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Abstract—In this article, a new method of calculating 

mobility for planar kinematic chains, based on kinematic 

graph of mechanism and matrix theory, is put forward. We 

proposed a new conception of network graph of mechanism 

to describe kinematic chains instead of kinematic graph of 

mechanism. With a network graph of mechanism, the 

displacements of components produced by applied forces can  

be calculated effectively and simply. Futhermore, matrixes 

can be established by displacement and force equation 

groups. By means of analyzing the matrixes, we will obtain 

the mobility of a mechanism with no efforts as the mobility 

equals to the dimension of the matrix arrived at from 

equation groups. In addition, this new method is applied to 

various kinds of mechanisms in plane efficiently and 

correctly including the kinematic chains with passive 

constraints and common constraints. The method of this 

paper can be extended to calculate mobility of spatial 

mechanisms too.  

Keywords-mobility calculating; network graph of 

mechanism; matrix analysis; displacement; planar machanism  

I. INTRODUCTION 

The study on mobility calculation has been continued 
for more than 100 years. Various methods of mobility 
calculation have been put forward, and many methods 
were analyzed in [1] by Gogu. As early as the19th century, 
Reuleaux [2] defined mechanism firstly and made a system 
study on kinematic pairs. And on this basis Grübler [3] 
puts forward the general formula of degree of freedom for 
simple planar chains. Crossley [4] analyzed planar link 
mechanisms based on Grübler’s formula, and came up 
with the relation between kinematic pairs and the number 
of bodies. But for the link mechanisms with four joints, the 
calculation of link number should use the method of trial 
and error which might make mistakes. Bagci [5] presented 
a general formula of mobility calculation for mechanisms 
of n links and k loops. The formula takes into 
consideration that passive constraint, common constraint 
and passive degrees of freedom, but its results are not 
correct for some mechanisms. Traditionally, the classical 

formula of Chebyshev–Grübler [6] is used to calculate 
planar mechanisms’ mobility. Obviously, the formula is 
convenient to obtain mobility of some simple link 
mechanisms. But for mechanisms of passive constraints, 
common constraints or passive degrees of freedom, it is 
not easy to judge and even gets wrong results.  

Recently, further researches have been reached into the 
mobility of rigid mechanisms [7, 8], metamorphic 
mechanisms [9-12] based on screw theory which is 
difficult to understand. The methods using Lie group [13], 
Lie algebra [14] and linear transformation [15] are also 
complicated. Dongchao Yang came up with a simple 
method of mobility calculation with Jacobian [16], but the 
rank of coefficient matrix must be calculated by MATLAB. 

A new method would be presented for mobility 
calculation of planar mechanisms in this paper. This 
method makes a new way to show the kinematic chains 
instead of kinematic graph of mechanism. In this case, 
mobility calculation turns to determine the dimension of a 
matrix which is brought by some simple equation groups 
as the dimension of the matrix equals to the mobility of 
mechanism. 

II. NEW THEORY OF MOBILITY CALCULATION FOR 

PLANAR MECHANISMS 

A. Conception and principles of network graph of 

mechanism 

Kinematic graph of mechanism is a simple sketch that 
expresses the movement of mechanism kinematics 
precisely using simple lines and signs. However, the 
positions of components in kinematic graph need to be 
determined accurately and proportionally. The method of 
this paper only requires linking relation of components, 
thus a new conception of network graph of mechanism is 
presented for describing kinematic chains instead of 
kinematic graph of mechanisms, which applies to this 
method appropriately and simply. The details of principles 
of network graph of mechanism are listed as follows. 
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Network graph of mechanism includes elasticity links, 
nodes and the root. The elastic links and nodes denote 
bodies and pairs in kinematic chains respectively. The size 
of components of network graph of mechanism need not 
de proportional to the actual components as it has 
absolutely no effect on mobility.  

If the bodies link to the root in kinematic graph 
of mechanism, the nodes between them will be canceled in 
network graph. 

If the bodies whose joints are single in open or mixed 
kinematic chains, they will get two nodes in network graph 
of mechanism. 

The relative position of two elastic links in network 
graph of mechanism should be horizontal, vertical or 
at a 45-degree angle when they linked by one node, so as 
to analyze simply. 

B. Establish equation groups based on network graph of 

mechanism 

For the four-bar linkage in Fig .1a, the following will 
present its transformation from kinematic graph to network 
graph of mechanism and the process of establishing 
equation groups. 

Based on the principles above, the horizontal line AD in 
Fig .1b denotes the root of the four-bar linkage; the joints 
B and C are denoted as m1 and m2; the nodes A and D are 
canceled as the bodies 1 and 3 link to the root directly; the 
elastic links L1, L2, L3 denote the links 1, 2, 3 respectively. 
 
 

 

 
a   b 

Figure 1.  a) Four-bar linkage. b) Network graph of four-bar linkage. 

We denote supposed forces applied on nodes by f2j-1 and 
f2j (j=1, 2, 3…n). Similarly, the associated horizontal and 
vertical displacements of mj produced by the forces will be 
denoted by x2j-1 and x2j respectively. Li (i=1, 2, 3 … n) 
denotes the unstretched length of the ith elastic link whose 
stiffness is ki, and the corresponding elongation is ei. Thus, 
we can easy to get the description of the four-bar linkage 
in Fig. 1b. 

According to the deformation of elastic links, the 
displacement of node m1 in vertical direction is [17] 


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In order to simplify the formula, the Taylor expansion is 
used to make the elongation of the elastic link has a linear 
relationship with the end displacement. Naturally, there is 
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Where  2 2 2 2

1 2 1 2 12O(( x x L x L ) )   is the Peano 

remainder. 

Obviously,  2 2

1 2 12x x L  is small compared to x2, and 

the Peano remainder is even smaller. Thus, all the terms 
above except the first one can be neglected and 
approximately arrive at 
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The argument of the first elastic link indicates that the 
elongation of elastic link is its displacement along its 
initial direction approximately. Similarly, there are 
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These three displacement equation groups can be 
encoded in 
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The matrix A is called displacement matrix here. 
There is no doubt that the elastic links are in the range of 

flexibility, so Hooke’s Law (if the material is in the range 
of flexibility, its deformation and the force loading on it 
will be proportional) applies to them. Naturally 
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Or, in matrix terms  
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The matrix K is called stiffness matrix here. 
According to the force equilibrium on each node in 

horizontal and vertical direction, the equilibrium equation 
groups can be arrived at 
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Or, in matrix terms 
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The matrix B is called equilibrium matrix here. 
The three matrixes above we arrived at can lead us to 

work out the mobility by matrix analysis. 

C. Work out mobility  

As is showed above, the relationship between A. and B 

can be recognized as
T

 AB  . Gathering the previous 
steps 
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After elementary row transformation, the matrix is 
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The rank of matrix S is 3, and the dimension of null 

space of matrix S is 1 )r(n S . According to 

Chebyshev–Gruebler’s equation for planar chains, we 
arrive at 
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Thus, there is 
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} Dim.{S is the dimension of null space of matrix S. 

This result means that the dimension of null space of 
matrix S equals to its respective mobility of mechanism. It 
has similar result in [16] that dimension of fundamental 
solutions of homogeneous equation group equals to the 
number of active joints. 

III. PROOF OF NEW THEORY BY EXAMPLES 

The proof of closed kinematic chains is showed in Fig .1 
which takes a four-bar linkage as an example. Under-
mentions are proof of Open kinematic chains and mixed 
kinematic chains. 

A. Open kinematic chains 

Fig .2 shows a three-bar linkage of open kinematic chain 
and its corresponding network graph of mechanism. 

 

 
a b 

Figure 2.  a) Three-bar linkage of open kinematic chain. b) Network 

graph of three-bar linkage. 

As is showed in previous section, the displacement 
equation groups can be easily arrived at 
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In matrix terms, the displacement matrix is 
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Similarly, the stiffness matrix 
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The equilibrium equation groups are 
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In matrix terms, the equilibrium matrix is 
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Equations (18), (19) and (21) bring 
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As the rank of matrix S is 2 with inspection, the 
dimension of null space of matrix S is 2. According to 
Chebyshev–Gruebler’s equation, we arrive at DOF 2 . 

As expected, the result is the same as (16). 
A five-bar linkage of mixed kinematic chain and its 

corresponding network graph of mechanism is showed in 
Fig .3a and b. 
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Figure 3.  a) Five-bar linkage of mixed kinematic chain. b) Network 

graph of five-bar linkage. 

Similarly, the displacement matrix, stiffness matrix and 
equilibrium matrix can be derived easily based on the steps 
in previous section. Then we can arrive at 
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By making an elementary row transformation on S, the 
matrix is derived as 


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The rank of matrix S is 4, so the dimension of null space 
of matrix S is 2. The mobility of the mixed six-bar linkage 
is 2. Thus, the result is the same as (16). 

IV. APPLICATIONS OF NEW THEORY ON SPECIAL 

KINEMATIC CHAINS 

A. Mobility calculation of mechanisms with passive 

constraints 

This method is applied to mechanisms with passive 
constraints appropriately, as it is no need to take them into 
consideration. That is to say, the mobility can be calculated 
directly without removing passive constraints. 

Just like the kinematic chain in Fig .4a, its method of 
transformation into network graph in Fig. 4b is similar to 
previous mechanisms. 
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Figure 4.  a) Mechanism with passive constraint. b) Network graph of 

mechanism with passive constraint. 

After analyzing the network graph of mechanism in 
Fig .4b, it brings 
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By making an elementary row transformation on S, the 
matrix is 
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The rank of matrix S is 5, so the dimension of null space 
of matrix S is 1. Chebyshev–Gruebler’s equation 
brings DOF 1 . So the result is the same as (16). 

B. Mobility calculation of mechanisms with common 

constraints 

This method is also applied to mechanisms with 
common constraints, but its principles of transformation 

from kinematic graph to network graph of mechanism are 
partly different. The differences are 

The nodes in network graph of mechanism denote the 
bodies; 

The elastic links denote the constraints between bodies 
or bodies and the root. 

According to the principles, the transformation of the 
wedge mechanism in Fig .5a is showed in Fig .5b.  

  
a b 

Figure 5.  a) Wedge mechanism with common constraints. b) The 

network graph of wedge mechanism 

Obviously, its network graph of mechanism has no 
different with that of the four-bar linkage in Fig .1b. So the 
mobility of this wedge mechanism with common 
constraints is single. 

C. Mobility calculation of mechanisms with higher pairs 

and passive degrees of freedom 

For mechanisms with higher pairs and passive degrees 
of freedom, the passive degrees of freedom need to be 
removed just like Chebyshev–Gruebler’s method. 

Fig .6a shows a mechanism with higher pairs and 
passive degrees of freedom. After removing its passive 
degrees of freedom, its principles of transformation into 
network graph of mechanism (Fig .6b) are similar to the 
mechanisms with common constraints. 

 
 

a b 

Figure 6.  a) Mechanism with higher pairs and passive degrees of 

freedom. b) The network graph of the mechanism in a. 

Obviously, the network graph of the mechanism in 
Fig .6b is the same as the four-bar linkage in Fig .1b after 
removing its passive degrees of freedom. Thus, we can get 
its mobility with no effort as its calculation is in previous 
section. 

V. CONCLUSIONS 

The above mentions approve that this new method 
applies to calculate the mobility of planar mechanisms 
simply. It is effective to analyze degrees-of-freedom of 
open kinematic chains, closed kinematic chains, mixed 
kinematic chains and some special kinematic chains with 
common constraints, passive constraints, etc. The crux of 
this method is the transformation from kinematic graph to 
network graph of  mechanism which needs to be 
appropriate and correct. Besides, for some simple planar 

m1 m2 

A D 

A 

D 

B 

C 

m1 m2 

A B 

A 

B 

1 

2 

m1 

k1 

e1 

x3 
x4 

A 

m2 

k3 

e3 

m3 

k5 

e5 

x1 
x2 

k2  e2 k4  e4 

F D 

x5 
x6 

562



mechanisms, their mobility can be counted by inspection 
and for some kinematic chains whose network graph 
of  mechanisms are identical have the same number of 
mobility. 
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