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Abstract-this paper discusses ruin problems in the discrete 

time insurance risk model under the assumption that the 

rate of interest is dependent upon the second autoregressive 

structure. By using inductive method, the recursive 

expressions of the distribution of the deficit at ruin, the 

distribution of maximum surplus before the ruin and the 

time that the surplus process reaches a given level x for the 

first time are obtained, then the corresponding integral 

equations for the distributions are obtained. 
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I. INTRODUCTION  

In 1986, Ref. [1] has discussed the discrete time 
insurance risk model. Suppose the premiums in the unit 
time is constant and the claims for each period are i.i.d. in 
Ref [1]. Yang [2] and Sun [3] have considered some 
distributions about a generalized classical risk model when 
interest rates are identical constant. Cai [4] has discussed 
many distributions of the generalized classical risk model 
when interest rates are i.i.d.. Cai [5], Kun [6] and Hao [7] 
have discussed ruin probability, the deficit at ruin about the 
generalized classical risk model under interest rates with a 
dependent autoregressive structure of order 1. Su [8] has 
considered the ruin probability of upper bound the discrete 
time insurance risk model under the assumption that the 
rate of interest is dependent upon the second 
autoregressive structure.  

In this paper, we discussed the discrete time insurance 
risk model under interest rates with autoregressive 
structure of order 2, by inductive technique, the recursive 
expressions of the distribution of ruin deficit, the 
maximum surplus before the ruin and the time that the 
surplus process reaches a given level x for the first time are 
obtained, then the integral equation for these distributions 
are obtained too. 

The paper is organized as follows: we definition of the 

model in section Ⅱ ; then, in section Ⅲ,Ⅳ,Ⅴ , we 

discuss the distribution of the deficit at ruin , the maximum 
surplus before the ruin and the time that the surplus 
process reaches a given level x for the first time, the 
recursive expressions and integral equation for the 

distributions are obtained; finally conclude is in section Ⅵ. 

II. DEFINITION OF THE MODEL 

We consider a discrete time risk model under interest 

rates with autoregressive structure of order 2 as follows  
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where nU  is the insurance company’s surplus at time 

n . uU 0 is initial reserve, kk rY , respectively denotes 

the amount of claim and rate of interest from time 1k  

to time k , kX  is the premiums in the time 

interval ),1[ kk  . Suppose }{ kX and }{ kY are i.i.d 

nonnegative random variables and have common 

distribution function }{)( 1 xXPxFX   

and }{)( 1 yYPyFY  respectively. }{ kr is the 

nonnegative random variables with autoregressive 

structure of order 2, and kr  satisfies 
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where 10  a ，which implies that the rates of 

interest depend heavily on the recent rates, 00 r ，

01 r is constant, }{ kW is i.i.d nonnegative random 

variables with common distribution function 
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We suppose  ][][,][ kkk XEYEME , 

providing a positive safety loading factor. From the above 

assumption, the surplus process (1) becomes the model (3 
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Let T is the ruin time of the insurance company, then  
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Obviously, T is a stopping time. 
 

III. THE DEFICIT DISTRIBUTION AT RUIN 

For ,0x  we denote the distribution of deficit at 

ruin with the initial reserve u  by  

),,,( 10 rrxuG }/,{ 0 uUTxUP T  , 0x    (5) 

We get the following theorem 1 and theorem 2 about 

the distribution. 

Theorem 1 Let ),,,( 10 rrxuG be defined as (5), 

then we have  
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where ),,,( 10 rrxugn is the distribution deficit at ruin time n.   

According to definition (5), when 1n  
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By inductive assumption, when 3n , we have  
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that ),,,( 10 rrxuG  has the following theorem 2 

Theorem 2 Let ),,,( 10 rrxuG be defined as (5), 

then ),,,( 10 rrxuG satisfies the following integral 

equation  
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IV. THE DISTRIBUTION OF MAXIMUM SURPLUS BEFORE 

THE RUIN 

Denote the distribution of maximum before the ruin 

with the initial reserve u  by  
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Theorem3 Let ),,,( 10 rrxuH  be defined as (10), then 

we can get  
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(1) When ux  , we have 

),,,( 10 rrxuH =0; 

(2) When ux  , we have 
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where ),,,( 10 rrxuhn is the distribution of maximum 

before the ruin time n . 

According to definition (10), when 1n  
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By inductive assumption, when 3n , we have  
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From (11), we know that 
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convergence. Then, we can get the follow theorem 

Theorem4 Let ),,,( 10 rrxuH  be defined as (10), 

then ),,,( 10 rrxuH satisfies the following integral 

equation  
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V. THE TIME THAT THE SURPLUS PROCESS REACH A 

GIVEN LEVEL X FOR THE FIRST TIME 

Denote the time that the surplus process reach a 

given level  x >0 for the first time and probability by 
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(2) when ux  , according to definition (11), we 
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VI. CONCLUSION 

In this paper, we have studied the discrete time risk 

model under interest rates with autoregressive structure of 

order 2. Via inductive method technique, some important 

distributions are obtained. Main results are: 

1. The recursive expression of the distribution of the 

deficit at ruin is obtained, and its corresponding integral 

equation for the distribution is obtained. 

2. The distribution of maximum surplus before the 

ruin is obtained, and its corresponding integral equation 

for the distribution is obtained. 

3. The time that the surplus process reaches a given 

level x for the first time is obtained, and its corresponding 

integral equation for the distribution is obtained. 
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