
Buffer Overflow Vulnerability Detection based

on Format-Matching on Source Level

Xiaoyu Wang

State Key Laboratory of Network and Switching

Technology

Beijing University of Posts and Telecommunications

Beijing, 100876, China

aphay@bupt.edu.cn

Qiaoyan Wen

State Key Laboratory of Network and Switching

Technology

Beijing University of Posts and Telecommunications

Beijing, 100876, China

Zhao Zhang

State Key Laboratory of Network and Switching

Technology

Beijing University of Posts and Telecommunications

Beijing, 100876, China

Abstract—Buffer overflow has become the most common

software vulnerability, which seriously restricts the

development of the software industry. It’s very essential t o

find out an effective method to detect this kind of software

bugs accurately. In this paper, we design an improved buffer

overflow detection system. At first, our system preprocesses

the source code to add some auxiliary detection symbols.

Then, it scans the source code by a static detector, which

uses the identifier for auxiliary detection and combines with

a dynamic detection method to improve the recognition

accuracy and detection capability. Finally, we make a

comparison between our system and the original detection

system. To assess the usefulness of this approach, several

experiments are performed on a simulation system, and we

can draw a conclusion that our system performs better than

other detection software. The method proposed in this paper

is of the important application value and can improve

detection accuracy.

Keywords-buffer overflow, rule-based detection, dynamic

test, format-matching

I. INTRODUCTION

Buffer overflow (BOF) is source code level
vulnerability that allows unchecked inputs to overflow data
buffers during memory writing operations. If inputs are
crafted carefully, shell code can be provided as the content
for copy operations. This may lead to not only abnormal
program behaviors, but also unwanted code execution.
Even system root authority may be obtained by unexpected
hackers. The presence of BOF opens the door for many
notorious types of attacks such as injection of malicious
worms. Recent vulnerability reports suggest that BOF
vulnerabilities still exist in both legacy and newly
developed applications and cause many safety problems of
user data. Thus, detecting BOF vulnerabilities from
programs is important.

There are already a lot of researches about buffer
overflow detection. The detection technologies for this
vulnerability are divided into two categories[1][2]: static
detection and dynamic detection. Static detection is
efficient, but not accurate. It has a high rate of mistake. On
the other hand, dynamic test can search vulnerabilities
more accurately than static detection, but it runs slowly
and inefficiently. Buffer overflow detection has been
studied extensively. Most of these works is a discussion of
static methods. Bernhard J. Berger and Karsten Sohr[1]
proposed a detection method. They use both Soot and
Bauhaus to make an analysis of reverse engineering. Chen
Liu, and Jinqiu Yan[2] propose an analysis approach,
R2Fix, for bug reports to automatically generate bug-
fixing patches. Except these works, we find out that rule-
based source level patching method proposed by Hossain
Shahriar and Hisham M. Haddad[3], performances well in
most instances. Wei Le[4] also proposed a dynamic
detection structure in one of his recently papers, which is
easily combined with static methods.

This paper proposes an improved detection system. In
summary, this work makes the contributions as follows:

 We design a pretreatment module, which can help
static scanners search the source code very easily.

 We expand the Recognizer of the static part. Rule-
based method is based on format-matching[3] in
Recognizer. Some new code patterns are added
into our system.

 We combine static method with a dynamic module.
This structure may improve the static detection
because of the accuracy of dynamic test.

 We implement the system by Python, a kind of
easy-expand script language. It makes our system
easy to work with other software.

 We make an experiment to test our detection
system‟s performance. The result proves that our

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

© 2014. The authors - Published by Atlantis Press 298

approach can find buffer overflow vulnerabilities
more accurately.

The rest of this paper is organized as follows. We
briefly describe the basic theory of our method in section II,
and in section III we present the design of our system. We
demonstrate the experimental results and evaluate our
approach in section IV. In the end, we summarized this
paper in section V.

II. THEORY

Before designing the detection system, we introduce
some basic theories.

Buffer overflow vulnerabilities are caused by
programming errors, which allows an attacker to cause the
program to write beyond the bounds of an allocated
memory block to corrupt other data structures[8].

Common sources of BOF (shortly for Buffer Overflow)
vulnerabilities include unsafe library function calls, buffer
index variables, absence of null characters, arithmetic
operations using pointers, and pointer usage in complex
code blocks such as loop and if structures[3]. Rule-based
source level detection includes identifying programming
elements that might cause BOF, such as limitations due to
languages, associated libraries, and logical errors. It is
based on match several code patterns, including simple
(one statement) and complex (multiple statements) forms
of BOF. We can extend additional code patterns to make
the detection more accurately.

Figure 1. Dynamic Module

Based on the rule-based detection approach, we add a
dynamic module to verify static test results.

The dynamic module is firstly proposed by Wei Le in
Segmented Symbolic Analysis Research[4]. The dynamic
analysis, illustrated in figure. 1, consists of three parts: an
inference repository, a test synthesizer and an inference
engine.

III. DESIGN OF OUR SYSTEM

We design a better detection system based on the
previous research foundation. This detection system,
illustrated in figure.2, combines the static method and the
dynamic testing, which is a block diagram and reflects our
vision and design for this detection system. We design our
system into two parts: static part and dynamic part, on
behalf of the static detection and dynamic detection. In the
below diagram, the blue line represents the control flow
among the components, and the green thick line indicates
the data flow.

A. Static search

The input data is a piece of C/C++ program source
code. At first, we do some pretreatments for the input data,
such as adding some auxiliary detected symbols and other
factors. At this step, we scan the whole input data to find
out unsafe functions and other code segments which may
cause buffer overflow. Detection system annotates the
searched code segments using special comments, which
includes the information about buffer type, definition, and
length. These comments are written in a particular format,
which is easy for the program to read the information. An
example in Table I shows how to annotate the code.

Then, the program scans the code with its static
scanner, while the recognizer module assists in the analysis
to improve the accuracy of recognition and detection. In
this process, the scanner extracts code information from
the comments added by pretreatment module. Based on
this information, the scanner can extract the relevant code
fragments and put them together to build an independent
test unit.

TABLE I. PRETREATMENT FOR SOURCE CODE

Before pretreatment After pretreatment

char buf[1024];
…

strcpy(buf,dest);

…
char dest[65600];

for (i=0; i < sizeof (src); i++){

if(i<sizeof(dest)&&i>=0)
dest[i] = src[i];

}

char buf[1024];/*@def id:1
len:1024*/

…

strcpy(buf,dest);/*@func id:1*/
…

char dest[32];/*def id:2 len:32*/

for (i=0; i < sizeof (src); i++){
if(i<sizeof(dest)&&i>=0)/*@check

id:2*/

dest[i] = src[i];/*@write id:2*/
}

The recognizer module is the core of our static part.
Some typical code patterns are stored in this module,
including four simple patterns and one complex patterns:
unsafe function call, illegal index, no „\0‟, illegal pointer
position, and no pointer check inside loop block (or if
block). Except these, we can also add code patterns to the
recognizer according to the latest researches. The
recognizer checks whether this extracted piece of code
contains buffer overflow vulnerabilities, and returns a
detection result back to the scanner. The scanner
determines whether the code be passed to the dynamic part.
After the static scanning, intermediate data with specific
format is generated.

B. Dynamic test

After that, the intermediate data is submitted to the
dynamic part along with the source code. The test
synthesizer is responsible for constructing a dynamic test
suite, and passing the test suite to inference engine for
dynamic testing. This module seems to be a compiler or a
unit test program, but it automatically builds a set of
executable tests based on the information in the
intermediate data.

In order to monitor the running status, we need an
independent module. Inference engine is designed to
determine whether the unit test triggers a memory error. It
performs a regression analysis on the inputs and outputs of
the tests and returns the discovered transfer functions and
symbolic values. The inference repository stores all the
inferred results for reuse. After all testing, we make a
testing report to show the detection results. The test results

299

stored in the repository are important reference when the
detection system constructs the final output.

C. Process Control

The entire program contains many modules, and is a
complicated large system. It needs a global module to
control the program running state and ensure that the
system can detect buffer overflow vulnerabilities step by

step. Thus, we design a controller and a state machine. The
working process of control modules is as follow:

 When a module starts to work, it passes a message
to the controller to report the state.

 The controller receives the message, and passes
the message to the state machine.

 The state machine acknowledges the current
operational status based on the messages and
determines the next state of the module.

Figure 2. System Block Diagram

 The state result is returned back to Controller.
And Controller sends a command to the module.

 Then the module can acknowledge his next job.
By the Controller, we are able to control all the

modules and view their working state easily.

IV. EXPERIMENT AND RESULT

Here is an example to illustrate how the system
detects a piece of C++ program source code. The code in
figure. 3 is a typical case which may cause buffer
overflow. We pass this piece of code to our system and
the steps of detection are as follows:

 The system adds a symbol after the function
declaration of copyout, and the position, where
the parameters are defined, is also marked.

 The scanner picks up the relevant code block
very quickly with the help of those symbols
inserted before.

 The system matches the function copyout with
the patterns and judges whether it has caused
troubles.

 The dangerous code block of copyout will be
passed to the dynamic part.

Figure 3. A piece of code with buffer overflow

 The system will compile the code under testing
and the inference engine will execute the test.

 If a memory error happens, the system will
report and print a piece of information to output.

In order to evaluate the effectiveness of our system,
we make some experiments. There are three goals in our
experiments: 1) to determine the capabilities of our
analysis in handling loops and library calls and detecting
bugs and infeasible paths;2) the capabilities of
regression based dynamic inference in discovering
correct transfer functions; and 3) the scalability of
concurrent, on-demand hybrid analysis.

300

In the experiments, we compare the behavior of
several different programs: Fority, ITS4 and BOON. We
calculate the detection time, and keep an account of the
detection result in Table II.

TABLE II. EXPERIMENT RESULT

Tested

Software
Consequence (compared with our system)

bugs time mistake rate

Fority more shorter a little lower

ITS4 more shorter lower

BOON less much shorter lower

With the analysis of the results, we find out that the
accuracy is increased about 10%, and the detection
effect is almost not influenced. From the Table II, we
can conclude that our system search more bugs than the
Fority. However, compared with the ITS4 and the
BOON, the search ability of our system is not much
stronger. Although the detection time is not generally
much improved, our system perfected better than the
BOON for the detection speed.

V. CONCLUSION

This paper presents format-matching analysis, and
demonstrates a detection system that flexibly weaves
static and dynamic analyses on demands for their
maximum capabilities of discovering program semantic
information. In this system, we apply a rule-based
approach in the static part, and combine the algorithm
with a dynamic part of a unit test generation system. We
implement our idea, and make several experiments to
show that our system can address the loops and library
calls, which cannot be analyzed by traditional analysis.
It is fully automatic and can be generally applied for
determining different program properties and for
different programs.

The future goal is to formulate code rules for other
BOF vulnerabilities, including loop and if statement
expressions used in library and user-defined function
calls and go to structures. Besides, future work also
includes designing more effective dynamic test module
and recursive calls and to further improves the code
partition strategies.

ACKNOWLEDGMENT

This work has been supported by the State Key
Laboratory of Network and Switching Technology,
Beijing University of Posts and Telecommunications,
and especially has been supported by National Natural
Science Foundation of China (Grant Nos. 61300181,
61272057, 61202434, 61170270, 61100203, 61121061).

REFERENCES

[1] Bernhard J. Berger, Karsten Sohr, Rainer Koschke. “Extracting
and Analyzing the Implemented Security Architecture of
Business Applications,” 17th European Conference on Software
Maintenance and Reengineering, 2013, 285-294

[2] Chen Liu, Jinqiu Yang, Lin Tan. “R2Fix: Automatically
Generating Bug Fixes from Bug Reports,” IEEE Sixth
International Conference on Software Testing, Verification and
Validation, 2013, 282-291

[3] Hossain Shahriar, Hisham M. Haddad. “Rule-Based Source
Level Patching of Buffer Overflow Vulnerabilities,” 10th
International Conference on Information Technology: New
Generations, 2013, 627-632

[4] Wei Le. “Segmented Symbolic Analysis” the International
Conference on Software Engineering, 2013, 212-221

[5] Gabriel Scalosub, Peter Marbach, Jörg Liebeherr. “Buffer
Management for Aggregated Streaming Data with Packet
Dependencies,” IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 3, 2013, 439-
449

[6] Andrzej Bartoszewicz, Piotr Lesniewski. “Variable Structure
Flow Controller for Connection-Oriented Communication
Networks,” 14th International Carpathian Control Conference,
2013, 5-10

[7] Krishna Jagannathan, Eytan Modiano. “The Impact of Queue
Length Information on Buffer Overflow in Parallel Queues,”
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.
59, NO. 10, 2013, 6393-6404

[8] Ping-Chen Lin, Ray-Guang Cheng, Yu-Jen Chang. "A Dynamic
Flow Control Algorithm for LTE-Advanced Relay Networks,"
Vehicular Technology, VOL. 63, 2013, 334-343

[9] Ognenoski O., Martini M.G., Amon P.. "Segment-based
teletraffic model for MPEG-DASH," Multimedia Signal
Processing (MMSP), 2013, 333-337

[10] Zhiyuan An, Liu Haiyan. "Locating the Address of Local
Variables to Achieve a Buffer Overflow," Computational and
Information Sciences (ICCIS), 2013, 1999-2002

[11] Seon-Ho Park, Young-Ju Han, Soon-jwa Hong. "The Dynamic
Buffer Overflow Detection and Prevent ion Tool for Windows
Executables Using Binary Rewriting," Advanced
Communication Technology, VOL 3, 2007, 1776-1781

301

