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Abstract—Fractional-order differential systems are the 

generalization of integral-order differential systems that can 

be regarded as particular cases of the former. A three-scroll 

integral order chaotic Chua system and its generalization to 

fractional order are studied so as to construct a new 

fractional order Chua system. The theoretical analysis and 

numerical simulation of the new fractional Chua system 

dynamics are carried out. Fractional order range for system 

chaos generation is investigated and provided when integral 

order chaotic system being generalized to the fractional 

order systems, while the numeric simulation results are 

stated at the same time. The simulation results show that, 

with the decrease of fractional order, three-scroll attractor of 

integral-order system degenerates into two-scroll attractor of 

fractional-order system, then evolves into single-scroll 

periodic motion of two-scroll chaotic state, and finally trends 

towards the equilibrium point, i.e., the system features 

reverse Hopf bifurcation with which the equilibrium point 

area of chaotic attractor generation s will transfer. 

。 

Keywords-chaos;integral-order calculus, fractional-order 

calculus; chaotic Chua system;, three-scroll attractor 

I. INTRODUCTION 

As a natural phenomenon widely exists, chaos has been 
studied by people in many researches. It has also been 
widely applied in non-linear science, computer science, 
and confidential communications and a wide range of 
engineering fields [1-3]. At the same time, recently after 
studying the application of fractional order calculus theory, 
people found that the introduction of fractional order 
calculus operator to chaotic system conduces to more 
accurate and objective revealing and description of chaotic 
system [2]. The relationship between fractional order 
system and integral order system can be regarded as the 
generalization of the former to the latter, while the later 
can be taken as the exception of the former. For example, 
literature [3] conducted a wide research on integral order 
chaotic system, and literature [2] also performed an 
analysis and research on many fractional order chaotic 
systems. However, there are few researches unifying the 
integral and fractional order chaotic systems together or 
generalizing integral order chaotic system to fractional 
ones, not to mention the dynamics characteristics and 

dynamics evolution principles thereof. Based on the latter, 
this paper generalizes the integral order three-scroll chua 

system comprises of polynomial
3cxxbxax   to the 

fractional order to form a new fractional order Chua 
system. At the same time theoretical analysis and 
numerical simulation of its dynamics characteristics are 
performed. When the given integral order chaotic system is 
generalized to the fractional one, the chaotic fractional 
order value range will be generated by the system as well 
as the experimental result of the chaotic systems to the 
numeric simulation. Results of the experiment showed that 
with the declination of order, its dynamics mainly evolves 
from three-scroll attractor of integral order system to two-
scroll attractor, and then inclines to the equilibrium point 
after short periodic state following chaotic state.  

II. THEOCRATIC BASIS OF FRACTIONAL ORDER 

CALCULUS 

Different definitions can be gained if fractional order 

calculus is examined from different perspectives. 

Literature [2] and [4] provides Grunwald-Letnikov 

definition, Riemann- Letnikov definition and Caputo 

definition, wherein Riemann- Letnikov definition is based 

on the improvement of Grunwald-Letnikov definition and 

simplifies the counting of fractional order calculus, thus is 

widely used in engineering. Its expression is given as 

follows: 

Definition of Riemann- Letnikov fractional order 

calculus is  
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in which, q ∈ R
+
, D

q
 is the q order differential 

operator， and ）（ is Gamma function.  

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

© 2014. The authors - Published by Atlantis Press 322



In accordance with the definition of equation (1) 
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transform domain is defined as: 

 (for all q) (2) 

III. BRIEF INTRODUCTION TO INTEGRAL ORDER CHUA 

SYSTEM COMPRISING POLYNOMIAL 
3cxxbxax   

For the Chua system[3] generated from 

cxxbxax  , its equation is: 

 )( 3cxxbxaxy
dt

dx
                               (3a)                                                                                                                                                                                   

zyx
dt

dy
                 (3b) 

y
dt

dz
                                                (3c) 

where   and   are the control differences. when 

 =12.8,  =19.1, a=0.45, b=-1, c=0.47 ， the 

equilibrium point of system(3) on x is 

,00 x 2,1x  0.6463, 4,3x  1.4813. Assuming 

the equilibrium point of the corresponding system (3) 

as j (j=0,1,2,3,4,). Computer numeric simulation results 

are shown in Fig. 1. 

Figure 1.  Simulation results of three-scroll Chua System Left: X-Y plane phase, Right: x-y-z space phase 

It can be deduced from Fig. 1 that the system will 

generate three-scroll chaotic attractors which form scrolls 

at the domains corresponding to the three equilibrium 

points E0, E3 and E4, while the domains corresponding to 

E1 and E2 are key bands. 

A. Researches on the dynamics of new fractional order 

calculus Chuan system comprising polynomial 
3cxxbxax   

The three-scroll Chua system generated from 

cxxbxax   will be generalized to the fractional 

order chaotic system whose dynamic equation can be 

described as: 

                             

 )(xhy
dt

xd
q

q

    (4a) 

                         

zyx
dt

yd
q

q

   (4b) 

 y
dt

zd
q

q

     (4c) 

In system (4), q is the order number of fractional 

order system;   and   are the control parameter. 

Apparently, if 
7

2
)(

3xx
xh


 ,  =100/7, then it is the 

traditional fractional order Chuan system studied in [5]. In 

this research, there is a fractional order chaotic system 

different from those in [5], that is, 

letting
3)( cxxbxaxxh  , other parameters of the 

system in consistence with equation (3), the dynamics 

features of system (3) generalized to system (4) are 

studied. 
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Firstly the stability of the fractional order non-linear 

system is studied. Most definitions of the non-linear 

system stability is based on the fundamental views of 

A.M.Lyapunov[6]. However, as mentioned in (7), 

exponential stability can not be used for studying the 

asymptotic stability of the fractional order system. For 

fractional order non-linear system, Matignon's fractional 

order system stability and the necessary and sufficient 

conditions of fractional order system stability, which are 

given as follows, are introduced: 

Lemma1[7][8], for fractional order autonomous 

system, 

D
q

t X=AX 

X(0)=X 0 (7)  

in which,0<q<1，XR
n
（nN），AR

nn
，

then: 

If and only if for any eigenvalue  , 2
)arg(




q


, then 

system (7) is asymptotically   stable. 

If and only if for any eigenvalue  , 2
)arg(




q


, then 

system (7) is stable. 

Apparently got fractional order system in a chaotic 

state, there should be at least one eigenvalue in unstable 

domain, that is, the system is inclined to be in a chaotic 

state only if the system has equilibrium points in unstable 

domain. As for the dynamical system shown in equation 

(4), its equilibrium point should be studied first so as to 

determine the system stability or the conditions for chaos 

generation. Plugging 
3)( cxxbxaxxh   and 

control parameter into equation (4), the equilibrium 

points ix （i=0,1,2,3,4) on x of the system respectively 

are: 

  00 x                                         (5a)                           

 )2/()4( 2

2,1 cacbbx  0.6463  (5b)             

  
 )2/()4( 2

4,3 cacbbx  1.4813       (5c) 

   Furthermore, equation (4) is linearized at the 

equilibrium point, acquiring the Jacobi matrix of the 

system, that is, 

                
































00

111

0
)(

)(






i

i

x

xh

OJ (i=0,1,2,3,4) (6) 

From (6), it can be inferred that 

TABLE 1. The value range of q in different equilibrium point 

equilibrium 

point 

eigenvalue 
Arg( i ) 

The value range 

of q in stable 

conditon 

 The value range of 

q in instable 

conditon 

0E
 0 =-7.2053 

2,1 =0.2227 j3.9012 

Arg( 0 )=  

arg( 2,1 )= 1.5138 

q<0.9637 0.9637<q<1 

2,1E
 

0 = 4.5596 

2,1 =-1.1565 j3.5018 

Arg(
0 )=0 None 0<q<1 

4,3E
 

0 =-8.7310 

2,1 =0.1453 j4.0318 

Arg(
0 )=  

arg( 2,1 )= 1.5348 

0.9771<q<1 0<q<0.9771 

To consider the above value range of q 

comprehensively, when 0<q<0.9637, 4,3,0E  is the 

asymptotically stable point, 2,1E  instable equilibrium 

points, in which the system may reveal chaotic state; 

when 0.9637<q<0.9771, all the equilibrium points are 

instable except 4,3E , and the system may be in a chaotic 

state. If 0.9771<q<1, all the equilibrium points of the 

system are instable, then the system may maintain a 

chaotic state, but this still depends on the system 

divergence operator which if is less than zero, the system 

is most likely to be in chaotic state, or otherwise will be 

diverged at disequilibrium points. 

From the analysis above, when 0.9771<q<1, all the 

equilibrium points of system (4) are inclined to diverging. 

The existence of chaotic attractor in this domain depends 

on the dissipative property of the system. After examining 
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system (4), we get   
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  <0               (7) 

The system is dissipative. When t  , each small 

volume element containing system trajectories converges 

to 0 exponentially, eventually resulting in all the 

trajectories being restricted in a collection of 0 volume 

and asymptotically fixed in one attractor, indicating the 

existence of the system chaotic attractor.  

After analyzing the existence of chaos in system (4), is it 

possible to forecast the changes of the dynamics of the 

system generalized to fractional order chaotic system (4) 

giving the constant control difference and system 

topology. A numeric simulation is performed in the 

following content. 

B. Numeric simulation of fractional order Chua system 

comprising polynomial cxxbxax   

1) Analysis of simulation environment  

Presently there are mainly two methods for simulation 

calculation of fractional order system: predictor-corrector 

method and time domain- complex frequency domain 

conversion method. However, some literature [9] proved 

that simulation based on time domain- complex frequency 

domain conversion method may sometimes result in 

wrong conclusions and pointed out that some conclusions 

drawn by other researchers who have applied this method 

are incorrect[10]. In this research, predictor-corrector 

method[11] is applied for numeric simulation of system 

(5). In accordance with predictor-corrector algorithm[11], 

simulation step size h=0.01, simulation numeric point N= 

4000, simulation system initial value 

(x0,y0,z0)=(0.0021,0.00321,0.00123). 

2) Simulation results 

When q= 0.98, the simulation results are shown in Fig. 2. 

 

Figure 2.  Attractor phase diagram generated by system (5) when q=0.98 

When q= 0.97, the simulation results are shown in Fig. 3. 

 

Figure 3. Attractor phase diagram generated by system (5) when q=0.966 

When q= 0.94, the simulation results are shown in Fig. 4. 

 

Figure 4.  Attractor phase diagram generated by system (5) when 

q=0.9637 

When q= 0.9, the simulation results are shown in Fig. 5. 

 

Figure 5.  Attractor phase diagram generated by system (5) when q=0.9 

After repeated simulation experiments, the following 

conclusions can be drawn: 

It can be discovered by the the numerical simulation 

that for the fractional order system (4), any value of q 

within the domain (0.9637-1）will result in chaos of 

system. Moreover, with the reduction of order, the system 

will firstly degrade from three-scroll chaotic state to two-

scroll chaotic state, then evolves to single-scroll cyclical 

movement and eventually converges to equilibrium point 
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2,1E , indicating the reverse Hopf bifurcation process of 

the system. At the same time, q, as the important control 

parameters of the system, can either control the system for 

generation of chaos or inhibit the system chaos, thus is of 

great theoretical and practical values. For example, 

NandKumaran and Kuruvilla once successfully inhibited 

the chaos in semiconductor lasers by reverse bifurcation 

[12,13]. 

IV. CONCLUSION 

A new fractional order Chua system is constructed in 

this paper through polynomial cxxbxax  . After 

linear treatment of the system, conditions for system 

chaos are deducted by stability theorem of fractional non-

linear system. Simulation of the new fractional order Chua 

systems are performed by numeric simulation, and a 

comparison is made between the simulation results and 

the integral order chaotic system comprising 

polynomial cxxbxax  . When the integral order 

chaotic system is generalized to fractional order system, 

the two reveals the same dynamics features, yet there are 

also some distinct differences. In this research it is 

discovered that when the integral order three-scroll 

attractor is generalized to fractional order, the system 

shows revers Hopf bifurcation process and complicated 

dynamics as the order decreases[14-15].  

Furthermore, When we studied the chaotic system, the 

fractional order system and can be regarded as the 

generalization of the integral order system. As the 

important control parameter, the fractional parameter q 

can not only control generation and suppression of chaotic 

behavior ,but also control complexity of the change of the 

chaotic system. At the same time, q can change the system 

topology and other control parameters at the least. Our 

analysis results provide a convenient method of design 

and implementation of the chaotic system . In addition, 

this results can applies to the field of communications, 

control engineering. 
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