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Abstract  
Circuit performance is a function of circuit parameters. 
If these parameters are random variables, the 
performance index is also a random variable. System 
performance can be determined by value of this index 
and more importantly by the probability that it is 
maintained in specified tolerance range. To evaluate 
reliability of circuit performance is to analyze 
tolerance range and corresponding probability in order 
to determine robustness of circuit design. In this paper, 
random set theory is used to describe these parameter 
variables and provide a simple and flexible method for 
evaluating reliability of circuit performance, which is 
alternative to Monte-Carlo analysis, but reduces the 
number of calculations drastically. 

Keywords: Random set theory, Reliability of circuit 
performance, Monte-Carlo analysis, Tolerance 
analysis. 

1. Introduction 
The component parameters fluctuations trigger 
variations in circuit performance. Such fluctuations 
may not result in faulty behavior, but, the circuit does 
not execute some given functions any longer. From the 
view of reliability， the system has been in failure 
state.Therefore, reliability of circuit performance can 
be determined not only by value of this performance 
index, but also, what's more, by the probability that it 
is maintained in the specified tolerance range of 
performance variations. Even if system has a high 
value of index, the low probability indicates that 
system no more retains satisfactory functional be-
havior. So it is necessary to estimate tolerance range 
and the corresponding probability in order to deter-
mine the robustness of the circuit design [1]-[2]. 

The circuit performance is a function of circuit 
component parameters. Typical parameters are 
component values, such as resistances, capacitances, 
inductances,etc. Statistical variations in each com-
ponent value result in parameter variation, possibly 
centered around the nominal value (design center) for 

each component. Namely, if parameters are random 
variables, the performance index is also a random 
variable. The performance function may vary from 
simple linear form to complex nonlinear form.  

We want to know the distribution of performance 
index for evaluating reliability of circuit performance. 
Monte Carlo analysis provides a means for doing 
this[3]-[4]. However, when the variance of variable 
estimated is quite large or the small estimation error is 
given, the large number of simulations required 
prevents its application[1]. It is well known that subs-
tantial computational savings can be obtained by using 
advance Monte Carlo methods such as “Importance 
sampling”, “Stratified sampling”, “Correlated sampl-
ing” techniques etc. Whereas, very great skills are 
required in applications. For examples, one must 
obtain optimal sampling functions partly by guess-
work in importance sampling. Such guessing is not a 
easy job. How to stratify is a bottleneck in stratified 
sampling, so they can not be used widely. 

Random set theory provides a general mechanism 
for describing and handing many kinds of information 
(random, vague, imprecise, etc)[5]-[6]. In this paper, 
random set theory is used to describe these parameter 
variables and present a simple and flexible method for 
evaluating reliability of circuit performance, which is 
alternative to Monte-Carlo analysis, but the comput-
ational complexity relates not to variance of variable, 
but to choice of random sets. So the proposed method 
can reduces the number of calculations required 
drastically. 

This paper is organized as follow: section 2 
recalls some notions about random sets, along with the 
principles that allow random-set-type information on 
parameters to be extended to the circuit performance 
index. A model for analyzing reliability of circuit 
performance is constructed in section 3. Based on this 
model, section 4 details the random set method for 
reliability analysis. An application of proposed method 
is given in sections 5 to prove it effective. By 
compareing it with Monte Carlo method, drastic 
computational savings are showed.  



2. Random set and the correspond-
ing principles 

2.1. Random set and random rela-
tion 

Let U be a non-empty set. 
Definition 1[7] A finite support random set on 

U is a pair ( , )mF  where F is a finite family of 
distinct non-empty subsets of U and m is a 
mapping [0,1]→F and such that ( ) 1

A
m A

∈
=∑ F

.F is 

called the support of the random set and m is called 
a basic probability assignment. A subset A with a 
non-null mass is viewed as a focal element. 

Let a parameterξ  be a random variable, if each 
set A∈F contains the possible values of ξ , ( )m A  
can be viewed as the probability that A is the actual 
range ofξ . Such a random set ( , )mF  is equivalent to 
a belief function in the sense of Shafer [8]. Given a 
random set ( , )mF , a belief function (Bel) can be 
defined as the following set function 

Bel( ) ( )
B A

A U A m B
⊆

∀ ⊆ = ∑                 (2.1) 

A corresponding plausibility function (Pl) is  
Pl( ) 1 Bel( ) ( )c

A B

A A m B
≠∅

= − = ∑
I

          (2.2) 

Where cA  denotes the complement of A. Contrarily, 
using Moebius inversion, we can reconstruct ( , )mF  
from the knowledge of the set function Bel. 

( ) ( ) ( )1 BelA B

B A
m A B−

⊆

= −∑               (2.3) 

Definition 2[9] A multi-dimensional space U = 
U1×…×Un, where × indicates Cartesian product. A 
finite support random relation is a random set ( , )mF  
on U. 

The projections of a random relation on Cartesian 
productU1×…×Un are defined by Shafer to be the 
marginal random set ( , ), 1, ,k km k n= LF  [8] 

, ( ) { ( ) | Proj ( )}
kk k k k k UC U m C m A C A∀ ⊆ =∑   (2.4)              

1Proj ( ) { | ( , , , ) }
kU k k k nA u U u u u u A= ∈ ∃ = ∈L L (2.5)   

2.2. Extension principles 
Let 1( , , )nξ ξ ξ= L be a variable on U = 
U1×…×Un, ( )fζ ξ= , :f U V→ is function ofξ . The 
random set ( , )ρR of ζ , which is the image of 
random relation ( , )mF of ξ  through f, is given by 
extension principles [7] 

{ ( ) | }j i iR f A A= = ∈R F                 (2.6) 

( ) { ( ) | ( )}j i j iR m A R f Aρ = =∑          (2.7) 

where  
( ) { ( ) | }, 1, ,i if A f u u A i M= ∈ = L        (2.8) 

M is the number of element ofF . The summation in 
Eq.(2.7) account for the fact that more than one focal 
element iA may yield the same image jR through f. 

Specially, ifξ is a discrete random variable and 
every focal element iA contains only one element, m 
defines a standard joint probability mass function 
on U and Eq.(2.7) gives ρ on V, which also is the 
probability mass function ( )p yζ  according to usual 
probability theory 

( ) ( ) { ( ) | ( )}y p y m u y f uζρ = = =∑   (2.9)  

The basic step to construct ( , )ρR is to calculate 
the image of focal elements through f. In general, this 
problem can be solved by applying twice the 
technique of global optimization [10]. According to 
properties of f, we discuss the calculation of the image 
of a random relation as follow 

If A∈F  is a finite closed set and f is a conti-
nuous function, then 

( ) [ , ]f A a b=                      (2.10) 
where min( ( )), max( ( ))

u A u A
a f u b f u

∈ ∈
= = . 

If each component ( 1, , )k k nξ = L of ξ  corresponds 
to a marginal random set ( , )k kmF , whose focal 
element is a interval [ , ]k kl r , the focal element 
of ( , )mF can be obtained by 

1 1 1[ , ] [ , ]n n nA C C l r l r= × × = × ×L L    (2.11)  
In this case, the methods of interval analysis are 
applicable [11]. If A is a convex set, it has 2n vertices, 
denoted as , 1, , 2n

jv j = L .when f possesses some 
properties, the vertex method can help to reduce the 
computational burden considerably [12]. The vertex 
method may be showed as follows 

Proposition 1 if ( )fζ ξ= is continuous in A, and 
also no extreme point exists in this region (including 
its boundaries), then the value of interval function can 
be obtained by 

( ) [min{ ( ) : 1, , 2 },

max{ ( ) : 1, , 2 }]

n
jj

n
jj

f A f v j

f v j

= =

=

L

L
        (2.12) 

So, f has to be calculated 2n times for each focal 
element iA . This computational burden can be further 
reduced if the hypotheses of the following proposition 
hold [13]  

Proposition 2 if f and its partial derivatives are all 
continuous and if f is a strictly monotonic function 
with regard to each parameter variable ( 1, , )k k nξ = L , 
then  

min min: ( ) min{ ( ) : 1, , 2 }n
jj

v f v f v j∃ = = L  (2.13)               

max max: ( ) max{ ( ) : 1, , 2 }n
jj

v f v f v t∃ = = L (2.14)              



2.3 Inclusions of random sets and 
monotonicity principle 

Yager defined the inclusion of random set [14] 
Definition 3 1 1 2 2( , ) ( , )m m⊆F F  if and only if 

the three following conditions hold 
(1) For 1 2,A B∀ ∈ ∃ ∈F F ，such that A B⊆ ； 
(2) For 2 1,B A∀ ∈ ∃ ∈F F ，such that A B⊆ ； 
(3) There is a non-negative assignment matrix W with 
entries ( , )W A B  satisfying  

1A∀ ∈F ,  1
:

( ) ( , )
B A B

m A W A B
⊆

= ∑       (2.15)  

2B∀ ∈F , 2
:

( ) ( , )
A A B

m B W A B
⊆

= ∑         (2.16) 

where, if A B⊄ , ( , ) 0W A B = . In other word, the 
weights 1( )m A can be shared among supersets of A 
which belong to 2F , and the weight 2 ( )m B is the sum 
of the shares allocated to subsets of B. 

According to this inclusion between two random 
sets, the relationship between their Bel and Pl function 
can be induced by [14] 

1 1 2 2

1 1 2 2

( , ) ( , )
[Bel ( ),Pl ( )] [Bel ( ), Pl ( )]

m m
A A A A
⊆ ⇒

⊆
F F

   (2.17) 

Based on extension principle in section 2.2, this 
inclusion property can be transformed to the image of 
random relations, which is monotonicity principle [7] 

Proposition 3 let ( , ),( , )m m′ ′F F  be two random 
relations on and f be a functionU V→ . Let ( , ),ρR  
( , )ρ′ ′R  be the respective images of ( , ), ( , )m m′ ′F F  
through f. Then ( , ) ( , )ρ ρ′ ′⊆R R as soon as 
( , ) ( , )m m′ ′⊆F F . 

Let Bel( ),Pl( )⋅ ⋅ and Bel ( ),Pl ( )′ ′⋅ ⋅ are the belief 
and plausibility function of ( , ),( , )ρ ρ′ ′R R respectively. 
Then, by means of Eq.(2.17) 

[Bel( ),Pl( )] [Bel ( ),Pl ( )]′ ′⋅ ⋅ ⊆ ⋅ ⋅             (2.18) 
Dobios and Prade firstly indicated how inclusions 

of random set might be used to bound the cumulative 
distribution function (CDF) of a sum of two random 
variables [7].This means that, if the actual information 
about event A can be known under the form of a 
random set ( , )ρR , it is possible to find other ( , )ρ′ ′R  
which can include ( , )ρR . When the computation of 
( , )ρ′ ′R  is much simper than ( , )ρR , the obtained 
intervals [Bel ( ),Pl ( )]A A′ ′  are a bracketing of 
[Bel( ),Pl( )]A A which may be enough for making a 
decision about the event A of interest. 

In reliability analysis of circuit performance, 
performance functions are the circuit outputs ( )fζ ξ= . 

1( , , )nξ ξ ξ= L , iξ is parameter of ith unit or component. 

If iξ is random variable, ζ is also random variable. To 
evaluate reliability of circuit performance is to analyze 
whether the probability thatζ fluctuates in the specific 
tolerance range is acceptable. In this paper, by virtue 

of monotonicity principle and vertex methods, the idea 
of bounding CDF of a variable in reference [7] is 
generalized to provide the upper and lower bounds of 
the probability distribution of performance indexζ . 
Where f can vary from simple linear form to complex 
nonlinear form and ξ  is generic random vector with 
various distribu-tions. Using this upper and lower 
bound, reliability of circuit performance can be 
determined easily. In following section, we construct 
the analysis model, based on which, the random set 
method for analyzing reliability is presented in detail. 

3. Reliability analysis model of cir-
cuit performance 

Suppose that the circuit system is composed of n 
units 1, , nS SL , 1, , nu uL are respective parameters of 
units, the system performance is  

( )y f u=                               (3.1) 
1( , , )nu u u= L is the parameter vector.  

As a rule, the nominal value of kth parameter is 
denoted as _ 0ku , its tolerance is ku±Δ .In another word, 

_ 0 _ 0k k k k ku u u u u+ Δ ≥ ≥ − Δ               (3.2) 

       Generally, let the parameter of kS  be a random 
variable kξ . When it is normal distribution variable, its 
probability density function is given by 

2

( )1( ) exp[ ]
22k

k k
k

k

up uξ
μ

σπσ
−

= −           (3.3) 

where _ 0 , 3k k k ku uμ σ= = Δ . 

Indeed, in some cases, parameter kξ is not limited 
to normal distribution and may be other types of distri-
bution. If ku is viewed as random variable kξ , perfor-
mance index y is also a random variable denoted asζ  

Commonly, the tolerance range of system perfor-
mance index is given in advance, as a inter-
val [ , ]A BD y y= , thus, the cumulative probability of 

Dζ ∈  is  
( ) ( )

( ) ( ) ( )B

A

A B

y

B A y

P D P y y

F y F y p y dy

ζ ζ

ζ ζ ζ

ζ= ≤ ≤

= − = ∫
      (3.4) 

If the probability of failure of circuit performance 
is given as ϒ , such that evaluation criterion can be 
defined as follow 
(1)If ( )A BP y yζ ζ≤ ≤ >ϒ，system performance is reliable. 

(2)If ( )A BP y yζ ζ≤ ≤ <ϒ，system performance is unreliable. 

(3)If ( )A BP y yζ ζ≤ ≤ =ϒ，system performance is in a limit 
state condition. 

4. The random set method for relia-
bility analysis  



If the performance index ( )fζ ξ=  is known under the 
form of a random relation ( , )mF , where every focal 
element iA contains only one element { }iA u= , 

({ })m u is equivalent to probability mass func-
tion ( )p uζ . Based on such ( , )mF , we can obtain 

( , )m′ ′F by inclusion of random set, using extension 
principle, ( , )ρ′ ′R can be obtained. And then, 
according to monotonicity principle, we can 
get ( , ) ( , )ρ ρ′ ′⊆R R . Finally, Bel ( ),Pl ( )′ ′⋅ ⋅ is used to 
construct upper and lower bounds of CDF ( )F yζ  
yielded by Monte Carlo simulation, on the basis of 
model introduced in section 3, reliability of circuit 
performance is determined by the upper and lower 
bounds. The whole procedure is detailed in follow 
section. 

4.1 The procedure of the random set 
method   

1) The calculation of ( , )mF and ( , )m′ ′F  
From Eq.(3.2), we know that physical para-
meter kξ belongs to interval _0 _0[ , ]k k k k kI u u u u= +Δ −Δ .Let 

1 nU I I= × ×L , thus, 1( , , )n Uξ ξ ξ= ∈L . Let U=F , 

m pξ= (every focal element of single-value). We set 

that { , 1, , }iA i M′= = LF  which is a partition of U , 

accordingly, kI is partition into kd  subintervals, thus 

1 2 ,i i i i
i n k kA C C C C I= × × × ⊆L 1, , , 1, ,k n i M= =L L (4.1)        

Where M is the number of elements of ′F  

1

n

k
k

M d
=

=∏                       (4.2) 

Let  

:
( ) ( )

i

i
u u A

m A p uξ
∈

′ = ∑                    (4.3) 

( , ) ( ),i iW u A p u if u Aξ= ∈               (4.4) 

( , ) 0,i iW u A if u A= ∉               (4.5) 
We can prove that ( , )mF and ( , )m′ ′F satisfy three 
conditions in definition 3. 
(1) For u∀ ∈F , necessarily, iA ′∃ ∈F , such that iu A⊆ . 
(2)For iA ′∀ ∈F , at least one u exists such that iu A⊆ . 
(3)

: :
( ) ( ) ( , )

i i

i i
u u A u u A

m A p u W u Aξ
∈ ∈

′ = =∑ ∑  

:
( ) ( ) ( , )

i i

i
A u A

m u p u W u Aξ
∈

= = ∑  

So, ( , ) ( , )m m′ ′⊆F F . If ξ  is a continuous random 
variable, ( )p uξ is joint probability density function 
(PDF) and Eq.(4.3) is changed into  

( ) ( )
i

i A
m A p u duξ′ = ∫                           (4.6) 

2) The calculation of the image ( , )ρ′ ′R of ( , )m′ ′F  
After constructing ( , )m′ ′F , we can get its image 
( , )ρ′ ′R  by means of extension principle 

{ ( ) | }

( ) { ( ) | }
j i i

i i

R f A A

f A f u u A

′ ′= = ∈

= ∈

R F                   (4.7) 

Actually, iA is a n-dimensional boxes, whose number 
of vertices is v 

1

( 1)
n

k
k

v d
=

= +∏                        (4.8) 

      If f satisfies the conditions of proposition 1 and 2, 
the calculation of ( )if A will become feasible. For 

example, 2n = , 1 3d = , 2 2d = , thus, 1 2V I I= × . 1I  

is partitioned into three subintervals 1,1 1,2 1,2 1,3[ , ),[ , ),u u u u  

1,3 1,4[ , ]u u , 2I is partitioned into two subintervals 

2,1 2,2 2,2 2,3[ , ),[ , ]u u u u . The entire focal elements are 

given: 1 1,1 1,2 2,1 2,2[ , ) [ , )A u u u u= × , 2 1,1 1,2 2,2 2,3[ , ) [ , ]A u u u u= × ,

3 1,2 1,3 2,1 2,2[ , ) [ , )A u u u u= × , 4 1,2 1,3 2,2 2,3[ , ) [ , )A u u u u= × , 

5 1,3 1,4 2,1 2,2[ , ] [ , )A u u u u= × , 6 1,3 1,4 2,2 2,3[ , ] [ , ]A u u u u= ×  
so, M=6,v=12. 

If f and its partial derivatives are all continuous 
on 1I and 2I , f is increasing on 1I and is decreasing on 

2I , according to proposition 2, for example, the image 
of 2A is   

2 1,1 2,3 1,2 2,2( ) [min{ ( , )}, max{ ( , )}]f A f u u f u u= (4.9)  

Because the vertex 1,1 2,1( , )u u of 1A and the vertex 

1,4 2,3( , )u u of 6A are not the extreme points of f, and 
there are no this two points in the contiguous focal 
elements with 1A and 6A , then the times of calculating 
all image is reduced to (3 1) (2 1) 2 10+ × + − = . 
       Form Eq. (2.7), we can get  

( ) { ( ) | ( )}j i j iR m A R f Aρ′ ′= =∑          (4.10)  

3) The construction of upper and lower bound ofFζ 
For R ′∀ ∈R Bel and Pl of ( , )ρ′ ′R  can be obtained 
by Eq.(2.1) and Eq.(2.2) 

( )

Bel ( ) ( ) ( )
i

i
Q R Q R Q f A

R Q m Aρ
⊆ ⊆ =

′ ′ ′= =∑ ∑ ∑   (4.11)                      

( )
Pl ( ) ( ) ( )

i

i
Q R R Q Q f A

R Q m Aρ
≠∅ ≠∅ =

′ ′ ′= =∑ ∑ ∑
I I

  (4.12)          

In evidence theory [8], Bel ( )R′ and Pl ( )R′ are 
respective defined as upper and lower bound of 
probability ( )P Rζ , such that 

Bel ( ) ( ) Pl ( )R P R Rζ′ ′≤ ≤               (4.13) 

Further, the upper and lower CDFs ofζ are respective 
*( ) Pl(( , ]) { ( ( )) | inf( ( ))}i iF y y f A y f Aζ ρ= −∞ = ≥∑ (4.14) 

* ( ) Bel(( , ]) { ( ( )) | sup( ( ))}i iF y y f A y f Aζ ρ= −∞ = ≥∑  (4.15)  



Obviously, 
*

* ( ) ( ) ( )F y F y F yζ
ζ ζ≤ ≤              (4.16) 

That is to say, both of them can bracket the actual 
distribution of variable. Usually, in practice, the CDF 
obtained by Monte Carlo simulation is used as appro-
ximation of the actual one. 
4) The reliability analysis by virtue of the upper 

and lower CDFs 
On the basis of reliability analysis model in section 3, 
if the tolerance range is [ , ]A BD y y= , the proba-bility 
of Dζ ∈  is  

( ) ( ) ( )B AP D F y F yζ ζ ζ= −            (4.17) 

Let  
*

* *( ) ( ) ( )B AP D F y F yζ ζ
ζ= −            (4.18) 

* *
*( ) ( ) ( )B AP D F y F yζ

ζ ζ= −            (4.19) 

We can conclude  
*

* ( ) ( ) ( )P D P D P Dζ
ζ ζ≤ ≤             (4.20) 

The evaluation criterion can be defined as follow 
(1) If

* ( )P Dζ > ϒ , from Eq.(4.21), ( )P Dζ > ϒ ,system 
performance is reliable. 

(2) If
* ( )P Dζ < ϒ , ( )P Dζ < ϒ , system performance is 

unreliable. 
When *

* ( ) ( )P D P Dζ
ζ< ϒ < , the reason for it maybe 

is an excessive coarse partition to V. There are un-
acceptable large gaps between ( )F yζ and * ( )F yζ , *( )F yζ . 
In this case, we may set the error of calculating 

( )F yζ and * ( )F yζ  in advance, and then divide V into 

more subintervals, obtain new ( )F yζ and * ( )F yζ . If 
*

* ( ) ( )P D P Dζ
ζ< ϒ <  again, we can conclude that sys-

tem performance is in a limit state condition. 

4.2 Error comparison between the 
random set method and Monte 
Carlo method 

Besides much less computational burden than Monte 
Carlo simulation, the precision of the proposed 
method can be explicitly evaluated by given forms of 
error. 
     Maximum Error 

*
max *_ max( ( ) ( ))

y
ran F y F yζ

ζε = −      (4.21) 

Local Error 
*

*_ ( ) ( ) ( )ran y F y F y y Yζ
ζε = − ∀ ∈  (4.22)  

In practice, according to different cases, both of them 
can be chose to evaluate gaps between the actual 
distribution and upper and lower CDF from global and 
local aspects respectively.  

In Monte Carlo methods, the likely deviation 
from CDF ( )F yζ obtained by Monte Carlo simulation 

to the actual distribution _ ( )TrF yζ  is an envelop 
around the latter with a certain confidence level, but 
not a guarantee [15]. However, the present method can 
provide this guarantee, i.e.100% confidence level. 
When the confidence level 1 α− ,confidence level, αλ  

and variance 2σ of variable are respectively given, the 
error of Monte Carlo simulation can be defined 
as _ monε [1] 

_ mon
N
αλ σ ε≤                        (4.23) 

So, the number of sampling must satisfies  
2

_
N

mon
αλ σ

ε
⎛ ⎞

≥ ⎜ ⎟
⎝ ⎠

                 (4.24) 

Obviously, when the variance of variable estimated is 
quite large or the small estimation error is given，the 
large number of simulations required prevents its 
application [1]. It is well known that substantial 
compu-tational savings can be obtained by using 
advance Monte Carlo methods such as “Importance 
Sampling”, “Stratified Sampling”, “Correlated 
Sampling” tech-niques etc, but, very great skills are 
required in appli-cations. So they can not be used 
widely. 

For the proposed procedure, the computation load 
is only determined by partition of tolerance range of 
each circuit parameter. When f has some properties, 
the vertex methods can help to reduce the computation 
burden sharply, and the partitions of tolerance range 
are flexible and convenient. In follow section, a exam-
ple is given to prove it effective. 

5. Data analysis and application 
results 

To evaluate a familiar RLC Series Resonance Circuit 
in Fig 1, it is required that the nominal value of the 
resonance frequency output 0f is 4110 Hzk , the 
maximum frequency drift is limited to 100 Hzk± . The 
reliability of performance must be greater than or 
equal to 0.95ϒ= .The chose inductor 50 10% HL μ= ±  
and capacitor 30 5%PFC= ± . Suppose that the devi-
ations of L and C are all normal distribution, mutually 
independent and the standard variances are given res-
pectively as 5 / 3 HLσ μ= , 0.5PFCσ = . 

Here, we analyze the reliability of this circuit 
performance by random set method as follow 
1) Based on the model in section 3, the performance               
function is the actual resonance frequency f  



6

1/ 2
1 2

10 ( Hz)
2 ( )

f k
π ξ ξ

=         (5.1) 

Where, 1 Lξ = , mean
1 0 50 HLξμ μ= = ,standard variance 

1
5/3 Hξσ μ= ; the random variable 2 Cξ = , mean value 

2 0 30PFCξμ = = , standard variance
2

0.5PFξσ = . 

R

L

C
 

 
 
 
2) To describe 1 2( , )ξ ξ ξ= as random relation ( , )m′ ′F , 

1ξ fluctuates in interval 1 [45,55]I = ,let us divide it into 

1 10d = subinterval 1, 1, 1, 1[ , )j j jI u u += , 1( 1, , )j d= L , 2ξ  

fluctuates in interval 2 [28.5,31.5]I = , 2( 1, , )k d= L . 

1 2V I I= × is partitioned into 10 6 60M = × = focal 
elements, so that  

1, 2, 1 2{ | 1, , ; 1, , }j kI I j d k d′ = × = =L LF  (5.2)  

Because 1 2,ξ ξ  are mutually independent, from Eq.(4.6) 

( )

1, 2,

1 2
1, 2,

1 2
1, 2,

1, 2, 1 2 1 2

1 2 1 2

1 1 2 2

1 1, 2 2,

( ) ( , )

( ) ( )

( ) ( )

( ) ( )

j k

j k

j k

j k I I

I I

I I

j k
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ξ

ξ ξ

ξ ξ

×

×

′ × =

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
′ ′=

∫
∫

∫ ∫

      (5.3) 

1 1, 2 2,( ), ( )j km I m I′ ′  are respective basic probability assig-

nments to subintervals of 1I and 2I , showed in table 1 
and  2. 
3) This step is to calculate the image ( , )ρ′ ′R of( , )m′ ′F . 
It is easy to know that f and its partial derivatives are 
all continuous on the interval V . f is decreasing with 
respect to 1 2,ξ ξ . According to proposition 2, to each 
focal element

1, 2,j kI I× , the maximum of f is attained 
when 1 1, juξ = and 2 2,kuξ = , the minimum of f is 
attained when 1 1, 1juξ += , 2 2, 1kuξ += . From Eq. (4.7), 
we have 

1, 2, 1 2{ ( ) | 1, , ; 1, , }j kR f I I j d k d′ = = × = =L LR (5.4)  

1, 2, 1, 2,( ) { ( ) | ( )}j k j kR m I I R f I Iρ′ ′= × = ×∑ (5.5)  
The focal elements and the basic probability assign-
ments of ( , )m′ ′F  and ( , )ρ′ ′R  is showed partially in 
table 3. By calculation, we know the images Ri=f(I1,j × 
I2,k) are all distinct, so

1, 2,( )j kI Iρ′ × =  1, 2,( )j km I I′ × . 
The upper and lower cumulative distribution of f 

are given as ( )upF y and ( )lowF y in Fig2, together with 

the CDF as ( )F y yielded by Monte Carlo simulation. 
Evidently, the latter distribution is bracketed by the 
upper and lower distribution.  

For calculation of ( )F y , firstly 710 samples 

1, 2,( , )l lu u 71, ,10l = L of 1ξ and 2ξ  is generated, whose 

values of function calculated are 1, 2,(( , ))l l ly f u u= . The 

variance 2σ̂ of ly  is unbiased estimation of 2σ , which 
is considered as an approximation of the true 
variance 2σ . 
We set that error 0.05ε = ,the confidence level is 95％, 
whose 1.96αλ = . From Eq.(4.24), 3536969N =  sam- 

plings (simulation)is needed, however, only(10+1)× 
 (6+1)-2=75evaluations of f are necessary in the ran-
dom set method. 
4) The last step is to evaluate the reliability of system 
performance by virtue of the upper and lower distri-
bution. Based on model in section 3, the tolerance 
range of f is [4010 Hz, 4210 Hz]D k k= , 
The probability of failure calculated by Monte Carlo 
method is ( ) 0.8057P Dζ = . In random set method, from 
Eq.(4.14)and Eq.(4.15), we have 
(1) When 4010 Hzkζ = ： 

*(4010) { ( ( )) | 4010 inf( ( ))}

0.2171
i iF f A f Aζ ρ= ≥

=
∑    (5.6)  

* (4010) { ( ( )) | 4010 sup( ( ))}
 0.0354 

i iF f A f Aζ ρ= ≥

=
∑   (5.7) 

The local error is  
*

*_ (4010) (4010) (4010) 0.1817ran F Fζ
ζε = − = (5.8)  

(2) When 4210 Hzkζ = ： 

  
*(4210) { ( ( )) | 4210 inf( ( ))}

0.9587
i iF f A f Aζ ρ= ≥

=
∑  (5.9) 

* (4210) { ( ( )) | 4210 sup( ( ))}
0.7742

i iF f A f Aζ ρ= ≥

=
∑ (5.10)  

The local error is 
*

*_ (4210) (4210) (4210) 0.1845ran F Fζ
ζε = − = (5.11) 

The maximum error happens at 4097.1 Hzkζ = ,and 

max_ 0.3770ranε = . 
From Eq.(4.18)and Eq.(4.19), we have 
 

Fig 1: RLC Series Resonance Circuit 



 
I1,j [45,46) [46,47) [47,48) [48,49) [49,50) [50,51) [51,52) [52,53) [53,54) [54,55]

m1′ 0.0068 0.0277 0.0791 0.1592 0.2257 0.2257 0.1592 0.0791 0.0277 0.0068

Table 1:   m1′(I1,j) BPA，j =1,…,10 
 

I2,k [28.5,29) [29,29.5) [29.5,30) [30,30.5) [30.5,31) [31,31.5] 

m2′ 0.0214 0.1359 0.3413 0.3413 0.1359 0.0214 
Table 2:  m2′( I2,k) BPA，k=1,…,6 

 
j,k Ai=I1,j × I2,k m′( I1,j × I2,k) Ri=f(I1,j × I2,k) ρ( f(I1,j × I2,k)) 
1,1 A1=[45, 46)× [28.5, 29) 0.0001 (4357.5, 4444.2] 0.0001 
1,2 A2=[45, 46)× [29, 29.5) 0.0009 (4320.5, 4405.7] 0.0009 
1,3, A3=[45, 46)× [29.5, 30) 0.0023 (4284.3, 4368.2] 0.0023 
1,4 A4=[45, 46)× [30, 30.5) 0.0023 (4249.0, 4331.6] 0.0023 
1,5 A5=[45, 46)× [30.5, 31) 0.0009 (4214.6, 4296.0] 0.0009 
1,6 A6=[45, 46)× [31, 31.5] 0.0001 (4181.1, 4261.2] 0.0001 
2,1 A7=[46, 47)× [28.5, 29) 0.0006 (4310.9, 4395.6] 0.0006 
2,2 A8=[46, 47)× [29, 29.5) 0.0038 (4274.3, 4357.5] 0.0038 
2,3, A9=[46, 47)× [29.5, 30) 0.0095 (4238.5, 4320.5] 0.0095 
2,4 A10=[46, 47)× [30, 30.5) 0.0095 (4203.6, 4284.3] 0.0095 
2,5 A11=[46, 47)× [30.5, 31) 0.0038 (4169.6, 4249.0] 0.0038 
2,6 A12=[46, 47)× [31, 31.5] 0.0006 (4136.3, 4214.6] 0.0006 

     
10,1 A55=[54, 55]× [28.5, 29) 0.0001 (3985.1, 4057.0] 0.0001 
10,2 A56=[54, 55]× [29, 29.5) 0.0009 (3951.2, 4021.8] 0.0009 
10,3 A57=[54, 55]× [29.5, 30) 0.0023 (3918.1, 3987.6] 0.0023 
10,4, A58=[54, 55]× [30, 30.5) 0.0023 (3885.9, 3954.2] 0.0023 
10,5 A59=[54, 55]× [30.5, 31) 0.0009 (3854.4, 3921.7] 0.0009 
10,6 A60=[54, 55]× [31, 31.5] 0.0001 [3823.7, 3889.9] 0.0001 

Table 3 : Focal element and BPAs of the random relation (F′,m′) and its image (R′,ρ′ )k=1,…,6. 
 

*
* *( ) (4210) (4010) 0.5571P D F Fζ ζ

ζ= − =    (5.12) 
* *

*( ) (4210) (4010) 0.9233P D F Fζ
ζ ζ= − =    (5.13) 

There is an inclusion relationship 
*

* ( ) 0.5571 ( ) 0.8057 ( ) 0.9233P D P D P Dζ
ζ ζ= ≤ = ≤ =  (5.14)  

Because *( ) ( ) 0.95P D P Dζ ζ≤ < , system performance is 
unreliable. It is evident that the proposed method get 
same evaluation result with the one of the Monte Carlo 
method, but reduces the number of calculations 
required drastically. 
   In order to improve precision, let us divide 1 2V I I= ×  
into more subintervals, i.e.

1I is divided into
1 50d =  sub- 

intervals, 
2I is divided into 2d = 44  subintervals. (50+1) 

 ×(44+1)=2295evaluations of f are needed. The corr-
esponding ( )F y , ( )upF y and ( )lowF y are showed in Fig 3. 
We can obtain again 
(1) *(4010) 0.1007Fζ = , * (4010) 0.0737F ζ = , 

_ (4010) 0.0270ranε = ; 
(2) * (4210) 0.8780F ζ = , *(4210) 0.9079Fζ = ,  

_ (4210) 0.0299ranε = ;  

 
 (3) 

* ( ) 0.7773P Dζ = ， *( ) 0.8342P Dζ =                

Based on which, there is the inclusion relationship 

*

*

( ) 0.7773 ( )

0.8057 ( ) 0.8342

P D P D

P D

ζ
ζ

ζ

= ≤

= ≤ =
             (5.15) 

Because what we are interested in is only the pro-
bability of failure, not the entire distribution of f , it 
would have been necessary to pay attention to the 
errors at points 4010 Hzkζ =  and 4210 Hzkζ =  with 
respect to * (4010)Fζ , *(4010)Fζ , * (4210)Fζ  and *(4210)Fζ . 
 So let us chose the larger one in _ (4010)ranε and 

_ (4210)ranε , i.e. _ (4210) 0.0299 0.03ranε = ≈  as our 
error. In order to obtain the same error with 99.99% 
confidence by means of Monte Carlo simulation, 

89591318 2295N =  samplings would be required. 
Hence, if we set the error in advance and the 
inclusion *

* ( ) ( )P D P Dζ
ζ≤ ϒ ≤ exists all the same, then 

we can conclude that system performance is in a limit 
state condition. 
 
 
 



 

 
 
 

 
 

6. Conclusions  
In this paper, random set theory is used to describe 
these parameter variables and obtain a simple and 
flexible method for evaluating reliability of circuit 
performance, which is alternative to Monte-Carlo 
analysis, but reduces the number of calculations 
required drastically. Here, we only consider the case 
that parameters is indpendent each other, and further 
more, when some parameters are correlative , how to 
generate upper and lower cumulative distribution 
should be studied based on random set theory. 
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Figure 2: CDF and the upper and lower 
cumulative distribution of f  (d1=10, d2=6) 

Figure3:CDF and the upper and lower 
cumulative distribution of  f  (d1=50, d2=44) 


