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Abstract—In CNC machinery, the industrial products and 

machinery parts are often represented by circular arcs. A 

new method for representing circular arc based on 

parametric complex functions is presented in the paper. 

Since cross ratio is an invariant of the group of all Möbius 

transformations, and a Möbius transformation maps a 

circle into another circle, we represent a segment of 

circular arc with a parametric complex rational function. 

The representation has no weight factors or control 

parameters, and it is geometric and affine invariant. 

Compared with the classical method for representing 

circular arc, such as NURBS or C-curves, the presented 

method is much simpler.  
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I. INTRODUCTION 

Shape represented by two arcs is often required 

in industrial products and machinery parts [1,2,5]. These 

shapes are designed unambiguous by drawing, and need 

higher accuracy in manufacturing. Many industrial 

products and machinery parts are often represented by 

circular arcs. Currently, most of mechanical parts are 

processed by linear and circular interpolation. In adition, 

circular splines has important applications in the design 

of the robot walking path and the reconstruction of three-

dimensional vascular. Therefore, the research of circular 

splines has worldwide concerns [6,7,8,9]. The free-form 

curves representation methods such as B-splines have 

widely applications in computer aided geometric design 

and industrial product modeling. However, these 

methods are in trouble for the representation and design 

of circular arc. Because quadratic curves cannot be 

represented exactly by B-spline curves, except 

for parabola. The approximate representation will 

bring troubles in application, such as make 

a simple matter been complicated, and bring added errors. 

The presence of NURBS [4] gives a good solution to 

the problem of circular arc representation. It keeps the 

advantage of B-splines in the description of free-

form shapes , and extends the ability of representation 

for quadratic curves, includes the exact representation of 

quadratic curves. Thus，NURBS occupy a dominant 

position in geometric design of industrial products. ISO 

 (International organization for standardization) 

issued the 

standard for the exchange of product model data in 1991, 

and make NURBS been the only one mathematics 

method for the shape repreaentation of industrial 

products. 

Therefore, NURBS also faces many problems like 

any method. Especially, how to determine the 

right weights has been troubled by designers and been 

an unsolved problem. 

C-curves [10] based on trigonometric polynomial can 

deal precisely with circular arcs, but the shape of C-

curves depend on a parameter . However, the selection 

of parameters is a difficult problem. Meanwhile, 

rigonometric polynomial may greatly increase the 

amount of calculation. 

A Möbius transformation can be obtained by first 

performing stereographic projection from the plane to the 

unit two-sphere, rotating and moving the sphere to a new 

location and orientation in space, and then performing 

stereographic projection (from the new position of the 

sphere) to the plane. These transformations preserve 

angles, map every straight line to a line or circle, and 

map every circle to a line or circle. 

The Möbius transformations are projective 

transformations of the complex projective line. They 

form a group called the Möbius group which is the 

projective linear group PGL(2,C). Together with its 

subgroups, it has numerous applications in mathematics 

and physics. 

Möbius transformations are named in honor of August 

Ferdinand Möbius; they are also variously named 

homographies, homographic transformations, linear 

fractional transformations, bilinear transformations, or 

fractional linear transformations. 

In physics, the identity component of the Lorentz 

group acts on the celestial sphere in the same way that 

the Möbius group acts on the Riemann sphere. In fact, 

these two groups are isomorphic. An observer who 

accelerates to relativistic velocities will see the pattern of 

constellations as seen near the Earth continuously 

transform according to infinitesimal Möbius 

transformations. This observation is often taken as the 

starting point of twistor theory. 
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Certain subgroups of the Möbius group form the 

automorphism groups of the other simply-connected 

Riemann surfaces (the complex plane and the hyperbolic 

plane). As such, Möbius transformations play an 

important role in the theory of Riemann surfaces. The 

fundamental group of every Riemann surface is a 

discrete subgroup of the Möbius group (see Fuchsian 

group and Kleinian group). A particularly important 

discrete subgroup of the Möbius group is the modular 

group; it is central to the theory of many fractals, 

modular forms, elliptic curves and Pellian equations. 

Möbius transformations can be more generally defined 

in spaces of dimension n>2 as the bijective conformal 

orientation-preserving maps from the n-sphere to the n-

sphere. Such a transformation is the most general form of 

conformal mapping of a domain. According to 

Liouville's theorem a Möbius transformation can be 

expressed as a composition of translations, similarities, 

orthogonal transformations and inversions. 

Möbius transformations [3] (linear fractional 

transformations) are one-to-one, onto and conformal 

(angle preserving) maps of the so-called extended 

complex plane. We will develop the basic properties of 

these maps and classify the one-to-one and onto 

conformal maps of the unit disk and the upper half plane 

using the symmetry principle. A new method for 

representing circular arc based on parametric complex 

functions is presented in the paper. Since cross ratio is an 

invariant of the group of all Möbius transformations, and 

a Möbius transformation maps a circle into another circle, 

we represent a segment of circular arc with a parametric 

complex rational function. The representation has no 

weight factors or control parameters, and it is geometric 

and affine invariant. Compared with the classical method 

for representing circular arc, such as NURBS or C-

curves, the presented method is much simpler. 

 

II. MÖBIUS TRANSFORMATION 

A. Definition 

Definition 2.1 The general form of a Möbius 

transformation is given by 

 

( )
az b

f z
cz d





 

 

Where a, b, c, d are any complex numbers satisfying 

ad − bc ≠ 0. (If ad = bc the rational function defined 

above is a constant and is not considered a Möbius 

transformation.) 

In case c≠0 this definition is extended to the 

whole Riemann sphere by defining 

 

( / ) ( ) /f d c and f a c                  

 

if c=0 we define ( )f   .This turns ( )f z  into a 

bijective holomorphic function from the Riemann sphere 

to the Riemann sphere. 

B. Properties of Möbius transformations 

Möbius transformation is conformal at every point 

except its pole. 

Möbius transformation maps the class of circled and 

lines to itself. 

From this decomposition, we see that Möbius 

transformations carry over all non-trivial properties 

of circle inversion. For example, the preservation of 

angles is reduced to proving that circle inversion 

preserves angles since the other types of transformations 

are dilation and isometries (translation, reflection, 

rotation), which trivially preserve angles. 

Furthermore, Möbius transformations map generalized 

circles to generalized circles since circle inversion has 

this property. A generalized circle is either a circle or a 

line, the latter being considered as a circle through the 

point at infinity. Note that a Möbius transformation does 

not necessarily map circles to circles and lines to lines: it 

can mix the two. Even if it maps a circle to another circle, 

it does not necessarily map the first circle's center to the 

second circle's center. 

Cross-ratios are invariant under Möbius 

transformations. That is, if a Möbius transformation 

maps four distinct points 
1 2 3 4
, , ,z z z z   to four distinct 

points  
1 2 3 4
, , ,w w w w  respectively, then 

 

1 3 2 4 1 3 2 4

2 3 1 4 2 3 1 4

( )( ) ( )( )

( )( ) ( )( )

z z z z w w w w

z z z z w w w w

   


   
        

 

If one of the points  is the point at 

infinity, then the cross-ratio has to be defined by taking 

the appropriate limit; e.g. the cross-ratio of 

1 2 3
, , ,z z z    is 

 

1 3

2 3

( )

( )

z z

z z




                                        

 

The cross ratio of four different points is real if and 

only if there is a line or a circle passing through them. 

This is another way to show that Möbius transformations 

preserve generalized circles. 

Four distinct points 
1 2 3 4
, , ,z z z z  on complex plane in 

the same circle If and only if their cross ratio for real. 

Suppose three points 
1 2 3
, ,z z z  in Z-plane are 

transformed into three points 
1 2 3
, ,w w w  in W-plane by 

Möbius transformation. That is ( ),( 1,2,3)
j j

w f z j  . 

The Möbius transformation is uniquely 

determined,  and can be written in the following form 

 
( )( ) ( ) ( )( ) ( )

3 1 2 2 1 3 2 1 3 3 1 2( )
( )( )( ) ( )( )( )

3 1 2 1 3 2 1 3 1 2

z z z z w w w z z z z w w w
w f z

z z z z w w z z z z w w

      
 

      
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III. CIRCULAR ARC REPRESENTATION 

We know that any three points 

1 1 1 2 2 2 3 3 3( , ), ( , ), ( , )V x y V x y V x y   which are not in 

the same line can determine a circle. Therefore, we 

could regard the three points 

1 1 1 2 2 2 3 3 3( , ), ( , ), ( , )V x y V x y V x y  as three complex 

points ( ),( 1,2,3)j jw w t j    in complex plane. 

Then we can use the properties of Möbius 

transformation to construct an accurate representation 

of the arc curve determined by the three points by a 

complex rational functions  

Suppose 1 1 1 2 2 2 3 3 3( , ), ( , ), ( , )V x y V x y V x y
  are 

three points which are not in the same line, and 

                       
( 1,2,3)j j jw x iy j  

            

 Then (7) accurately represent a section of circular 

arc curve is defined by three points. and satisfy 

( ),( 1,2,3)j jw w t j 
. Where,  

( 1,2,3)
j

t R j 
 

are three real nodes. 

 

3 1 2 2 1 3 2 1 3 3 1 2
1 3

3 1 2 1 3 2 1 3 1 2

( )( ) ( ) ( )( ) ( )
( ) , [ , ]

( )( )( ) ( )( )( )

t t t t w w w t t t t w w w
w t t t t

t t t t w w t t t t w w

      
  

      

(

1) 

1 2 3
t t t  . 

Proof: we could regard the parameter t in formula (1)  

as a complex number, and its imaginary part is zero. 

Obviously, formula (1) determines a Möbius 

transformation. By theorem 2.3, the cross-ratios of 

1 2 3, , ,w w w w is equal to the cross-ratios of 1 2 3, , ,t t t t . 

The cross-ratios of 1 2 3, , ,t t t t  is real ,so  the cross-ratios 

of 1 2 3, , ,w w w w  is also real. By theorem 2.4, the points  

1 2 3, , ,w w w w  are on the same circumference. Thus, the 

function of formula  (1)  represent a arc curve which is 

detemined by the three points 1 2 3, ,w w w . 

In fact, the following description formula (1) is non 

degenerate. formula (1) can be sorted as the standard 

form 

    ( )
at b

w t
ct d





                                (2)    

Where       

1 2 2 1 3 1 3 3 1 2

2 1 3 3 1 2 3 1 2 2 1 3

1 2 1 3 1 3 1 2

2 1 3 1 2 3 1 2 1 3

1 2 3 1 3

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( )( ) ( )( ),

( )( ) ( )( ),

, [ , ]

a t t w w w t t w w w

b t t t w w w t t t w w w

c t t w w t t w w

d t t t w w t t t w w

t t t t t t

     

     

     

     

  

           (3) 

Because   

1 2 1 2 2 3 2 3 1 3 1 3( )( )( )( )( )( ) 0ad bc t t w w t t w w t t w w        

So formula (1) is non degenerate. 

We denote formula (1) as complex rational curves,  

the following will discuss some properties of it. 

IV. PROPERTIES OF PARAMETRIC COMPLEX RATIONAL 

CURVES 

We give a representation of circular arc curve 

Möbius transformation in the previous section. In our 

method,  the arc curve is represented by a complex 

rational function with parameters. In following, we will 

discuss the properties of  the omplex rational function 

with parameters. 

A. Affine invariance 

Suppose  

                           
2 2: R R

w w M N

 

  
                          (4) 

 

Where： M is a 2 2  matrix and N  is a 1 2  vector. 

Substitute ( )
j j

w w M N     in formula (1), We  

can get the following result after a simple calculation: 

1 2 3 1 2 3( ; , , ) ( ; , , )w t w M N w M N w M N w t w w w M N        

.That is 

 

1 2 3 1 2 3[ ; ( ), ( ), ( )] [ ( ; , , )]w t w w w w t w w w       (5) 

   

Formula (5) shows that the location and the shape of 

the parametric  complex rational arc curve is only rely on 

the points  1 2 3, ,V V V
.  It is not depend on the choice of 

the coordinate system, which is the geometric invariance. 

In addition, formula (5) also shows that change of the 

parameter and the nods in formula (1) does not affect the 

position and the shape of the curve. Therefore, we can 

according to actual needs, select the appropriate. The 

parameters, such as arc length parameterization. The 

parameters are taken as the arc length parameter, and the 

nodesvalues from the corresponding Circular arc length 

to determine The subject selection, namely has the 

geometric invariance. 

B. Geometric invariance Suppose  

 

                   
: ,R R

t kt h

 


                                (6) 

 

Where ,k h  are real. 

468



Substitute 

( ) , ( ) ,( 1,2,3)j jt kt h t kt h j       in 

formula (1), we can get the following result after a 

simple calculation： 

 

1 2 3[ ( ); ( ), ( ), ( )] ( )w t t t t w t                        (7) 

   

These characteristics indicate that the parameters 

defining the interval and node is not essential, you can 

select the appropriate parameters to define the interval 

and node according to the needs. For convenience, we 

may make 

1 2 3

1
0, , 1

2
t t t   . 

Parameters are defined in the interval[0,1] . 

So the arc curve can be expressed as the 

following form： 

     

2 1 3 3 1 2

1 3 1 2

( 1) ( ) (2 1) ( )
( ) , [0,1]

( 1)( ) (2 1)( )

t w w w t w w w
w t t

t w w t w w

    
 

    
    (8)                

 

C. Differential properties 

According to formula (2) ana (3) 

 

2( )

dw ad bc

dt ct d





 

     

1 2 1 2 2 3 2 3 1 3 1 3

2

3 1 2 1 3 2 1 3 1 2

( )( )( )( )( )( )

[( )( )( ) ( )( )( )]

t t w w t t w w t t w w

t t t t w w t t t t w w

     


      
 

(9)               

so, 

 

2 3 1 2 1 3

1 1 3 1 2 2 3

( )( )

( )( )

t t w w w wdw

t tdt t t t t w w

  
 

   
      

(10)                         

1 3 2 31 2

3 1 3 2 3 1 2

( )( )

( )( )

w w w wt tdw

t tdt t t t t w w

 
 

   
     

(11)                      

If  

1 2 3

1
0, , 1

2
t t t   ， 

then： 

' 1 2 1 3

2 3

( )( )
(0)

w w w w
w

w w

 
 


                     (12)                                      

' 1 3 2 3

1 2

( )( )
(1)

w w w w
w

w w

 
 


                    (13)                                     

 

V. CONCLUSION 

A new method for representing circular arc based on 

parametric complex functions is presented in the paper. 

Since cross ratio is an invariant of the group of all 

Möbius transformations, and a Möbius transformation 

maps a circle into another circle, we represent a segment 

of circular arc with a parametric complex rational 

function. The representation has no weight factors or 

control parameters, and it is geometric and affine 

invariant. Compared with the classical method for 

representing circular arc, such as NURBS or C-curves, 

the presented method is much simpler. 
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