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Abstract-this paper discusses ruin problems in the renewal 

risk model with interest force. By using inductive method, 

the recursive expressions of the distribution of the ruin 

probability, the distribution of maximum surplus before the 

ruin and distribution of minimum surplus before the ruin 

are obtained, and the corresponding integral equation for 

the distributions are obtained. 
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I.  INTRODUCTION  

In recent years, the classic risk model has received a 

remarkable amount of attention and there have been many 

generalizations. Sundt and Teugels (1995,1997) considered 

a compound Poisson model with a constant interest force, 

by using renewal techniques, upper and lower bounds for 

the ruin probability and the integral equation satisfied by 

the ruin probability were obtained. Yang and Zhang 

(2001a, 2001b, 2001c) used the techniques of Sundt and 

Teugels (1995), some related problems were obtained. 

Yang (1998) considered a discrete time risk model with a 

constant interest force, both Lundberg-type inquality and 

non-exponential upper bounds for ruin probabilities were 

obtained by using martingale inqualities. Renewal risk 

model with interest force as a generalization of the classic 

rlsk model was considered in Wu and Du (2002), the 

problem was translated discrete, then used Markov 

property and transition probability to derive the explicit 

expression for the ruin probability. Lin and Wang (2005) 

adopted a different discrete techniques, derived the 

distribution of surplus immediately before ruin and that of 

deficit at ruin, further the integral equations of these 

distributions were obtained.  

In this paper, we consider renewal risk model with 

interest force, by using the techniques of Lin and Wang 

(2005), the ruin probability, the minimum surplus before 

the ruin, the maximum surplus before the ruin and its 

corresponding integral equations for those distributions are 

obtained.  

The paper is organized as follows: we definition of 

the model in section Ⅱ; then, in section Ⅲ,Ⅳ,Ⅴ, we 

discuss the distribution of the ruin probability, the 

minimum surplus before the ruin, the maximum surplus 

before the ruin, the recursive expressions and integral 

equation for the distributions are obtained; finally 

conclude is in section Ⅵ. 

II. DEFINITION OF THE MODEL 

Let ),,( PF be a complete probability space. We 

consider the renewal risk model with interest force. 

Suppose )(tS  denote the amount of claim in the time 

interval ],0( t , i.e. 
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iXtS , where }1,{ iX i  is 

independent and identically distributed (i.i.d.) random 

variables with commom distribution function )(xF , 

denotes the amount of the i th claim. The counting 

process }0),({ ttN  denotes the number of claims up 

to time t  and is defined as 

}:max{)( 21 tWWWktN k   , where the 

inter-claim times }1,{ iWi  are assumed to be i.i.d. 

random variables with commom distribution function 

)(wK . Further, we assume the sequences }1,{ iWi  and 

}1,{ iX i  are independent, and that )()( 11 XEWcE  , 

providing a positive safety loading factor.  

Let )(tU  denotes the insurance company’s surplus 

at time t . From the above assumption, it follows that 
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0u  is initial surplus of insurance company, 0c is 

the premium income of unite time,   is constant interest 

force. 

Definition 1  

If }0)(:0inf{  tUtT  ( T  if the set 

is empty), T  is the ruin time. Obviously, it’s a stopping 

time. 

Definition 2   
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Let )(u denote the ultimate ruin probability with 

initial reserve u . That is  
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has the following theorem 2 

Theorem 2 Let )(u be defined as (3), then 
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IV. THE DISTRIBUTION OF MAXIMUM SURPLUS BEFORE 

THE RUIN 

Denote the distribution of maximum before the ruin 

with the initial reserve u  by  
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V. THE DISTRIBUTION OF MINIMUM SURPLUS BEFORE 

THE RUIN 

Denote the distribution of minimum before the ruin 
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n xuk is convergence. Then, we 

can get the follow theorem 

Theorem4 Let ),( xuK  be defined as (5), then 

),( xuK satisfies the following integral equation  
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VI. CONCLUSION 

In this paper, we have studied the renewal risk model 

with interest force. Via inductive method technique, some 

important distributions are obtained. Main results are: 

1. The recursive expression of the distribution of the 

ruin probability is obtained, and its corresponding integral 

equation for the distribution is obtained. 

2. The distribution of maximum surplus before the 

ruin is obtained, and its corresponding integral equation for 

the distribution is obtained. 

3. The distribution of minimum surplus before the 

ruin is obtained, and its corresponding integral equation for 

the distribution is obtained. 
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