

Improved Adaptive Generational Garbage

Collection Algorithm

for Java Card

Yang Fubiao
1

1
 Department of Computer

 Guangdong University of Technology

 Guangzhou 510006, China

youngfb@qq.com

Li Daiping
2

2
 Department of Computer

 Guangdong University of Technology

 Guangzhou 510006, China

Abstract—The memory size of Java is very limited, while the

Java Card specification does not specify the garbage collection

mechanism, resulting in the utilization of system memory

resources is not efficiently. In order to solve this problem, we

adopted cross-layer design ideas, took Flash physical storage

characteristics and the features of Java Card object allocation

into consideration, designed the generational adaptive

mark-sweep-copy garbage collection algorithm for Java Card.

In this paper we use small part of RAM resource, effectively

reduced the number of write operation of Flash, and provide a

good balance of wear and then prolong the life of the Flash. The

Algorithm of the garbage collection significantly improved the

system performance.

Keywords-component; mark-sweep-copy;Flash; Object

allocation; wear balance; Java Card

.

I. INTRODUCTION

Java language allows programmer to explicitly allocate

memory resource without consideration the recycle and

release work of memory, this task is automatically

completed by The Java Virtual Machine Garbage collector.

Java Card, by contrast, has not explicitly stipulated and

presented the memory recycle and release in the technical

specification, so need designer to design project with the

actual situation. In this paper, according to the Java Virtual

Machine requirement of realistic pictures, by adopting the

idea of cross-layer design, integrated flash physical medium

and the features of distribution of Java Card Objects,

designed Java Card garbage collection generational adaptive

tags-cleaning-replication algorithm. Algorithm that takes up

a little bit RAM Space and fully takes the characteristic of

the Flash into account, can effectively detect and recycle the

garbage objects in system, implement memory fragments

remove, increase the Java Card virtual Machine execution

efficiency, and by reducing the operation to Flash to provide

good balance of wear and prolong the service lift of the flash.

.

II. MEMORY ALLOCATION AND OBJECT MANAGEMENT

A. Memory Allocation

The Java Card Storage structure consists of ROM, RAM

and FLASH. In Java Card system the code section of JCRE

(JCVM, API class and other software) resident in ROM,

Applet programs also storage in ROM. RAM as temporary

data storage, the stack and heap allocated from the RAM in

system running time besides the middle results, local

variables and some native methods such as encrypt

algorithm generated final and middle results. Permanent data

and download Applet Class resident in non-volatile flash

memory. Java Card system memory structure shown in

Figure 1:

F

l

a

s

h

Permanent

data

storage

area

Java Stack

Temporary array

Transaction buffer

Stack memory

Page buffer

R

A

M

...

Figure 1： Java Card storage allocation structure

In Java Card System, memory is very limited, so Java

Card creates application instance and related data by new

operation code that storage in flash memory. In the Java Card

technologies at these days, RAM usually is use to storage

temporary and process methods invoking, and on the other

hand, still need to keep permanent data into flash memory

when power loss. Java Card has special command to

allocation memory in flash for Java instance objects, and

Java virtual machine automatically recycle memory space is

not same, if no reference directed to the data that resident in

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

© 2014. The authors - Published by Atlantis Press 699

flash, there has not any command to release the allocated

space, then Java card virtual machine would be allocated

some garbage data in flash memory. So the Java Card, in

deed, needs garbage collection algorithm to deal with the

memory space recycle.

B. Java Card Objects Management Architecture

Thanks to the need of balance of Flash wear, Java Card

Objects need flexible methods to move, and avoid writes

frequently on a flash area lead to the flash block rapidly loss

of work. So in the Java Card object management, does not

directly address pointer is adopted to improve the

positioning of an object, but the table structure, by the object

management list, all the object's address and references.

The object management list is a pointer array, save in the

fee volatile area. The contents of the array is the physical

address of each object, and the array index is the reference

object. Object reference zero in Java Card system used to

represent a Null reference (Null), and the table of the object

management list number starting from one. Get an object

reference, the address of the object is obtained by a lookup

table command can be directly. To be able to access the

object.

Reference Address

…

0X0034

...

0X401024

ObjectTable

Object Fields

Object Header

Persistent object

Figure 2: The Java Card object management system

Java Card object's physical address is just at the time of

access objects used by the virtual machine, when show

exclusive relationship all use object references. In Java Card

specification use 16 bits to define a application, therefore

Java Card can hold at most 2 ^ 16 – 1 objects that presented

space is large enough for Java Card. In each object head, and

holds a pointer to the object of the class reference, can

generate the class of the object, through the reference saved

the size of the object instances in the class, as well as the

reference domain starting position and number, the garbage

collection algorithms in system can be determined through

object domain traversal of the object reference. Therefore, in

the garbage collection algorithm design can through for the

object's viability detection that distinguished from active

object to garbage objects.

III. DESIGN OF GARBAGE COLLECTION ALGORITHM

Garbage collection algorithm is divided into object

detection and garbage collection, the garbage detecting

algorithm testing objects viability to distinguish whether an

object should be recycled. The traditional garbage detection

algorithm is reference counting and reference tracking. But

the reference count is difficult to solve the problem of

reference each other, and therefore not applicable Java Card

system; And reference tracking algorithm of recursive

operation for Java Card system of RAM resources limited is

a test, so this article design a garbage detection mechanism

based on bitmap.

A. Garbage Detection Based on BitMap

RAM with fast ability to read and write in Java Card

memory space, so this paper in the garbage collection phase

allocated one unused area in virtual machine stack is used to

create tag bitmap. Bitmap need space and system of the

largest number of objects, because the object reference

indexes corresponding with the object management list, and

the biggest object reference not more than 1000, so can

link the object with the serial number of the bitmap. We, at

first, through a BitMap detect stack space, the virtual

machine by the stack pointer to the top of the stack refers to

the space between Stack_END is divided into three regions,

followed by the virtual machine implementation of the

bytecode space, the space that save the BitMap and deposit

delay processing table space of Java Card. That shown in

Figure 3.

...

ByteCode

Defer table

sp

Base

BitMap

End
Figure 3: Java Card garbage detection algorithm mark bitmap

Because of the limitation of chip physical space can't in

the limited system pace for deep JCVM garbage detection

recursive algorithm. So we use the specified depth of

recursion marking method, when you arrive at a certain

depth, algorithm will be treated as the current object

reference in a delayed treatment in the table, in the depth of

the recursion meet again when recursive tag on this object. In

BitMap, the length of the delay treatment table by the biggest

free space in the stack and jointly determine the size of the

BITMAP, in this paper, the system delay processing of the

set table for eight, in order to improve the efficiency of

garbage collection. Due to the limitation of system resources,

we recursion depth not more than 3, if more than 3, then we

will defer the current object into the Defer table. Garbage

detection algorithm flow chart shown in Figure 4.

700

Set reference

in BitMap

Initialize BitMap and

defertable

Item in

applet_table,sta

ck?

Reference in

item?

yes

no

yes

Set exceptionflag

=false

Reference in

objectTable?

markChild(ref

erence)

yes

no

Reference in

DeferTable?

no

markChild(ref

erence)

removeInTabl

e(reference)

yes return

no

Figure 4: mark algorithm structure chart

So when it marks that directly mark the root object then

traverse the entire object table, if an object is the active

object, then the recursive tag sub-objects, when the object

reference number in the current mark in the front of the

object, then for child objects are recursive tag; If the child

object references in the back of the current object reference,

so we just marked, when then traverse to the child object to

in-depth recursion; If child objects have been marked, then

skip this child objects. Through this process can mark all the

active objects in heap space. System will to recursion all

object that tags, when running to that object, to mark its child

objects, so that we can in a cycle effectively

complete recursive calls of all child objects. After the current

object recursive tag 3 layers, if delay object table is not

empty, you can recursively tag delay object in the table,

when after the completion of the delay object table tag, tag

algorithm is restarted. Because before has marked the part of

the tag does not need to begin from the root object, thus the

recursion depth has a lot to reduce than last time, thus the

object which last so can smoothly in the tag. End tag after as

well as the completion of the garbage detection algorithm,

the system can use the tag bitmap to separate active objects

and garbage objects. From the bitmap marking can get object

reference number. Reference number can be used to get the

object's physical address, which can perform garbage

collection strategies of the system.

B. Garbage Collection Policy

According to the characteristics of the Java Card and the

features of Flash, Flash objects can be divided into two

generations, the current distribution of objects in the frame

for the new generation, and other objects in the frame of the

old generation. Under the new generation of frame, if

launched the garbage collection algorithms, the algorithm

only marked-clear. Page frame in the new generation is full,

the system automatically start garbage collection, performs

the mark-replication algorithm, the current page frame

survived several garbage collection active objects is copied

to the old generation, the current page will be marked failure,

and be erased by the sector. Within the page frame, page

distribution carried out in accordance with the First principle

of (First-fit), starting from the current page frame, if found

the first to meet the requirements of distribution of

continuous space cease to search. The use of a new

generation of page frame must keep the frame number of the

page in order, that is to say, the old page frame in the next

will be used as a new generation, which the old generation of

objects in the frame can be tight replication, eliminate the old

generation of fragments, but also provides the old generation

takes up the Flash page frame wear balance.
1

7

A B A B

10 11

17

23

25

1 10 11

17 23

16

16

7

25

Figure 5. Garbage replication algorithm execution before and after

In Figure 5, initial frame A to the current old generation

page frame, B as A new generation of page frame. The

distribution of the object in B frame in accordance with the

principle of adaptation in the first time. If B frame under the

top and start the garbage collection algorithm, then performs

the mark-cleaning the algorithm, the active object tags in

memory, and later, at the end of the tag that garbage object

will be removed from the system. If B frame can't meet a

new object allocation request, so that is to say B frame is full,

the system starts the garbage collection algorithms to

perform the tag-replication algorithm. Page frame B

cleaning experience several garbage collection marks, form

the active object to the left as shown in figure 5. Current need

to assign an eight page length for an object, and the new

generation can not meet the requirements, thus system

startup garbage collection, use the tag-replication strategy,

first determine the activities in the tag in the bitmap memory

objects, the current active object for the next system start

replication strategy, you need to copy active objects in

current page frame to the old page frame, the current old

frame is A, in the old generation distribution also uses the

first adaptation principle, the new generation of each object

is copied to the old generation page frame in order to save.

Through to the success of object replication, page frame after

the copy of the situation of the active objects as shown in

figure five on the right, thus marking-sweep algorithm can

efficiently collect the garbage objects in the page frame, but

will form debris inside the page frame. Tag-object

replication algorithm can effectively use generational

features, will be through a lot of garbage collection

long-lived objects to reproduce, eliminate the long-lived

objects between pieces, efficient use of Flash resources. For

wear and balanced, the tag-copying algorithm, the whole

frame of object is copied to the new page frame, when the

page frame A saved the oldest object, and may form some

pieces in multiple garbage collection. Tag-replication

algorithm starts, sets the page frame H to the old generation

page frame, and A active objects are copied to the H, finally

release the frame of A new generation, A free and become

the current old generation page frame.

701

C. Algorithm Analysis

Because the system always has a complete spare frame, it

ensures the tag-replication algorithm can run smoothly, but

after using this algorithm Flash utilization rate in the project

limit is 87.5%. Would actually be more small, in order to

avoid system at high load time memory allocation

disequilibrium, adaptive adjustment algorithm according to

the load, when the Flash utilization rate more than 80%,

degradation of tags-cleaning algorithm, in addition to the

current the latest old generation page frame, use the first

adaptation in the global method to allocate resources; When

Flash utilization rate as low as 75%, system will again start

mark-replication algorithm.

Because the Flash of utilization rate is low, a new

generation of stored in the original object is less, so can

allocate more objects, so the new generation space was soon

exhausted, which leads to frequent tag replication process. In

order to avoid excessive duplicate action, we set the 80%

mark-replication algorithm stop threshold, Flash utilization

rate than the threshold, the degradation of tags-cleaning the

garbage collection algorithm. At the same time set up the

75% mark-recovery of replication algorithm threshold, when

the Flash utilization rate is lower than the threshold, garbage

collection algorithms to restore tag-copy.

The time characteristic of the Flash system is Write

sensitive, the system starting in the early stage, Flash objects

in less, write less time-consuming and less garbage

collection algorithm execution times. In subsequent

applications, the system objects are created, use and remove,

at the same time. about 5% system objects will perform

frequent write operation, the utilization rate of the system

was between 30% ~ 50%.Through for the write operation

time of the Flash system, we find that the write operation

takes uniform and smooth, the write operation time was good

capitation to every sector of the Flash, thus make Flash

system has good wear balance ability.

IV. CONCLUSIONS

Classic garbage collection algorithm has been introduced

in this paper, analyzes the JCVM storage structure and object

distribution, was proposed based on adaptive generational

type tag-cleaning-copy of the Java Card garbage collection

algorithms, the algorithm designed combined with the flash

medium physical characteristics and the requirement

features of Java Card, make whole Java Card to achieve

optimal performance. Through example analysis, the

algorithm implementation good Java Card garbage

collection of an object, good for Flash improves the wear is

balanced, will write the number of times and time sharing in

Flash each page frame, page also raised its balanced ability

and better efficiency.

REFERENCES

[1] IM Y. JUNG, SUNG I. JUN, KYO I. CHUNG. A Persistent
Memory Management in Java Card . WSEAS Transactions on
Systems. Vol. 2, no. 1, pp. 160-165. Jan. 2003.

[2] A.J.R. Aendenroomer and S. Huang. Dynamic Flash-memory
Allocation for Smartcards: how to cope with limited space (in a short
life). IEEE Conference Publications.2007, Page(s): 835 – 840.

[3] Cap, C.H.; Maibaum, N.; Heyden, Lars. Extending the Data
Storage Capablities of a Java-based Smartcard. IEEE Conference
Publications. 2001 , Page(s): 680 – 685.

[4] Sun Microsystems, Inc., Virtual Machine Specification, Java
Card™ Platform, Version 3.0.1, Classic Edition. May, 2009.

[5] Sun Microsystems, Inc., Java CardTM 2.2 Runtime
Environment (JCRE) Specification, June, 2002.

[6] Ding Yu-Xin, Cheng Hu. Implementation of the precise Garbage
Collection For Java Virtual Machine. CHINESE
J．COMPUTERS[J]．1999,22(11) :1228-1232．

[7] Zhou Zhiming, Understanding the JVM Advanced Features and
Best Practices. China Machine Press. 2011-06．

[8] Guang Hu, Zhilei Chai, Shiliang Tu. Memory access mechanism
in embedded real-time Java processor. Computer and Automation
Engineering (ICCAE), 2010 The 2nd International Conference on[C].
2010 , Page(s): 786 – 790.

[9] ZHANG Shi-jun, GAO Shu, Improved Garbage Collection
Algorithm for Incremental JVM, Computer Engineering[J]. 2012-01.

702

