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Abstract

We propose a novel framework for performing quan-
titative Bayesian inference based on qualitative
knowledge. Here, we focus on the treatment in
case of inconsistent qualitative knowledge. A hi-
erarchical Bayesian model is proposed for integrat-
ing inconsistent qualitative knowledge by calculat-
ing a prior belief distribution based on a vector of
knowledge features. Each inconsistent knowledge
component uniquely defines a model class in the
hyperspace. A set of constraints within each class
is generated to describe the uncertainty in ground
Bayesian model space. Quantitative Bayesian in-
ference is approximated by model averaging with
Monte Carlo methods. Our method is tested on
ASTA network and results suggest that it enables
reasonable quantitative Bayesian inference from a
set of inconsistent qualitative knowledge.

Keywords: Qualitative knowledge modeling, In-
consistent knowledge integration, Bayesian net-
works, Bayesian inference, Monte Carlo simulation

1. Introduction

Bayesian models combine probability theory with
graph theory and become increasingly important
to design and analyze machine learning algorithms.
Prior background knowledge can be combined with
observed data to determine the probability distri-
bution of a hypothesis. Efficient algorithms for
learning Bayesian network structure and parame-
ters from training data have been a focus of much
current research. These algorithms generate a sin-
gle Bayesian model by maximizing the posterior
probability or likelihood. In realistic problems, due
to the sparse amount of observed data compared to
the size of the network, it is often biased to select
one model and ignore the model uncertainty. Thus,

it is preferable to adopt a full Bayesian approach to
account for model uncertainty.

Besides training data, the prior background
knowledge provides many ways to adjust uncer-
tainties. The prior background knowledge includes
qualitative and quantitative knowledge which de-
scribes the entities and their relationships with dif-
ferent levels of abstraction. Quantitative knowl-
edge can be exemplified by a probability elicitation
procedure by a domain expert. In most domains,
this is particular difficult due to the limitations of
expert knowledge in this level. In contrast, qual-
itative knowledge, which only provides loose con-
straints with uncertainty on the entities and their
relations exist in many science and engineering do-
mains. As recently shown, it can be applied to the
learning process [1]. For example, in biomedicine,
the statement: "Gene CTGF, IL11 and OPN co-
operatively activate bone metastasis in breast can-
cer", entities are gene CTGF, IL11, OPN and Bone
metastasis in breast cancer, their qualitative rela-
tion: cooperatively activate. In some cases, there
are properties which further specify the qualitative
relationship. In "The risk of lung cancer among
smokers is approximate 10 times higher than non-
smokers", Smoking cause lung cancer and the in-
fluence is 10 times higher to mon-smokers. Model
uncertainty represented by the qualitative knowl-
edge enables the full Bayesian approach with model
averaging. However, one significant drawback of
qualitative knowledge is its potential inconsistency.
In the same domain, there may exist contradict-
ing qualitative statements on dependency, causal-
ity and parameters over a set of entities. There-
fore, methods for integrating inconsistent qualita-
tive knowledge and making use of it as prior back-
ground knowledge in modeling Bayesian networks
and performing quantitative prediction are definite
beneficial to the Bayesian framework. Several qual-
itative reasoning algorithms have been proposed
to perform qualitative inference in a Bayesian net-



work [2, 3]. These algorithms perform qualitative
inference with sign propagation. In this paper, we
propose a novel framework for performing quan-
titative Bayesian inference with model averaging
based on inconsistent qualitative statements. Our
method interprets the qualitative statements by a
vector of knowledge features whose structure can
be represented by a hierarchical Bayesian network.
The prior probability for each qualitative knowl-
edge component is calculated based on the hierar-
chical knowledge model. These knowledge compo-
nents define Bayesian model classes in the hyper-
space. Within each class, a set of constraints on
the ground Bayesian model space can be generated.
Therefore, the distribution of the ground model
space can be decomposed into a set of weighted
distributions determined by each model class. This
framework is used to perform full Bayesian infer-
ence which can be approximated by Monte Carlo
methods, but is analytically tractable for smaller
networks and statement sets.

In section 2, we propose the hierarchical knowl-
edge model for modeling and integrating qualitative
knowledge. In section 3, we describe the quantita-
tive Bayesian inference method with model averag-
ing. In section 4, we apply our method to the ASTA
network and perform inference based on a set of in-
consistent qualitative statements. Conclusions and
further discussion are provided in section 5.

2. Hierarchical inconsistent

qualitative knowledge inte-
gration

In this section, we introduce a set of knowl-
edge features for translating qualitative statement
into a distribution constraint on the Bayesian
model space. Then, we propose a hierarchical
Bayesian model to represent the qualitative fea-
tures. Thirdly, we show that the prior probabil-
ity of a knowledge component can be calculated as
a product of the conditional probabilities of these
dependent knowledge features.

2.1. Qualitative knowledge fea-
ture

The body of qualitative knowledge can be repre-
sented by a set of knowledge features which define
the structural and parametric constraints on the
hyperspace of a set of ground models.

2.1.1. Structural qualitative knowledge feature

The structure of a graphical network consisting
node B and node A can be described by structural
qualitative knowledge features with two first-order
logic predicates:
Depend(A,B) =0/1 Influence(A,B) =0/1

(1)
which describe whether A and B are dependent and
whether the influence direction is from A to B; De-
pend and Influence are denoted by Dp and I , as
well as, the set of structural knowledge features is
denoted by II={Dp,I}.

2.1.2. Parameter qualitative knowledge features

Under each structural feature, the structure depen-
dent parameter knowledge A, then can be described
by two dependent set of features, i.e. baseline qual-
itative knowledge features and extended qualitative
knowledge features.

Baseline qualitative knowledge feature

Baseline qualitative knowledge features, ¥, de-
fine the basic properties of qualitative causal influ-
ences and their synergy.

1. Single Influence
Definition 2.1. If a child node B has a parent
node A and the parent imposes an isolated influ-
ence on the child, then qualitative influence be-
tween parent and child is referred to as Single In-
fluence. Single influence can be further classified
into single positive influence and single negative in-
fluence.
Definition 2.2. If presence of parent node A ren-
ders presence of child node B more likely, then the
parent node is said to have a Single Positive (SP)
influence on the child node. This can be repre-
sented by the inequality

Pr(B|4) > Pr(B[4) (2)

Definition 2.3. If presence of parent node A ren-
ders presence of child node B less likely, then parent
node is said to have a Single Negative (SN) influ-
ence on child node. This can be represented by the
inequality

Pr(B|A) < Pr(B|A) (3)

2. Joint Influence
Definition 2.4. If a child node B has more than
one parent node and all parents affect the child in
a joint way, then these influences between parents
and child are referred to as joint influence. This
joint influence can be either synergic (cooperative)



or antagonistic (competitive) and the individual in-
fluences from the parent to the child can be either
positive or negative.
Definition 2.5. If a joint influence from two or
more parent nodes generates a combined influential
effect larger than the single effect from each indi-
vidual parent, then the joint influence is referred to
as Plain Synergy (PlSyn).

Assume that parent nodes A and B impose pos-
itive individual influences on child node C, then the
knowledge model can be defined as

Pr(C|A, B)

Pr(C|4,B) 2 { Pr(C|4, B)

}zmmAm

(4)
Definition 2.6. If joint influences from two or
more parent nodes generate an combined influen-
tial effect larger than the sum of all effects from
an individual parent, then the joint influence is re-
ferred to as Additive Synergy (AdSyn,).

Assume in case that parent nodes A and B im-
pose a positive individual influence on child node
C, then we define

Pr(C|A,B) > Pr(C|A,B)+ Pr(C|A,B)
{ Pr(C|A, B)
Pr(C|A, B)

Y

}zm@Am
(5)

Similar rules can be applied to the case where A
and B impose a negative individual influence on
child node C.

Comparing Eq. 5 with Eq. 4, we can conclude
that additive synergy is a sufficient condition for
plain synergy and plain synergy is a necessary but
not sufficient condition for additive synergy. There-
fore, if multiple parents demonstrate additive syn-
ergy, it is sufficient to judge that this influence is
also plain synergy, but not vice-versa.

It is important to distinguish between plain
synergy and additive synergy since they represent
distinct semantic scenarios in a domain. For exam-
ple, A is a protein and B is a kinase which phospho-
rylates protein A and produces the phosphorylated
protein C. Because of the nature of this protein-
protein interaction, neither B nor A alone can sig-
nificantly increase the presence of C, but both to-
gether can drastically increase the presence of C
which is greater than the sum of C in case of either
A or B present. In this example A and B exhibit
additive synergy and it is sufficiently to conclude
that A and B has plain synergy as well.
Definition 2.7. If the joint influences from two
or more parent nodes generate a combined influen-
tial effect less than the single effect from individual

parent, then the joint influence is referred to as an-
tagonistic joint influence or antagonism (Ant).

Assume that parent nodes A and B have in-
dependent and symmetric positive single influences
on child node C, the antagonistic influence of A and
B can be represented by

{ ?;Eg}%g; } > Pr(C|A, B) > Pr(C[4,B)

(6)
Similar rules can be applied to the case where A
and B impose a negative individual influence on
child node C.

3. Mixed Joint Influence In case that the
joint effect on a child is formed by a mixture of posi-
tive and negative individual influences from its par-
ents, the extraction of a probability distribution is
not well-defined in general. Hence, if no additional
information is given, mixed influences are treated
as independent and with equal influential strength.
Assume that parent node A imposes positive sin-
gle influence on child node C and parent node B
imposes negative single influence on child node C,
then the joint influence or mized synergy (MxzSyn)
can be represented by

Pr(C|A,B) > Pr(C|A,B) Pr(C|A, B)

>
Pr(C|A,B) > Pr(C|A,B) Pr(C|A,B) >

r(C
(7)
Any additional structure can be brought into the
CPT of the corresponding collider structure as soon
as dependencies between influences are made ex-
plicit by further qualitative statements.
Extended qualitative knowledge feature
The extended qualitative knowledge features,
denoted by ¥, include the relative ratio and dif-
ference between any probability configurations of
a influence and the absolute bound of any single
configuration in a influence. These extended fea-
tures impose further constraints based on the base-
line features and therefore restrain the uncertainty
in Bayesian model space more accuratly. The ex-
tended qualitative knowledge features can be con-
sistently represented by a linear inequality. In the
case that node A imposes a single influence on node
B, the linear constraints can then be written as

Pr(B|A) > R x Pr(BJA) + A (8)

Pr(B|A), Pr(B|A) € [Bdmin, Bdmaz]. R is the In-
fluence Ratio, A is the Influence Difference and
Bd represent the bounds of the probabilities. Once
the qualitative knowledge is translated by the fea-
ture set {II(Dp,I),A(Z,P(R,A, Bd))} according
to Eq. 1 to Eq. 8, the distribution of ground models
is defined by this knowledge.

Pr(C|A, B
Pr(C[4, B

)
)
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Fig. 1: Hierarchical Bayesian Network on Qualita-
tive Knowledge.
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Fig. 2: Feature-vector of Statements.

2.2. Hierarchical

model

knowledge

The dependent qualitative knowledge feature set
can be represented by a hierarchical Bayesian net-
work (HBN) [4]. Within a knowledge HBN, the
structureal feature II and parameter feature A
are two first-level composite nodes. II can be
futher decomposed into two leaf nodes Dp and
1. The parameter feature A contains two second-
level composite nodes, i.e. the baseline knowl-
edge features ¥ and extended knowledge features
W which consists of three leaf nodes R, A and Bd.
Thus qualitative knowledge §2 can be described as
QO = {II(Dp,I),A(Z, (R, A, Bd))}, where ¥ =
(SP,SN, PlSyn, AdSyn, Ant, MxSyn). The hier-
archical knowledge model is shown in Figure 1(a)
and a tree hierarchy in Figure 1(b). The equivalent
Bayesian network is shown in Figure 1(c).

Hierarchical Bayesian Networks encode condi-
tional probability dependencies in the same way as
standard Bayesian Networks. The prior probabil-
ity of a qualitative knowledge §2 can be written as a
joint probability of {II, A} and can be decomposed
according to the dependency between each compo-
nent features as follows.

Pr(Q) = Pr(ID)Pr(SI)Pr(¥|X) (9)
where Pr(¥|X) = Pr(R|X)Pr(A|X)Pr(BdlY),
Pr(Il) = Pr(Dp)Pr(I|Dp) and Pr(X|l) =

Pr(X|I). The conditional probabilities of qualita-
tive knowledge features can be calculated by count-
ing the weighted occurrences given a set of incon-
sistent statements. The weight of knowledge fea-
tures equals to the credibility of their knowledge
sources which may be evaluated by a domain ex-

pert or determined by the source impact factor. If
no further information on the weights is available,
they are set to 1. In this case, the conditional prob-
ability of features is computed only by occurrence
count. For example, we assume a set of qualita-
tive statements, S = {Si,S2,S3}, about smoking
and lung cancer are observed: 1) The risk is more
than 10 times greater for smokers to get lung can-
cer than no-smokers. 2) Men who smoke two packs
a day increase their risk more than 25 times com-
pared with non-smokers. 3) There is not signifi-
cant evidence to prove that smoking directly cause
lung cancer, however, clinical data suggest that lung
cancer is related to smoking. The statements can
be represented by a vector of features which is
shown in Figure 2. The conditional probability
of the features can be calculated straightforwardly
by Pr(I|Dp)=(wi+ws)/we, Pr(I|Dp)=ws/w,,
Pr(ri|SP)=wy/wy, and Pr(rs|SP)=(wi+ws)/wy
where w, = w; + wy + w3, wpy = 2wy + wo,
Pr(Dp) =1, Pr(SP|I) =1, r = [10,25] and rp =
[25, 00]. One notion is that the knowledge features
U = {R,A,Bd} in Figure 1(a) are continuous-
valued and therefore, can be transformed to dis-
crete attributes by dynamically defining new dis-
crete attributes that partition the continuous fea-
ture value into a discrete set of intervals. In the
above example, the continuous feature R in S7 has
value range [10,00] and a continuous value range
[25,00] in Se. The continuous ranges can be par-
titioned into two discrete intervals: r; = [10,25]
and ro = [25, c0], therefore, the qualitative knowl-
edge Q= {21,Q9,Q3} can be transformed from
S ={51,5,, 55} with discrete-valued features.

2.3. Qualitative knowledge in-
tegration

Once we have calculated the conditional prob-
abilities of knowledge features, the prior prob-
ability of qualitative knowledge can be com-
puted according to Eq. 9. Thus the inconsis-
tent knowledge components are ready to be rec-
onciled. The qualitative knowledge transformed
from the feature vector of statements in Figure 2
can be described by Q: Q;={1,1, SP,[10,25],0,0},
Q={1,1,SP,[25,00],0,0} and Q23={1,0,0,0,0,0},
where Qk:{Dpk7Ik,Zk7Rk,Ak,Bdk}. If the
weights of statements are set to 1, the knowl-
edge prior probability is calculated, then we have
Pr(Q1)=2/9, Pr(22)=4/9 and Pr(Q3)=1/3. The
integrated qualitative knowledge thus preserved
the uncertainty from each knowledge component.



Each qualitative knowledge component 2 defines
a model class with a set of constraints on the ground
model space which is generated by its features. The
model class and its constraints are used for model-
ing Bayesian networks and performing quantitative
inference.

3. Bayesian inference with in-
consistent qualitative knowl-
edge

In this section, we propose a novel approach to
make use of a set of inconsistent qualitative state-
ments and their prior belief distribution as back-
ground knowledge for Bayesian modeling and quan-
titative inference.

A Bayesian model m represents the joint prob-
ability distribution of a set of variables X =
{z1,22,...,2nx} [5]. The model is defined by a
graph structure s and a parameter vector 6, i.e.
m = {s,0}. In full Bayesian framework, all avail-
able information is used in an optimal way to per-
form inference by taking model uncertainty into ac-
count. Let us classify the set of available informa-
tion into an available set of training data D and
a set of inconsistent qualitative background knowl-
edge Q = {Q4,...,Qx} on a constant set of vari-
ables. The posterior distribution of models m is
then given by

Pr(D|m, Q) Pr(m|Q)Pr(Q)

Pr(m|D, Q) = o (D.0)

(10)

The first term in the numerator of Eq. 10 is the
likelihood of the data given the model. The second
term denotes the model prior which reflects the in-
consistent set of background knowledge and the last
term is the prior belief of the knowledge set. Now,
inference in the presence of evidence is performed
by building the expectation across models:

Pr(X|D, E,Q)

= / dmPr(X|E, m)Pr(D|m, Q) Pr(m|Q)Pr(Q)
(11)

In this paper we consider the extreme case of no
available quantitative data, D = ().

Pr(X|E,Q) = /der(X\E,m)Pr(m@)Pr(ﬁ)

(12)
In this case, model prior distribution Pr(m|Q) is
determined soly by the inconsistent background

knowledge set Q. Each independent qualitative
knowledge component, ; € €, uniquely defines
a_model class, My, with a vector of features, i.e.
M = {M,...,Mg}. The features are translated
into a set of constraints which determine the dis-
tribution of the ground models within each model
class.

First of all, the probability of a model class
given the inconsistent knowledge set is written as

K
Pr(M|Q) =Y Pr(M;|Q;) Pr((Q) = Pr()
i=1
(13)
where {Pr(My|Q;) = 1,i = k} and {Pr(My|Q) =
0,7 # k} since the k-th model class is uniquely de-
fined by € and is independent to the other knowl-
edge component. Secondly, the probability of a
ground Bayesian model sample m in the k-th model
class given the inconsistent knowledge set is

Pr(m € M|Q) = Pr(m|M)Pr(M|Q)  (14)

Thus, the inference on X given evidence £ and in-
consistent knowledge set €2 in Eq. 12 can be written
as

Pr(X|E,Q) =) / dmPr(X|m, E)Pr(m|My) Pr(Q)
k m

(15)
where Pr(m|Q) = >, Pr(m € M;|Q) and we as-
sume the inconsistent knowledge set to be true,
i.e. Pr(Q) = 1. Therefore, the inference is calcu-
lated by firstly integrating over the structure space
and the structure-dependent parameter space of a
ground Bayesian model from a model class accord-
ing to the constraints and perform such integration
iteratively over all possible model classes with the
prior distribution. The integration in Eq. 15 is non-
trivial to compute, however, Monte Carlo methods
can be used to approximate the inference.

4. Empirical study

In this section, we apply our framework to integrate
a set of inconsistent qualitative knowledge about
ASTA network and perform quantitative Bayesian
inference.

4.1. Inconsistent knowledge in-
tegration

The ASIA network [6] is a popular toy belief model
for testing Bayesian algorithms. The structure and
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parameter of actual ASTA network is shown in Fig-
ure 3. For demonstration, we consider the inconsis-
tent qualitative statements with regarding to single
edge between Smoking and Lung Cancer, as well
as the collider structure of Lung Cancer, Bronchi-
tis and Dyspnea. The method applies to all of the
entities and their relations in the ASTA network.

1. Although nonsmokers can get lung cancer, the
risk is about 10 times greater for smokers.
(www.netdoctor.co.uk)

2. The lifetime risk of developing lung cancer in
smokers is approzimately 10%. (www.chestx-
ray.com/Smoke/Smoke.html)

3. Men who smoke two packs a day increase their
risk more than 25 times compared with non-
smokers. (www.quit-smoking-stop.com/lung-
cancer.html)

4. Lifetime smoker has a lung cancer risk
20 to 30 times that of a mnonsmoker.
(www.cdc.gov/genomics/hugenet /ejournal /O
GGSmoke.htm)

5. 15% of smokers ultimately develop lung cancer.
(www.cde.gov/genomics/hugenet /ejournal /O
GGSmoke.htm)

6. The mechanisms of cancer are not known. It
is NOT possible to attribute a cause to effects
whose mechanisms are not fully understood.
(www.forces.org/evidence/evid /lung.htm)

7. It is estimated that 60% of lung cancer
patients have some dyspnea at the time
of diagnosis rising to 90% prior to death.
(www.lungcancer.org/health__care/focus_on_ic
/symptom/dyspnea.htm)

8. Muers et al. noted that breathlessness was a
complaint at presentation in 60% of 289 pa-
tients with non-small-cell lung cancer. Just
prior to death nearly 90% of these patients ex-
perienced dyspnea. [7]

9. At least 60% of stage 4 lung cancer victims
report dyspnea.
(www.lungdiseasefocus.com/lung-cancer/

palliative-care.php)

10. Significantly more patients with CLD than LC
experienced breathlessness in the final year
(94% CLD vs 78% LC, P < 0.001) and final
week (91% CLD wvs 69% LC, P < 0.001) of
life. [8]

11. 95% of patients with chronic bronchitis and
emphysema reported Dyspnea. [9]

Each statement is analyzed by the hierarchical
knowledge model in Figure 1(a) and the extracted
features are summarized in Figure 4(a). In this
statement set, the first six statements represent the
relation between (tobacco)smoking and lung can-
cer. {S1,...,S55} describe a single positive (SP) in-
fluence from smoking to lung cancer with inconsis-
tent knowledge features of the ratio (R) and bound
(Bd). However, statement Sg declares a contra-
dicting knowledge suggesting that smoking is not
the cause of lung cancer. {S7,...,S11} describe
the synergic influence from lung cancer and bron-
chitis to dyspnea. Without further information,
it can be represented by plain synergy with pos-
itive individual influence. The knowledge on the
extended features in Eq. 7 of the conditional prob-
ability distribution of this collider structure is not
available, however, the knowledge on the extended
features of the marginalized conditinal probability
space are provided in these statements. For sim-
plicity, we assume the weight of every qualitative
statement equals to 1, i.e. {w; =1,i=1,...,11}.
Due to the parameter independency [5], we can
compute the conditional probability of each lo-
cal structure independently. For each local struc-
ture, we calculate the conditional probability of
knowledge features by counting its occurrence fre-
quency. For the local structure of smoking and
lung cancer in the ASTA network, the prior prob-
ability of the knowledge features can be calcu-
lated as Pr(Dp)=5/6, Pr(I|Dp)=1, Pr(I|Dp)=1,
Pr(SP|I)=1, Pr(r1|SP)=1/5, Pr(rs|SP)=1/5,
Pr(rs|SP)=2/5, Pr(r4|SP)=1/5, Pr(b;|SP)=1/2
and Pr(bs|SP)=1/2. where m = [9,11], ry =
[20,25], r3 = [25,30] and ry = [30,00]; by =
[9%,11%)] and by = [14%,16%)]. The continuous-
valued feature R and Bd are discretized into |R| = 4
and |Bd| = 2 discrete-value intervals respectively.
Based on the features and their prior belief, a set of
qualitative knowledge Q = {Q1,...,Q46} is formed
in Figure 4(b).
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Fig. 4: Qualitative Statements and Knowledge in
ASIA network.

4.2. ASTA model monte carlo
sampling

Given the integrated qualitative knowledge set Q
with prior probabilities, we now construct the
Bayesian model class and the distribution on
ground model space within each class. For demon-
stration purposes, we assume the partial struc-
ture and its parameters, i.e. {a,v, A, f}, to be
known as in Figure 3(b). Therefore the uncer-
tainty of ASIA model space is restricted to the
uncertainty of the local structure and parameter
space on Smoking and Lung Cancer which can be
described by Pr(m|My) and Pr(My) defined by
{Qulk = 1,...,9}, ie. {Mp(Q)|k = 1,...,9},
as well as the uncertainty of the local space on
Lung Cancer, Bronchitis and Dyspnea which can be
jointly determined by three types of model class, i.e.
the root-dimension model class defined by ¢, the
marginal-dimension model classes of lung cancer
and dyspnea defined by {€;|i = 11,...,14} and the
marginal-dimension model classes of bronchitis and
dyspnea defined by {Q;]j = 15,16}. Thus, there
are total eight possible combination of these model
classes, ie. {Mg(Qi0,Q, )k = 10,...,17;¢ =
11,...,14;5 = 15,16} and each combination virtu-
ally forms a complete model class which defines the
set of constraints on the structure and parameter
space of ground Bayesian model for the local col-
lider structure of lung cancer, bronchitis and dys-

pnea. The prior probability of each combination,
Pr(My) is the product of the prior probability of
its independent components, i.e.

P’I"(Mk-) = Pr(Qlo)Pr(Qi)Pr(Qj) (16)

For each local structure, we perform 10,000 sam-
pling iterations. In each iteration, we select a model
class M}, randomly based on the prior probability of
the model class, i.e Pr(Mj}). In each selected model
class, we randomly choose 3 samples of ground
Bayesian model m, whose structure and parame-
ter space is consistent with the class constraints
Pr(m|My) as shown in Figure 1(a). In this way,
for the local structure of smoking and lung cancer,
the prior bability of the model class is equivalent
to its knowledge component, i.e. Pr(My)=Pr(Q).
We generate total N=30,000 ground model samples
from model classes {My(Q%)|k = 1,...,9} defined
by Q4 in Figure 4(b). The ground model samples
are shown in Figure 5(a). For the local collider
structure of lung cancer, bronchitis and dyspnea,
we generate N=30,000 ground model samples from
the combination of model classes defined in Eq. 16
based on {Q|k = 10,...,16} in Figure 4(b). The
marginal conditional probability samples are shown
in Figure 5(b) and 5(c). Without further informa-
tion on lung cancer, bronchitis and dyspnea, we can
set their prior probabilities to be 1/2. By taking av-
erage over the models in Figure 5(a) to 5(c), we can
calculate the mean value for the conditional proba-
bility of lung cancer given smoking, i.e. 3;=0.1255,
B0=0.006, and of Dyspnea given lung cancer and
Bronchitis, i.e. §=0.2725, £,=0.9053, £,=0.5495
and £3=0.968. Note that since the 9tk model class
defined by Qg for the structure of lung cancer and
smoking, i.e. My(Qg), contains no edge between the
nodes, the parameter of this model class is null.

4.3. ASIA model inference

For each of the model sample, according to Eq. 15,
we perform inferences in silico on the likelihood of
a patient having lung cancer (Lc) given informa-
tion about the patient’s smoking status and clinical
evidences including observation of X-ray, Dyspnea,
and Bronchitis, i.e. Xops = {Sm, Xr, Dy, Br}. The
convergence of these prediction under a set of ev-
idences F = {E1, Es, E3, Ey, E5, Eg} are shown in
Figure 5(d). The true prediction values with para-
meters in Figure 3(b) under the evidence set E are
listed below in Figure 6. The presence of bronchitis
could explain away the probability of lung cancer
and the presence of smoking increases the risk of
getting lung cancer.



5. Conclusions

In this paper, we proposed a hierarchical Bayesian
model for representing qualitative knowledge with
a vector of features. The inconsistent knowledge
components are integrated by calculating a prior
distribution. The integrated qualitative knowledge
set is used as prior background knowledge in mod-
eling Bayesian networks and performing quantita-
tive inference. Simulation results suggest that our
methods can produce reasonable quantitative pre-
diction based on the inconsistent knowledge set.
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Fig. 5: ASIA Model Sampling and Inference.

Exp. B Eo E's Ey = Eg
True 0.17 0.87 0.84 0.21 0.91 0.11
Simulation 0.07 0.61 0.59 0.08 0.67 0.06

Fig. 6: Inference Results on ASTA Network




