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Abstract—Identifying and immunizing nodes in networks 

with heterogeneity community is very important to prevent 

epidemic spreading. The effectiveness of preventing the 

transmission of infectious disease can be greatly enhanced by 

choosing suitable nodes to vaccinate. Community structure 

can amplify the influence of a small number of bridge nodes 

which maintain the linking in different communities. 

However, in heterogeneity networks with community 

structure, identifying bridge nodes which overlap with 

different communities are not achievable with traditional 

global immunization algorithms. To consolidate the 

efficiency of immunization, it is essential to utilize the 

community topology and identify bridge nodes. Here, we 

develop an effective local algorithm, the Degree-Community-

Bridge-Find, to identify and immunize bridge nodes. Results 

show that Degree-Community-Bridge-Find generally 

outperforms Community-Bridge-Find in heterogeneity  

community networks.  

Keywords- community; immunization algorithm; epidemic 
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I. INTRODUCTION 

Since the spread of infectious diseases (e.g., SARS in 
2002, Avian influenza in 2003, and H1N1 in 2009) caused 
more and more serious harm and economic loss in modern 
society[1, 2] how to prevent epidemic spreading in time 
has been attracting wide attentions from different research 
fields[3-6]. As all know, immunization and quarantine are 
two basic measures to prevent epidemic spreading. In the 
face of epidemic outbreaks, it is a very important problem 
to identify who will be immunized or quarantined. 

In complex network, an individual with high centrality, 
which is called hub, has a significant impact on the 
dynamics of epidemics. In contrast to common belief, the 
best spreaders do not correspond to the most highly 
connected individuals. Instead, Kitsak[7] argued that nodes 
with high k-shell are more efficient spreaders in some real 
networks. Thus it is clear that immunizing hubs can 
prevent epidemic spreading effectively. To propose 
efficient immunization strategy, it is necessary to identify 
hubs in complex networks. Up to now, these studies fall 
into two topics: global and local immunizations. For the 
global immunization, hubs may be identified by different 
centrality measures, such as degree centrality[8], 
eigenvector centrality[9], betweenness centrality[10]. 

However, this approach is unrealistic for large scale 
networks because it requires a complete knowledge of all 
nodes. That is one reason why local algorithm is more 
applicative in practice when used in large scale networks. 
For example, random walk algorithm is widely applied to 
scale-free networks[11], and acquaintance immunization is 
efficient for large networks of any broad-degree 
distribution[12]. Furthermore, epidemic outbreaks can be 
minimized by fragmenting the networks via a graph 
partition algorithm which requires less immunization 
ratio[13]. 

Community structures at mesoscale level are 
ubiquitous in a variety of real complex systems[14], such 
as Facebook[15], and Twitter[16]. Many recent studies 
have contributed to understanding how community 
structures affect the dynamics of epidemic[17]. Except for 
the hub, bridge node is another kind of important node in 
community networks[18]. However, the meaning of bridge 
node may differ in different kind of networks[19]. For 
example, the bridge nodes can be words with multiple 
meanings in world association networks. And, in protein 
networks, a protein with multiple roles can be bridge node. 
In this paper, the bridge node is defined as an individual 
connecting different communities in network. The bridge 
node provides ways between different communities for the 
diffusion of information and disease[20]. In particular, the 
bridge node has been proved to be more effective than the 
hub in the diffusion of information through community 
networks[21]. Therefore, if bridge nodes can be identified 
in community networks, it is able to provide an useful 
reference for preventing epidemic outbreaks. In Ref.[22], 
these algorithms used to identify bridge nodes can be 
divided into two types: deterministic and stochastic 
algorithms. The former requires the complete information 
about each node, like global immunization, which greatly 
limits its applications and also limits its processing speed. 
In order to overcome this short, stochastic algorithm has 
been proposed, which does not require the complete 
structural information. Salathe et al. [22] generalized that 
immunization interventions targeted at bridge nodes which 
linking communities are more effective than those hubs. In 
their paper, Community-Bridge-Finder (CBF), which is 
based on local information, has been developed by using 
random walk algorithm to identify the bridge nodes. 
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In this study, we propose an simple immunization 
algorithm in heterogeneity networks with community 
structures. We then show how our algorithm, which we 
call it Degree-Community-Bridge-Find, can be applied to 
heterogeneity communities. It gives a better efficiency of 
controlling the outbreak of epidemics in networks which 
the community structure is obvious. 

II. SIMULATED NETWORK 

The heterogeneity simulated community networks of 
different modularity Q are generated by the algorithm 
given in Ref.[22]. There are m independent scale-free 
communities. In each community, n nodes are randomly 
connected so that the mean degree is kin. These 
communities are then connected randomly by Eout links.  
The simulated community network thus has a total of mn 
nodes and mn* kin + Eout undirected links.  We used the 
same set of parameters in this paper, namely m=10, n=500, 
kin=6, and Eout=2000. After generating the network, the 
modularity Q can be evaluated according to the definition 
given in Ref.[14]. The modularity Q can be varied by 
rewiring some inter-community links into intra-community 
links, following the rewiring procedures given in 
preference rule:  

 

 

Therefore, a node that is a neighbor of many other 
nodes, i.e., a hub, will have higher chance to be chosen for 
connection.  In the simulation, the parameters are taken to 
be =1. 

III. EPIDEMIC DYNAMIC 

We have implemented the classical susceptible-
infected-recovered(SIR) model[23], in this model 
individuals can only exist in three possible states: 
(S)usceptible, (I)nfected, (R)ecovered. The healthy 
individuals are susceptible(S) to infection, I denotes the 
individuals who have been infected and are capable to 
spread to others in the susceptible, and the individuals who 
are recovered(R)from the infection are not able to be 
infected again or to transmit to others. In the beginning, all 
nodes are susceptible. 

An epidemic simulation apply those algorithms before 
the infection occurs. Identified nodes are chosen by 
different immunization algorithms until vaccination 
coverage of nodes is achieved, then set their states as 
recovered. 

After that one susceptible node is randomly picked up 
and become infected. The epidemic simulation rules are: (1) 
Each susceptible node can be infected with probability 1-
e

(-β*i) 
at each step, where β=0.08 is the transmission rate,  

parameter i is the number of current infected neighbors. (2) 
In every step, infected nodes are assumed to recover with a 

constant probability. (3)The process of epidemic 
simulation stops once there are no further infected nodes. 

In order to implement the synchronous updating scheme, 
states of all nodes in network are updated at the same time. 

IV. DEGREE-COMMUNITY-BRIDGE-FIND 

In this section, we review existing method for 
immunizing in local communities and discuss the ways in 
which these approaches may fail, before describing our 
method. First, we briefly describe one local algorithms: 
Community-Bridge-Find, with which we compare our 
algorithm results. CBF which identify nodes that connect 
to different communities without complete information, 
does based on the notion that the first node that does not 
connect back to previously visited nodes is likely to be a 
bridge node between different communities, and represent 
a random walk on networks. We have implemented CBF 
following the algorithm in Ref.[22], where it has been 
shown that, without prior knowledge of the community 
structure, CBF is more efficient than other local 
immunization strategies that target at the different kinds of 
hubs. 

Bridge nodes are important for transmission through 
heterogeneity communities. Like CBF, DCBF is an 
algorithm based on self-avoiding walks.  The different is: 
two nodes are not randomly chosen among all the possible 
nodes that the walk could go in steps, but according to 
preference rule from high to low. i.e., two high degree 
neighbors are chosen from all the neighbors due to the 
self-avoiding restriction of the walk.  In the case that there 
is only one neighbor to choose from, the only neighbor 
will be considered. In practice, two additional checks are 
implemented to shorten the computing time. Firstly, the 
number of nodes registered in a running path is kept at the 
length of ten, using the latest ten nodes visited. Secondly, 
the number of visits by any random walk for each node is 
recorded. When the number k of visits equals a certain 
number(k=2), the node is immunized. 

V. RESULTS 

To test the efficiency of immunization strategies on 
networks, we generate computationally network with 
communities by creating scale-free networks. Then we run 
standard susceptible-infected-resistant(SIR) epidemic 
model on these networks. 

In the computationally generated networks, DCBF is 
more advantage than CBF algorithm in controlling 
outbreak at large areas of the parameter space, see Fig.1. 
The difference in the final epidemic ratios(%) between  
DBHD(Fig.1a) and CBF(Fig.1b), are shown for simulated 
networks with different network modularity Q and 
immunization coverage f(%).  The colors indicate the 
differences in percentages (see color codes).  Results are 
obtained by averaging over times 2000 realizations for 
each pair of Q and f. The parameters associated with the 

SIR dynamics are β=0.08 and . It is important to note 
that outbreaks will be restricted to local community when 
Q is high. Thus, CBF algorithm unfortunately is not an 
effective way to control the spreading of epidemics 
because immunizing bridge nodes is useless. However, 
DCBF may at least identify highly connected nodes in 
local community and will perform better than CBF under 
the extreme condition (Q>0.84).  
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Figure 1.  Comparison of efficacy of immunization algorithms in simulated networks. Color code denotes the difference in the average final size of 

disease outbreaks in networks that were immunized before the spreading using different algorithms. The left panels(a) show the DCBF, and the right 

panels(b) measuring the CBF. Average results were obtained by testing 2000 simulations, β=0.08 and . 

The difference in the peak (%) between  DBHD(Fig.2a) 
and CBF(Fig.bb), are also shown for simulated networks 
with different network modularity Q and immunization 
coverage f(%), like Fig.1. Results are obtained by 
averaging over times 2000 realizations for each pair of Q 

and f. The parameters associated with the SIR dynamics 

are β=0.08 and . The results for the differences in peak 
prevalence are given in Fig.2 and the features are 
essentially the same as those in Fig.1 

 

 
Figure 2.  Comparison of peak prevalence of immunization algorithms in simulated networks. Color code denotes the difference in the average peak  

of disease outbreaks in networks that were immunized before the spreading using different algorithms. The left panels(a) show the DCBF, and the right 

panels(b) measuring the CBF. Average results were obtained by testing 2000 simulations, β=0.08 and  

VI. DISCUSSION 

After going through the above details, we may 
conclusion that developing an algorithm based on network 
with community to identify bridge nodes is not an easy 
task. It is not merely resulting who is the best, but also to 
consider the feasibility of immunizing in networks. The 
feasibility is very important to community networks, 
which are fundamentally different structure from scale-
free networks. Therefore, immunization algorithm in 
networks with community should be easy manipulations in 
real time. 

We suggest that Degree-Community-Bridge-Find may 
provide a scientific methodological approach for making 
controls of the spreading of epidemic in network with 

community. Furthermore, this algorithm generally 
outperforms at several important features. Firstly, we 
show in this paper that DCBF identify bridge nodes which 
can cause extensive spreading of infection, and is of 
particular importance for networks with strong community 
structure. Secondly, aiming at the drawback of global 
algorithm, DCBF is local but simple immunization 
algorithm, one only needs information about the neighbors 
of a given node. All results make DCBF a good candidate 
for immunization algorithm in community networks.  

Although DCBF did well performance for 
immunization as one local algorithm, this may need to 
further improvement to deal with tricky situations. For 
instance, the role of bridge nodes would be more 
prominent and intricate if node contains multiple "labels" 
that belongs to many groups, according to the definition of 
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communities or other criteria. In cases where bridge nodes 
can be characterized by different categories, then multiple 
bridge nodes with multiple labels can be introduced. Such 
complex applications would require further investigations. 
On the other hand, DCBF can also be generalized to 
applications ranging from bridge nodes identification in 
social networks to community detection in graphs, and it 
could be lead to modifications of the algorithm for 
substantial improvements in performance. 

Identifying bridge nodes in communities is still a 
problem. As accompanied by the spreading of the disease 
in human society, bridge identification may reinforce their 
efficiency for immunization. But, to be sure that the 
efficiency of such an immunization algorithm depends 
crucially on the structure of network. In addition, 
technological advance will provide more information to 
find bridge nodes that overlapped with different groups, at 
the same time will increase the complexity and scale up 
the network size that both make immunization task more 
challenging in the near future.  
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