 
functions as the upper and the lower envelopes;  

(3)Computation of the average function between the 
upper and the lower envelopes;  

(4)Extraction of the average from the initial signal;  
(5)Iteration on the residual (the sifting procedure). 

B. Ensemble Emperical Decomposition Algorithm 

(EEMD) 

The major problem of EMD method is the mode-
mixing phenomenon. This problem results: (a) an IMF 
containing signals of widely disparate scales; (b) signals of 
similar scale residing in different IMF components. Thus, 
EEMD was proposed, which calculate the mean of an 
ensemble of decompositions that have different instances 
of noise added to the signal. 

The EEMD algorithm is also based on an iteration, 
which has the following steps:  

(1) Initialize the number of trials in the ensemble 
number M, the amplitude of the added white noise;  

(2) Add white noise to original signal and decompose 
the new signals with EMD;  

(3) Perform M times steps (2); 
(4) Calculate the ensemble mean 

C. Hilbert Vibraiton Decomposition (HVD) 

The HVD method is based on the Hilbert transform 
(HT) presentation of the instantaneous frequency (IF) and 
does not involve spline fitting and empirical algorithms. It 
decomposes the original signal into a sum of components 
with slow varying instantaneous amplitudes and 
frequencies. The decomposition is based on the following 
assumptions: (a) the underlying signal is formed by a 
superposition of symmetric quasi-harmonic functions; (b) 
the envelopes of each oscillating component differ from 
each other; (c) the total length of each component spans 
several periods of the corresponding slowest component. 

Normally, every inherent components may have 
physical and mathematical significance. This method is 
also an iterative process, and every iteration step includes 
the following three procedures: 

(1)Estimation of the IF of the largest component;  
(2)Detection of the corresponding envelope of the 

largest component;  
(3)Subtraction of the largest component from the 

original composition. 

III. MULTI-SCALES SUB-SIGNALS ANALYSIS APPROACH 

OF SHELL VIBRATION SIGNAL  

It is necessary to analyze the shell vibration signal in 
detail. The proposed multi-scales sub-signals analysis 
approach consist of three modules: multi-scales signal 
decomposition, correlation coefficients calculation and 
time/frequency transform module. 

A. Multi-scales Signal Decomposition  

The shell vibration signal are can be represented as the 

summary of a series of  sub-signals and a residual signal 

using EMD, EEMD and HVD algorithms respectively. 

The relationships among these sub-signals and original 

signal are represented as:  
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j
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where, x  represent the original shell vibration 

signal; o

EMDjx , o

EEMDjx  and o

HVDjx represent the thEMDj , 

thEEMDj and thHVDj  multi-scale sub-signals using EMD, 

EEMD and HVD algorithms respectively; EMDr , 

EEMDr and HVDr  represent residual signals of  shell 

vibration decomposition; EMDJ , EEMDJ and HVDJ represent 

number of sub-signals. 

B. Correlation Coefficients Calculation  

It is important to judge and select sub-signals that have 
strong correlation with original signal. Studies show that 
only a finite small number of separated valued components 
can be obtained with multi-scale decomposition algorithm. 
The following equation can calculate the correlation 
coefficients between different sub-signals and original 
signal: 
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where, 
MDEj

r , 
MDEEjr and 

HVDjr represent correlation 

coefficient between original signal and the  thEMDj , 

thEEMDj and thHVDj sub-signal using EMD, EEMD and 

HVD algorithm decomposed  respectively.  

At the same time, the hypothesis of no correlation 

values 
MDEj

p ,
MDEEjp and

HVDjp are also calculated. Given 

threshold 
thresholdp , the following criterion is used to 

selecting shell vibration sub-signals: 


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






threshold

threshold

HMDEEMDEMD
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         (7) 

Using the above criterion, the sub-signals with 
selj

 =1 

are selected as effective components of the original signal. 

Denoted the selected sub-signals as
sel
EMDj

x , 
sel

 EEMDj
x and 

sel
HVDj

x , 

and their numbers are sel

EMDJ , sel

EEMDJ and sel

HVDJ respectively. 

C. Time/Frequency Transform 

As the impact force on any point of the ball mill shell 

is different at different time during the mill rotate period. 

The data length using for time/frequency transform is at 

least one mill rotate period. Standard Welch's method is 

used to calculate the power spectral density (PSD). The 

following equation can represent the multi-scales 

frequency spectrum obtain process: 

sel
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jj
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jj
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where, 
sel
EMDj

z , 
sel
EEMDj

z and 
sel
HVDj

z  represent the thsel

EMDj , 

thsel

EEMDj and thsel

HVDj sub-signal frequency spectrum using 

EMD, EEMD and HVD method respectively.   

IV. APPLICATION RESULTS 

The experiments are performed on a laboratory scale 

ball mill (XMQL-420×450). The copper ore was crushed 

to about less than 6 mm before used. The diameters of the 

steel balls are 30, 20 and 15 mm respectively. The 

vibration and acoustical signals were picked up by 

accelerometer located on the middle of the mill shell. The 

detail is shown in [4], which are omitted in here. 
In this paper, only shell vibration signals of four 

different grinding conditions, such as zero load, ball load, 
dry mill and wet mill, are decomposed and analyzed.  The 
differences are: (1) There is not any load in zero grinding 
condition; (2) There is 40kg steel balls in ball load 
grinding condition; (3) There is 40kg steel balls and 30kg 
mineral ores in dry mill grinding condition; (4) There is 

40kg steel balls, 30kg mineral ores and 10kg water in wet 
mill grinding condition. 

A. Original Shell Vibration Signals 

The original shell vibration signals of two mill rotate 
periods at different grinding condition are shown as Fig.1.  
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Figure 1. Original shell vibration signals of two mill rotate periods  

 

Fig.1 shows that the laboratory scale ball mill has 

itself vibration with amplitude 5g, and the dry and wet 

mill can decrease the vibration amplitude from 50g to 10g. 

The components of shell vibration signals at different 

grinding condition are different.  

B. Multi-scale Decompositon Results 

The following decompose parameters are used: EMD 

with the default,  EEMD with the ensemble number 10 

and white noise amplitude 0.1, and HVD with sub-

component 15 and others default.  The multi-scale 

decomposition results of the former five sub-signals are 

shown as Fig. 2~Fig. 4. 

Fig. 2~Fig. 4 show that: (1) Sub-signals of EEMD has 

higher amplitude than that of EMD and HVD; (2) The 

first sub-signals of EMD and HVD are two period signals 

zero load, which different from EMD; (3) Except dry mill, 

most of the sub-signals different cannot be distinguish 

clearly. Thus, correlation coefficients based detailed 

analysis is necessary. 
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Figure 2. Decomposition results of former five sub-signals with EMD 
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Figure 3. Decomposition results of former five sub-signals with EEMD 
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Figure 4. Decomposition results of former five sub-signals with HVD 

 

C. Correlation Analysis Results 

Using default decomposition parameters of EMD, 

there are 14 sub-signals in zero grinding condition, and 

the last one is residual signal. For uniform, we only 

analyze the form 13 sub-signals at different grinding 

condition. Correlation coefficients statistical results are 

shown as Table 1~ Table 4. 

 

Table 1 Statistical results of correlation coefficients for zero load  

Number Decompose algorithm and results Note 
EMD EEMD HVD 

 r p t p r p  

1 0.1316 0 1 0 0.7037 0  

2 0.2423 0 0.1954 0 0.2073 0  

3 0.3205 0 0.3718 0 0.1590 0  

4 0.2382 0 0.3478 0 0.1333 0  

5 0.1446 0 0.1861 0 0.1088 0  

6 0.0592 0 0.0721 0 0.0888 0  

7 0.0285 0.5442 0.0776 0 0.0786 0  

8 0.0684 0 0.1102 0 0.0666 0  

9 0.0908 0 0.0916 0 0.0617 0  

10 0.0602 0 0.0479 0 0.0658 0  

11 0.0423 0 0.2647 0 0.0593 0  

12 0.0840 0 0.8526 0 0.0533 0  

13 0.8563 0 0.4514 0 0.0563 0  

 

 

Table 2 Statistical results of correlation coefficients for ball load  

Nu

mbe

r 

Decompose algorithm and results Note 
EMD EEMD HVD 

 r p r p r p  

1 0.7735 0 1 0 0.2082 0  

2 0.5024 0 0.1954 0 0.1770 0  

3 0.3369 0 0.3718 0 0.1517 0  

4 0.1502 0 0.3478 0 0.1323 0  

5 0.0613 0 0.1861 0 0.1088 0  

6 0.0276 0 0.0721 0 0.0920 0  

7 0.0142 0.5442 0.0776 0 0.0850 0  

8 0.0089 0.0012 0.1102 0 0.0816 0  

9 0.0066 0.0158 0.0916 0 0.0683 0  

10 0.0087 0.0015 0.0479 0.0167 0.0623 0  

11 0.0059 0.0304 0.2647 0.3507 0.0524 0  

12 0.0021 0.4314 0.8526 0.0262 0.0485 0  

13 0.0029 0.2796 0.4514 0 0.0534 0  

     

Table 3 Statistical results of correlation coefficients for dry mill  

Number Decompose algorithm and results Note 
EMD EEMD HVD 

 r p r p r p  

1 0.0819 0 1 0 0.7930 0  

2 0.1248 0 0.1389 0 0.2077 0  

3 0.2799 0 0.3025 0 0.1583 0  

4 0.2831 0 0.3687 0 0.1448 0  

5 0.1601 0 0.1652 0 0.1052 0  

6 0.0850 0 0.0866 0 0.1033 0  

7 0.0474 0 0.1120 0 0.0813 0  

8 0.0765 0 0.1186 0 0.0718 0  

9 0.0878 0 0.0955 0 0.0621 0  

10 0.1062 0 0.0358 0 0.0582 0  

11 0.0297 0 0.0318 0 0.0584 0  

12 0.0217 0 0.8503 0 0.0571 0  

13 0.0231 0 0.0515 0 0.0463 0  

 

Table 3 Statistical results of correlation coefficients for wet mill  

Nu

mbe

r 

Decompose algorithm and results Note 
EMD EEMD HVD 

 r p r p r p  

1 0.3031 0 1 0 0.3484 0  

2 0.4542 0 0.4627 0 0.2311 0  

3 0.3962 0 0.5273 0 0.1731 0  

4 0.2890 0 0.3663 0 0.1449 0  

5 0.1706 0 0.1844 0 0.1196 0  

6 0.0952 0 0.0898 0 0.1043 0  

7 0.0401 0.5442 0.0694 0 0.0954 0  

8 0.0306 0 0.0915 0 0.0807 0  

9 0.0520 0 0.0700 0 0.0863 0  

10 0.0594 0 0.0402 0 0.0685 0  

11 0.0405 0 0.2123 0 0.0661 0  

12 0.0344 0 0.6598 0 0.0607 0  

13 0.6416 0 0.1759 0 0.0619 0  

 

Table 1~ Table 4 shows that: (1) Sub-signals of HVD 

are all correlate with the original signal, which different 

from that of EMD and EEMD; (2) The largest correlation 

coefficient value is the first sub-signal of EEMD and the 

second  correlate sub-signal is the first sub-signal of 

EEMD, which show EEMD and HVD have better sub-
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signal decomposition result s than EMD; (3) Ball load 

grinding condition result different from others; (4) Under 

different grinding condition, sub-signals correlation are 

different for EMD and EEMD algorithm.  Thus, HVD and 

EEMD are more effective. Combine with frequency 

spectrum, more information can be obtained. 

D. Time-Frequency Transform results 

The time domain sub-signals of different grinding 

condition using EMD, EEMD and HVD method are 

transform into frequency domain using the Standard 

Welch's method with same parameters as literature [4]. 

The multi-scale frequency spectrum results of the former 

five sub-signals are shown as Fig. 5~Fig. 7. 
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Figure 5. Frequency spectrum of the former five sub-signals with EMD 
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Figure 6. Frequency spectrum of the former five sub-signals with EEMD 
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Figure 7. Frequency spectrum of the former five sub-signals with HVD 

Fig. 5~Fig. 7 shows that: (1) Frequency ranges of 

EMD sub-signals decrease gradually, and there is evident 

mix-modeling in the first sub-signal; (2) Except ball load 

grinding condition, frequencies of the first sub-signal of 

EEMD and HVD are all 60Hz; (3) Frequency ranges of 

HVD sub-signals does not decrease gradually from the 

second sub-signal to the last one; (4) Some sub-signals of 

EEMD exit still multi-modeling; (5) Ball load grinding 

condition has very different frequency spectrum.  

All the above results show that multi-scale frequency 

spectrums of different decompose algorithms contains 

different valued information.  

V. CONCLUSIONS 

Three multi-scales decomposition algorithm, such as  

empirical model decomposition, ensemble empirical 

model decomposition and Hilbert vibration decomposition, 

are used to decompose shell vibration signal under zero, 

ball load, dry mill and wet mill grind conditions. We 

obtain the following conclusions: (1) EEMD can 

decompose the most correlate sub-signals to original 

vibration signal; (2) The former three sub-signals of HVD 

have closely relationship with the original signals; (3) The 

correlation between sub-signals and original signal under 

different grinding condition are different; (4) Only the 

former 4~5 frequency spectrum may have more 

contribution for modeling load parameters of ball mill.  
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