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Abstract—This paper investigates the enumeration of a
family of perfect quaternary arrays (PQAs) from Zeng, et
al’s constructions. By deriving the conditions which result in
distinct PQAs, the family size of Zeng, et al’s constructions
is determined, and distinct PQAs are educed from the
obtained conditions. Finally, two examples are given. The
proposed distinct PQAs provide lots of candidates for
applications to communications, radar, and so on.
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. INTRODUCTION

A perfect array means a N -dimensional function
whose autocorrelation is impulse-like. Perfect arrays are
widely applied to high-dimensional communications,
time-frequency-coding, spatial correlation or map
matching, built-in tests of VLSI-circuits, coded aperture
imaging, phased array antennas, arrays of sound sources,
radar, and so on [1]-[3]. In the existing literature, there are
a large number of perfect binary arrays (PBAs) [3]-[9],
perfect ternary arrays (PTAs) [10] [11], and perfect multi-
phase arrays [12]. However, the constructions of perfect
quaternary arrays (PQAs) only have a few. To the best of
the author’s knowledge, Arasu and Launey gave a family
of PQAs by making use of polynomial theory [13], and
Zeng, et al proposed a method converting a PBA into a
PQA [14]. With regard to the advances on perfect arrays,
please refer to [15].

This paper follows [14] so as to solve the problem of
the enumeration of Construction 2 in it. By deriving the
existence conditions of distinct PQAs in Construction 2 in
[14], this paper determines the family size of
Construction 2, and distinct PQAs are educed from the
obtained conditions. More clearly, for given two n -

dimensional PQAs with size N, x---xN, ; xN, x
N,., x---xN_, where the positive integer N, is odd,

the family size of Construction 2 arrives at N, , in other
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words, Construction 2 can produce Nk distinct PQAs.

Due to the fact that the users’ number in a system is
decided by the number of perfect arrays employed,
Construction 2 in [14] can provide lots of candidates for
applications.

Incidentally, it should be noted that PQAs theory is
fundamental, since constructions of perfect arrays over
some constellations, such as 16-QAM constellation,
depend on their results [16].

The remainder of this paper is organized as follows. In
Sect. 1, the necessary concepts are recalled. In Sect. IlI,
Zeng, et al’s constructions are briefly given. In the
following section, the main results are stated. Two
examples will appear in Sect. V. Finally, we conclude this
paper in Sect. V1.

A N -dimensional function is said to be an array,
denoted traditionally by

BAsIC CONCEPTS

A=[a, ., 10<i <N, -Ll<k<n], 1

where Njx---x N, ; xN, x N, x---x N, is referred

to as size.

For two arrays Aand B, we define their correlation
function by

RA,B(Tl’TZ"”'Tn)

N,~IN,-1  Np-1 R 2
= iz—:0 iZ_:() iz—:0 a‘il,iz,~~~,inb|1+rl,i2+rz,~~,in+rn’
1= 2= n—

where the symbol “*” denotes the complex conjugate, and
the addition “i, +7, (L<k <n)” is performed modulo

N, .If A=B,wecall R, ,(7,,7,,""*,7,) an periodic

autocorrelation function, otherwise, a periodic cross-
correlation function.

If the autocorrelation function of an array A satisfies



R A(Tl’Tz""’Tn)

= Tli:o“.\‘il z |a|1|2 “in |2 (Tl""!Tn):(O,"',O)
0 (z,++,7,) #(0,--+,0),
©)

we are referred to the array A as a perfect array.
Let T denote a cyclical shift operator, in a
mathematical term, for an -dimensional A and N integers

4.’s 1<k <n), we have
T (e oo 11, ) A

= [ai1+#1vi2 il gt ity
4)

where the addition “i, + z4 (L<k <n)” is performed

|0<i, <N, -11<k <n],

modulo N, .
For two arrays A and B, if there are N integers
4,’s 1<k <n) soas to satisfy
T(en, 0+, 14, )A=B, ®)

we say that these two arrays are cyclical shift equivalence,
otherwise, distinct arrays.

Let A= [ail,iz,m,in] and B= [b o ] be two
binary arrays with size N, x---x N, _; x N XN, x-
xN,, . We construct two quaternary arrays by

Q' |
= [Qi1 i iy 1(1=1,2)

q'1 i = ﬂ (a'1+’7|1 I+ 1122l +770 ! b'1+f5|1 PRIPEE +5In)
#(x, y) =5 (-1)" +%‘(—1)y

6 (%, Y) =5 (D) -5 (1),
where X,y €{0,1}, and 7, and 5, (L<k<n) are
integers.

(6)

IIl.  ZENG, ET AL’S CONSTRUCTIONS

Zeng, et al gave two constructions in [14] so as to
convert a PBA into a PQA. For the sake of saving the
reader’s trouble in referring to the relevant reference, we
briefly state them below.

Construction 1 [14].

Consider a PBA A, namely, A=B , with size
N, x+-x N, ; xN, xN,, ,x---xN_ , where all

integers N, ’s (1< k < n) are even. If we have
M = Oy (mOd ) (@<k<n), ()

the resultant quaternary arrays Q' (1=1,2) in (6) is
perfect.

Construction 2 [14].

Consider two PBAs A and B , with size
N, x-+-x N, ; xN, xN,,, x---xN_, where at least an

integer in the integers N, *s (L<k <n),say N,, isodd.
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We construct a quaternary array P =[pi1,mi_1i o ]
by
1 Y
_ hilv"'lirfllir’ir+1v"'vin Ir - 2Ir
pilv"'virflvilcvir+lv"'vin - h2 il _ 2| +1
ilV"'!irfl!ir'ir+1""!in r— r !
(®)
where
1
Ty sde gl oo ¢-l(a' /R R MR e M R MR e A (9)
bi1+(>‘1 e+ 0, g,b +0p i +0p 1 i 0, )
2
hilv” dr gl e ¢2 (a|1+§1 TR M MER TR RE o (10)
b'i‘*'ﬂi et Al A e g o dn g )’
and 0<i <N, -1(1<k<n) and |r =2i, +t

(te{0,1}), thatis, 0<i’ <2N, —1. If we have

S-m=4-g mod N, (1<1<n)
G =0 =n-4 mod N, 1<I<n,l=r)(11)
¢, —0,=n-4+1 modN,,

the quaternary array P with size N, x---x N, ; x2N

XN, x---xN_ is perfect.

Apparently, Theorem 2 does not give the family size of
Construction 2.

r

IV. FAMILY SizE OF CONSTRUCTION 2

First of all, we need to investigate the conditions under
which Construction 2 results in distinct arrays.

Let arrays A and B be two PBAs with each of size
N, x--=x N, ; x N xN_ x---xN_ , where the

integers N, is odd. Again let the array P be produced by
Egs. (8)-(10) from the arrays A and B with integers 7, ’s,
0,’s, 6, ’s, and 4,’s (1<1<n), and so does the array
P’ but with integers 7/ ’s, &/ ’s, ¢/ ’s, and A ’s
(1<1<n). If the following conditions:

8,=8/=A4=4 modN, @<I<n,l=r)
G =6 mod N, 1<1<n,l#r)
m=mn modN, (1<l<n,l#r)
n, #1; mod N,
S ET]H‘% mod N, (12)
gl=n+%=  modN,
A=A mod N,
6, =0, mod N,
mod N,

holds, the arrays P and P’ are distinct from each other.
Provided that there exist the integers £4 ’s (1< 1<n)

so that T (z4, 4+, 14,)P =P’ which means that the
arrays P and P’ are cyclical shift equivalence. In



accordance with Eq. (8), the entries of the array
T (24, 14+, 14,)P can be calculated by four cases as
follows.

Casel: i/ =2i.and u =2p,.

pilJr/li " "vir—1+/"r—1 Yill +H vir+1+/‘r+1 " "vin +in

) (13)
LRy RN Ly N M S MRy TR Ry T
1 — ) —
Case2: i =2i, +1and 1, =2p,.
pil*/"’l1"'vir—1+/’r—1’i|:+/‘rvir+1+/"r+lv""in+/‘n =
2
LRy RN ey Ry N Ry PR T
(14)
- 1/ J— 1 f—
Case3: I =2, and 1, =2p, +1.
pi1+/u1""’ir71+turfl'i;+/ur'ir+1+/ur+ll""in+/‘n =
2
il+/‘1""vir71+/urflvir+pr 'ir+1+/"r+l""'in +iy )
(15)
Cased: I/ =2i +1land 1, =2p, +1.
pil"'/’l""virfl'*'/lrflvir’ +:urlir+1+tur+1""lin+:un =
(16)

1
bty gt e g+ AL g i

According to T (¢4, t4y,+++, 44,)P =P’ for Cases 1-
4 we have

a. ) ) ) )
¢1 ( [/ Ry BN Iy Ry R My Ty o B R/ MR Ry N e/ IS
! : : ; ; = (17
(R Ry R MR SNy P MR R VA R A ) ( )
¢1 (ai1+771',~--,i,+77,' g+ 1n ! bi1+51',---,ir+6,' iy +0h )’
¢2 (a. L . . L ,
hWta et Gt e e Hor Ol o i Inton i
) . ) . ) = (1
b'l'*'ﬂl"'ﬂl R N ey Ry R I A ) ( 8)
¢2 (ai1+gl’,~~~,ir+g; yonintgn ! bi1+ﬂl’,~~~,ir+ir’ v A )’
AT o o
htat g tGrat e e H6r HOr e F ot Inton
b, ; ; i ; = (19
Ry R MR Ry R M o MR R TR I ) ( )

¢1 (ai1+771',~--,i,+77,' g+ 1n ! bi1+61',-~-,ir+6,',-~-,in+5,; )’
and

a. ) ) ) )
¢1 ( LR/ Ry R/ M R P/ ey oY Jr1!Ir-v-lJr'7r-v-1+/“r-¢-1 L/ Ay T
i1+§1+/41 " "vir—1+5r—l+‘”r—lvir +5r +Pr Jrlvir-v-lJré)‘Hl*/“r-v-l v"'vin +5n +Hn ) -

o Bt iyt Oy i i i)
(20)
respectively.
Consider £, even, which results in that Cases 1 and 2

appear in T (g4, 14+, t4,)P = P’ synchronously. For
Case 1, from Egs. (6) and (17) we have
[(-D)* - (-D"1-i[(-D)” - (-D)]1=0,

where

(21)
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a= ai1+771+/41v"'vir—l+’7r—1+,“r—1vir+’7r + Pl g F g+ Mg g i+ g
ﬂ = bil*‘%*/ﬁv"'virflJr‘Sr—l*ﬂr—llir+5r+pr A+ 0+l + 0, ity
V= B e iy o
0= bil+51',---,i,+5;,---,in+5n' '
(22)
Hence, from Eq.(21) we have
(D = (-1
(-1” =(-1”.
(23)

Since the equation system in (23) holds for arbitrary
integers 1, ’s (L <1 <n), we must have

n+y,=n modN, @AlI<n,l=r)
n.+p, =1, modN, (24)
O +u,=06/ modN, @s1<n,l=r)

o, +p, =06/ modN,,

which results in p,=0(mod N,) and 7, =75,
(mod N,) under given conditions (e.g., O, =3,
(mod N, )) in Theorem 3. But, we have set 77, # 7,

(mod N, )in the conditions of Theorem 3. Apparently,
here is a contradiction.
Similarly, consider 4 odd, which results in that

Cases 3 and 4 appear in Eq. T (24, 24+, 14, )P =P’
synchronously. For Case 3, from Eqgs. (6) and (19) we

have
[0 (-1 ]- DA + (D=0
(25)
where
al = ai1+g1+/ul""!ir—l*’grfl'*'/"rfl!ir +Sr +prvir+1+gr+1+/ur+1""!in+gn+;un

ﬂl - i1+;‘1+/u1v""ir—1+lr71+/lr71'ir+ﬂ“r+pr'ir+l+lr+1+/lr+1""!in+}"n+/"n

= aiﬁniwwirméwninmé

6 = bi1+51',---,i,+5;,---,in+5n'-
(26)
Hence, from Eq. (25) we have

(% =—~(-D*,
In accordance with Eq. (12), from Eq. (27) we have

ﬂlzb
0,=b

W+0, 0 +6; i +0,

@7

A . - . N+l - .
|1+51+/"1 " "rlr—1+ar—l+/‘r—1v|r +‘sr +prt 2 e Jr5r+1+‘”r+1 vl +‘S‘n +in

(28)
Notice the fact that for given integers o, ’s
(1<l<n) the aray B'=[b_ .  ;.5.i.5]18

perfect due to the perfect array B . On the other hand, we
count the autocorrelation of the array B’ as follows.



RB',B'(/Ul,-.-,,ur_l,,Or +%’ﬂr+1""aﬂn)
N-1N,-1 N1 . B
= z z z (_1) (_1)
=0 i,=0 i, =0 (29)
N;—IN,-1  N,-1 P
=-2 2 2 [(=D"]
=0 ;=0 i,=0
— N, x---x N, %0,

where we employ Eg. (27). As a consequence, a
contradiction gives rise to here. Apparently, the above

derivation suggests that in £/, odd case, the condition

n, #n. (mod N,) is not necessary.

Summarizing the above, we come to the conclusion that
Theorem 3 is true.
The next theorem will answer the family size of
Construction 2.
For a given PBA, Construction 2 yields Nr distinct
PQAs.

Proof: From Theorem 3, when 77, ranges the range

from 0 to N, —1 with other parameters unaltered in Eq.

(12), the obtained arrays resulting from Construction 2 are
distinct from one another. We complete the proof of this
theorem.

V. EXAMPLES

In order to help the reader understand our results, here
are two examples.

Example 1:

Consider the arrays A and B be an identical PBA
with size 3x12 [5] as follows.

-+ + - + + + + + - 4+ -
A=+ + + + — + + - + - + —|.
+ + - -+ 4+ - - - - - +

(30)
Consider the odd integer N, =3. According to Eg.
(12) we set

(17,,1,) = (I, 0)
(51’ 52) = (O’ O)
(61,6,)=(+2,0)

(4, 4,) = (0,0),
Where I'=0,1,2.
From Construction 2 the resultant distinct PQAs P-’s

(I'=0,1, 2) with size 6x12, depending on the choice
of I, are given as follows, respectively.

(31
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300310010202
01 2311222320

F)=001130121213
121120110131 3/
1 032003332231

11002103030 2

[0 0002002020 2]

311311111313

onozzoozzzzzo
1111131131313/
2 0020000020 2

1 13311333331]

and_ .
0033103232231

011021121313

F):301200111213
1112201232320
1 001 30030202

21 031100030 2]

(32)

the periodic autocorrelation function of whose each is
depicted by Figure 1. Apparently, this function is impulse-
like.

Autocorrelation

2 220 ”
taul tau?

Figure 1. Autocorrefation function of the aray in Example 1
Example 2:
Consider the arrays A and B be an identical PBA
with size 4x3x 3 [5] as follows.



(33)
Consider the odd integer N, =3 . According to Eq.
(12) we set

(m,1,,1,) =(0,0,T")
(6,,0,,0;)=(0,0,1)
(Qigzigs) =(0,0,T'+2)
(4,4, 4) =(0,0,0),
Where I'=0,1,2.
In accordance with Construction 2, the resultant
distinct PQAs P.’s (I'=0,1,2) with size 4x3x6,

depending on the choice of I", are given as follows,
respectively.

(34)

300211lo10101
P=[l 1 300 2010101
0211 30/[232323
0211308331220
0 211301 220 3 3
0211302033172
030121010101
P=/[21 0301010101
{012103232323
01 0 30 321 2 3]
01 0 321 2 30 3
01 0 32 303 21
and
003 1 2/o1 0101
P=|[L 2 0 310 1 01 0 1
311200232323
3112008302213
311200/ 21 3 3 0|,
31120033022
(35)

the periodic autocorrelation function of whose each is
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R(7,.7,,7;) =

72 0 00 O O00OO0OOOO O
0 00O
0 00O

0O 00O O 00 O

0O 00O O 00 O
0O 00 O0OOOOOOOG® OO
0O 00 OO OOOOGO OO0 0f,
0 00 O0OOOOOGOOTQ OO

where 0<7,<3,0<7,<2,and 0<7, <5.
Apparently, as predicted, Eq. (36) shows that B, P,

and P, are perfect. In addition, it is not difficult for the

reader to check up that the arrays are distinct from one
another.

VI. CONCLUSION

This paper discusses the enumeration of Construction
2 in Zeng, et al’s constructions, and gives the conditions
that the resultant arrays are distinct. By the obtained
conditions, more PQAs than the original theorem are
produced. These proposed PQAs provide lots of
candidates for applications.
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