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Abstract—This paper investigates the enumeration of a 

family of perfect quaternary arrays (PQAs) from Zeng, et 

al’s constructions. By deriving the conditions which result in 

distinct PQAs, the family size of Zeng, et al’s constructions 

is determined, and distinct PQAs are educed from the 

obtained conditions. Finally, two examples are given. The 

proposed distinct PQAs provide lots of candidates for 

applications to communications, radar, and so on. 

Keywords-perfect quaternary array, periodic 

autcorrelation, distinct array, family size, n -dimensional 

array 

I.  INTRODUCTION 

A perfect array means a n -dimensional function 

whose autocorrelation is impulse-like. Perfect arrays are 
widely applied to high-dimensional communications, 
time-frequency-coding, spatial correlation or map 
matching, built-in tests of VLSI-circuits, coded aperture 
imaging, phased array antennas, arrays of sound sources, 
radar, and so on [1]-[3]. In the existing literature, there are 
a large number of perfect binary arrays (PBAs) [3]-[9], 
perfect ternary arrays (PTAs) [10] [11], and perfect multi-
phase arrays [12]. However, the constructions of perfect 
quaternary arrays (PQAs) only have a few. To the best of 
the author’s knowledge, Arasu and Launey gave a family 
of PQAs by making use of polynomial theory [13],  and 
Zeng, et al proposed a method converting a PBA into a 
PQA [14]. With regard to the advances on perfect arrays, 
please refer to [15].  

This paper follows [14] so as to solve the problem of 
the enumeration of Construction 2 in it. By deriving the 
existence conditions of distinct PQAs in Construction 2 in 
[14], this paper determines the family size of    
Construction 2, and distinct PQAs are educed from the 
obtained conditions. More clearly, for given two n -

dimensional PQAs with size 1 1k kN N N     

1k nN N   , where the positive integer kN is odd, 

the family size of Construction 2 arrives at kN , in other 

words, Construction 2 can produce kN  distinct PQAs. 

Due to the fact that the users’ number in a system is 
decided by the number of perfect arrays employed, 
Construction 2 in [14] can provide lots of candidates for 
applications. 

Incidentally, it should be noted that PQAs theory is 
fundamental, since constructions of perfect arrays over 
some constellations, such as 16-QAM constellation, 
depend on their results [16].  

The remainder of this paper is organized as follows. In 
Sect. II, the necessary concepts are recalled. In Sect. III, 
Zeng, et al’s constructions are briefly given. In the 
following section, the main results are stated. Two 
examples will appear in Sect. V. Finally, we conclude this 
paper in Sect. VI. 

II. BASIC CONCEPTS 

A n -dimensional function is said to be an array, 

denoted traditionally by 

1 2, , ,[ | 0 1,1 ]
ni i i k kA a i N k n      ,         (1) 

where 1 1 1k k k nN N N N N       is referred 

to as size.  

For two arrays A and B , we define their correlation 
function by 

1 2
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        (2) 

where the symbol “*” denotes the complex conjugate, and 

the addition “ k ki   (1 )k n  ” is performed modulo 

kN . If A B , we call , 1 2( , , , )A A nR     an periodic 

autocorrelation function, otherwise, a periodic cross-
correlation function. 

If the autocorrelation function of an array A satisfies 
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        (3) 
we are referred to the array A as a perfect array. 

Let T denote a cyclical shift operator, in a 

mathematical term, for a n -dimensional A and n integers 

k ’s (1 )k n  , we have 

1 1 2 2

1 2

, , ,

( , , , )

[ | 0 1,1 ],
n n

n

i i i k k

T A

a i N k n  

  

       
    

(4) 

where the addition “ k ki   (1 )k n  ” is performed 

modulo kN .  

For two arrays A and B , if there are n integers 

k ’s (1 )k n   so as to satisfy 

                         1 2( , , , )nT A B    ,                     (5) 

we say that these two arrays are cyclical shift equivalence, 
otherwise, distinct arrays. 

Let 
1 2, , ,[ ]

ni i iA a and 
1 2, , ,[ ]

ni i iB b be two 

binary arrays with size 1 1 1k k kN N N N       

nN . We construct two quaternary arrays by 

1 2

1 2 1 1 2 2 1 1 2 2

, , ,

, , , , , , , , ,

1 1

1 2 2

1 1

2 2 2

[ ] ( 1,2)

( , )

( , ) ( 1) ( 1)

( , ) ( 1) ( 1) ,

n

n l l n ln l l n ln

l l

i i i

l

i i i l i i i i i i

j jx y

j jx y

Q q l

q a b

x y

x y

     





     

 

 

 



   

   

   (6) 

where , {0,1}x y , and lk  and lk  (1 )k n   are 

integers. 

III. ZENG, ET AL’S CONSTRUCTIONS 

Zeng, et al gave two constructions in [14] so as to 
convert a PBA into a PQA. For the sake of saving the 
reader’s trouble in referring to the relevant reference, we 
briefly state them below. 

Construction 1 [14]. 

Consider a PBA A , namely, A B , with size 

1 1 1k k k nN N N N N       , where all 

integers kN ’s (1 )k n  are even. If we have 

2
(mod ) (1 )kN

lk lk k n    ,         (7) 

the resultant quaternary arrays ( 1,2)lQ l  in (6) is 

perfect. 
Construction 2 [14]. 

Consider two PBAs A and B , with size 

1 1 1k k k nN N N N N       , where at least an 

integer in the integers kN ’s (1 )k n  , say rN , is odd. 

We construct a quaternary array
1 1 1, , , , , ,[ ]

r r r ni i i i iP p
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where 
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(10) 

and 0 1(1 )k ki N k n     and 2r ri i t    

( {0,1}t ), that is, 0 2 1r ri N   . If we have 

mod (1 )
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(11) 

the quaternary array P with size 1 1 2r rN N N    

1r nN N    is perfect. 

    Apparently, Theorem 2 does not give the family size of 
Construction 2. 

IV. FAMILY SIZE OF CONSTRUCTION 2 

First of all, we need to investigate the conditions under 
which Construction 2 results in distinct arrays. 

Let arrays A  and B be two PBAs with each of size 

1 1 1r r r nN N N N N       , where the 

integers rN  is odd. Again let the array P  be produced by 

Eqs. (8)-(10) from the arrays A  and B with integers l ’s, 

l ’s, l ’s, and l ’s (1 l n  ), and so does the array 

P  but with integers l ’s, l  ’s, l  ’s, and l ’s 

(1 l n  ). If  the following conditions: 
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    (12) 

holds, the arrays P and Pare distinct from each other.  

Provided that there exist the integers l ’s (1 l n  ) 

so that 1 2( , , , )nT P P    , which means that the 

arrays P and P are cyclical shift equivalence. In 
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accordance with Eq. (8), the entries of the array 

1 2( , , , )nT P    can be calculated by four cases as 

follows. 

Case 1: 2r ri i  and 2r r  . 
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Case 2: 2 1r ri i   and 2r r  . 
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Case 3: 2r ri i  and 2 1r r   . 
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Case 4: 2 1r ri i   and 2 1r r   . 
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According to 1 2( , , , )nT P P    , for Cases 1-

4 we have 
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(20) 
respectively. 

Consider r  even, which results in that Cases 1 and 2 

appear in 1 2( , , , )nT P P    synchronously. For 

Case 1, from Eqs. (6) and (17) we have 

[( 1) ( 1) ] [( 1) ( 1) ] 0j           ,      (21) 
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(22) 
Hence, from Eq.(21) we have 

( 1) ( 1)

( 1) ( 1) .

 

 

   

  

                           

(23) 
Since the equation system in (23) holds for arbitrary 

integers li ’s (1 l n  ), we must have 
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which results in 0 (mod )r rN   and r r   

(mod )rN under given conditions (e.g., r r    

(mod )rN ) in Theorem 3. But, we have set r r   

(mod )rN in the conditions of Theorem 3. Apparently, 

here is a contradiction. 

Similarly, consider r  odd, which results in that 

Cases 3 and 4 appear in Eq. 1 2( , , , )nT P P     

synchronously. For Case 3, from Eqs. (6) and (19) we 
have 
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(26) 
Hence, from Eq. (25) we have 

1 1( 1) ( 1)
 

    .                   (27) 

In accordance with Eq. (12), from Eq. (27) we have 

1
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(28) 

Notice the fact that for given integers l ’s 

( 1 l n  ), the array 
1 1 , , , ,[ ]

r r n ni i iB b     
  is 

perfect due to the perfect array B . On the other hand, we 

count the autocorrelation of the array B  as follows. 
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where we employ Eq. (27). As a consequence, a 
contradiction gives rise to here. Apparently, the above 

derivation suggests that in r  odd case, the condition 

r r   (mod )rN  is not necessary. 

    Summarizing the above, we come to the conclusion that 
Theorem 3 is true.                                                               

The next theorem will answer the family size of 
Construction 2. 

For a given PBA, Construction 2 yields rN distinct 

PQAs. 

Proof:  From Theorem 3, when r ranges the range 

from 0 to 1rN   with other parameters unaltered in Eq. 

(12), the obtained arrays resulting from Construction 2 are 
distinct from one another. We complete the proof of this 
theorem.                                                                              

V. EXAMPLES 

In order to help the reader understand our results, here 
are two examples. 

Example 1: 

Consider the arrays A and B be an identical PBA 

with size 3 12  [5] as follows. 

.A

            
 

            
 
             

 
                                                                          (30) 

Consider the odd integer 1 3N  . According to Eq. 

(12) we set 

1 2

1 2

1 2

1 2

( , ) ( ,0)

( , ) (0,0)

( , ) ( 2,0)

( , ) (0,0),

 

 

 

 

 





  
 

                     (31) 

Where 0,1,2  . 

From Construction 2 the resultant distinct PQAs P ’s 

( 0,1,2  ) with size  6 12 , depending on the choice 

of  , are given as follows, respectively. 

0

3 0 0 3 1 0 0 1 0 2 0 2

0 1 2 3 1 1 2 2 2 3 2 0

0 0 1 1 3 0 1 2 1 2 1 3
,

2 1 1 2 0 1 1 0 1 3 1 3

1 0 3 2 0 0 3 3 3 2 3 1

1 1 0 0 2 1 0 3 0 3 0 2

P

 
 
 
 

  
 
 
 
 

 

1

0 0 0 0 2 0 0 2 0 2 0 2

3 1 1 3 1 1 1 1 1 3 1 3

0 0 2 2 0 0 2 2 2 2 2 0
,

1 1 1 1 3 1 1 3 1 3 1 3

2 0 0 2 0 0 0 0 0 2 0 2

1 1 3 3 1 1 3 3 3 3 3 1

P

 
 
 
 

  
 
 
 
 

 
and 

2

0 0 3 3 1 0 3 2 3 2 3 1

0 1 1 0 2 1 1 2 1 3 1 3

3 0 1 2 0 0 1 1 1 2 1 3
,

1 1 2 2 0 1 2 3 2 3 2 0

1 0 0 1 3 0 0 3 0 2 0 2

2 1 0 3 1 1 0 0 0 3 0 2

P

 
 
 
 

  
 
 
 
 

 
                                       (32) 

the periodic autocorrelation function of whose each is 
depicted by Figure 1. Apparently, this function is impulse-
like. 

 
Example 2: 

Consider the arrays A and B be an identical PBA 

with size 4 3 3   [5] as follows. 
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(33) 

Consider the odd integer 
3 3N  . According to Eq. 

(12) we set 

1 2 3

1 2 3

1 2 3
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Where 0,1,2  . 

In accordance with Construction 2, the resultant 

distinct PQAs P ’s ( 0,1,2  ) with size  4 3 6  , 

depending on the choice of  , are given as follows, 
respectively. 

0

3 0 0 2 1 1 0 1 0 1 0 1

1 1 3 0 0 2 0 1 0 1 0 1

0 2 1 1 3 0 2 3 2 3 2 3

0 2 1 1 3 0 3 3 1 2 2 0

0 2 1 1 3 0 1 2 2 0 3 3 ,

0 2 1 1 3 0 2 0 3 3 1 2

P




 









 

1

0 3 0 1 2 1 0 1 0 1 0 1

2 1 0 3 0 1 0 1 0 1 0 1

0 1 2 1 0 3 2 3 2 3 2 3

0 1 2 1 0 3 0 3 2 1 2 3

0 1 2 1 0 3 2 1 2 3 0 3 ,

0 1 2 1 0 3 2 3 0 3 2 1

P




 









 

and 

2

0 0 3 1 1 2 0 1 0 1 0 1

1 2 0 0 3 1 0 1 0 1 0 1

3 1 1 2 0 0 2 3 2 3 2 3

3 1 1 2 0 0 3 0 2 2 1 3

3 1 1 2 0 0 2 2 1 3 3 0 ,

3 1 1 2 0 0 1 3 3 0 2 2

P




 









 

                                                   (35) 
the periodic autocorrelation function of whose each is 

1 2 3( , , )

72 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0

R    













 

(36) 

where 10 3  ,
20 2  , and 30 5  . 

Apparently, as predicted, Eq. (36) shows that 
0P , 

1P , 

and 2P  are perfect. In addition, it is not difficult for the 

reader to check up that the arrays are distinct from one 
another.  

VI. CONCLUSION 

This paper discusses the enumeration of Construction 
2 in Zeng, et al’s constructions, and gives the conditions 
that the resultant arrays are distinct. By the obtained 
conditions, more PQAs than the original theorem are 
produced. These proposed PQAs provide lots of 
candidates for applications. 
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