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Abstract 
The classification algorithm presented in this paper 
consists of Offline and Online Membership Functions, 
named as OOMF. They cooperated with each other to 
provide qualified class label of confidence. The offline 
membership function is derived from decision 
functions yielded by a weighted SVMs approach 
(WSVM). The online membership function works in 
the scenario where offline membership function is of 
low discrimination. And it is designed by a new kNN 
(NkNN) that is encoded with a class-wise metric. 
Some strategies bring computational ease: hyper 
parameters concerned are tuned context-dependently; 
training dataset is reduced by a tuning support vector 
clustering (TSVC); and working set of NkNN is 
pre-specified. We describe experimental evidence of 
classification performance improved by our schema 
over state of the arts on real datasets.  

Keywords: Offline and online membership function, 
SVM, Weighted schema, Parameter tuning 

1. Introduction 

Common fuzzy classifiers predict data label according 
to membership functions [1]. Its flexibility to assign 
data belonging to multi classes with different degrees 
makes this kind of methods popular in many 
applications. But much priori knowledge is required to 
define traditional membership functions (MFs). This 
paper proposes a framework by combining offline 
MFs and online MFs (OOMF). These two types of MF 
are constructed by two hard classifiers, with aim to 
take advantage of their well-founded analysis 
procedure to improve classification accuracy. The two 
hard models are WSVM and NkNN, stemming from 
1-vs-r SVMs [2]-[3] and kNN [4]. WSVM modifies 
SVMs into a weighted version, and weights of basic 
classifiers are integrated with decision function values 
to define offline MFs. NkNN explores query’s 
neighborhood under the guidance of a class-wise 
metric. This metric is derived from SVM decision 
interfaces; for they hold most dicriminant direction 

along which data are well separated. For a query, it is 
tested by offline MFs firstly. If the decision is not 
confident sufficiently, the query will be addressed by 
online MFs. Online MFs are developed by integrating 
neighborhood size and distance from query and class. 

OOMF uses some strategies to save computation. 
Firstly, dataset is reduced by a Support Vector 
Clustering (SVC) [5]. But in this paper Kernel scale of 
SVC is tuned adaptively, so named as TSVC. Secondly, 
hyper parameters concerned with support-vector 
procedure are learned from data context. Thirdly, a 
heuristic is presented to specify the size of the 
neighborhood where NkNN works. Experiments on 
real datasets demonstrate the better performance of 
OOMF over the state-of-the-art fuzzy classification 
methods and other popular classification approaches. 

2. Related Knowledge 
Firstly, we review SVM. For l samples: (x1, y1), (x2, 
y2)…(xl, yl) sampling from X×Y,  where X = Rn, Y = 
{1, -1}. The optimal classification interface is 
determined by: 
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The orientation vector α  and offset vector b are 
obtained by optimizing: 
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Points with 0 i svmCα< <  are nbSV. bSV is 

points with i svmCα = . 
k nearest neighbor (kNN) finds query’s k nearest 

neighbors and predicts it as the most frequent one 
occurring of neighbors. This paper uses it to deal with 
the case that memberships of all classes are below some 
threshold. 

Then it proceeds to SVC. It finds the smallest 
hyper sphere containing all data. The produced nbSVs 
form cluster contours. It corresponds to below 
optimization: 

t
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3. OOMF Schema 
For the M-classification problem, OOMF does: 

1) Reduce training dataset using TSVC; 
2) Create SVMs and confidence weights {βIA}; 
3) Define offline MFs: hj (j = 1…M) based on 

SVMs decision functions and {βIA}; 
4) hmax = max { hj }; 
5) hsec = second-max { hj }; 
6) If    (hmax – hsec) < ε 
7)       Formulate class-wise metrics; 
8)       Create online MFs hj with NkNN; 
9) Else label(q) = hmax (q); 
The decision whether the result of offline MFs is 

confident or not, is controlled by threshold ε, which is 
he difference between its top value of and the second 
value. In this paper, ε is set as 0.3·hmax. 

3.1. TSVC 
TSVC is conducted on each class respectively to 
extract data representatives. Csvc is set as 1. For point x 
TSVC sets its scale factor σx = ||x-xr||. Affinity between 
x and y is scaled by their scale factors’ product, that is: 

2 2|| || || ||
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− −
⋅ − ⋅ −= − = −   (4) 

xr is the rth nearest neighbor of x. For the given r, if 
||x- xr||<|| y-yr||, it means the density of x’s neighborhood 
is denser than that of y. Here, r is set as the max gap in 
the list of distances from x to other points: r = max j 
{d(x, xj) - d(x, xj-1)}. Rows of Euclidean distance matrix 
d(x, xj) are sorted in an ascending order. 

This tuning produces more nbSVs than traditional 
SVC. These nbSVs are located on both boundaries and 
important positions where sharp variance of density 
happens. So an informative sketch of dataset is 
described by nbSVs, which act as data representatives. 
Fig. 1 and 2 show results of the tuning SVC and 
fixed-scaled SVC. 
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Fig. 1: Tuning SVC. 
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Fig.2: SVC with 1/σ2 = 0.537. 

3.2. Offline MFs and WSVM 
Offline MFs are defined during WSVM training 
process. Different from traditional SVMs, where basic 
classifiers are weighted equally, WSVM seeks 
coefficients βIA for basic SVM (class I-vs-r) (I = 1…M) 
to show its decision capacity on class A. Weights of all 
SVMs form a matrix β = (βIA)M×M. Set βII = 1, which is 
natural that SVM (I-vs-r) is absolutely confident to 
declare query’s membership to class I. For point x, it 
corresponds to a series of function values with respect 
to basic SVM (I-vs-r), and these values from a row 
vector: Fx = (f 1(x), f 2 (x)…f 

M (x)), where f I is the 
decision function of basic SVM (I-vs-r). The offline 
MF with respect to class A, hA (x), is developed as: 

( )A x Ah x F β •= ⋅                (5) 
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Weight βIA is designed based on the distance from 

f1 to class A: 
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Exponential mechanism is used to keep βIA stable. 
Minus in I≠A case is introduced to match the negative 
value of f I (x) when x belongs to rest classes except I. 
dis(Center_A, fI ) computes the distance between the 
center of class A and fI, as shown in (8), where 
Center_A is the average of A’s data representatives. 
The first term is the margin of fI, where ||w||I is the 
weight vector of fI. The second term is the distance 
from class center to the nearest nbSV of fI. 
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3.3. Basic SVM Construction 
Tune SVM Kernel scale. Firstly for class I, its Kernel 
scale factor is designed as: 

{|| ||}I rave x xτ = −   with x I∈        (9) 
Gaussian Kernel of SVM I-vs-r sets its scale as: 
2
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Tune penalty parameter individually. This 
paper equips the individual Csvm for each point to 
express its individual demand for slack variable. To 
those outliers or bSVs, they hope a big Csvm to emphasis 
the slack, but to inner-class-points, they need a small 
one to highlight maximum margin. Therefore we set 
Csvm(x) for x in (11). 
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=                (11) 
Check tuning effect. We perform tuned SVM and 

standard SVM on real datasets [6]. Standard SVM sets 
its hyper parameters by 5-fold cross validation. From 
Table 1, tuned SVM gives competitive results with the 
optimal results of standard SVM, while consuming less 
computation time. This indicates the quality of tuning 
strategies. 
 

tuned SVM standard SVMData 
Error(%) Time(s) Error(%) Time(s)

Iris 
(class 1-vs 2, 3) 0 0.672 0 1.108

Iris 
(class 2-vs 1, 3) 4.2 0.702 4.1 1.131

Iris 
(class 3-vs 1, 2) 3.27 0.691 3.26 1.107

Breast Cancer 2.52 3.87 2.41 7.05
Table 1: Classification accuracies and time cost comparison 

on the average of 20 runs. (%) (20% data are randomly 
sampled for training). 

4. Online MFs and NkNN 

4.1. Define Online MFs from NkNN 
NkNN considers sub neighborhood in each class A: 
sNEIA. sNEIA is developed under the guidance of the 
metric customized to A. This metric also helps to 
compute the distance between query and A. Sub 
neighborhood size is taken as class frequency and the 
distance as the weight. Denote the class frequency tA = 
| sNEIA |. Let CdA (x, A) be the distance between x and 
class A, then online MF is defined as: 

1
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4.2. Class-Wise Metric 
Class-wise metric is expected to reveal more of class’s 
intrinsic data features, and consequently produce small 
inner-class distance values and big inter-class ones. 
Another reason to define a new metric is to overcome 
the curse-of-dimensionality that all kNN-based 
methods have to deal with. The new metric is derived 
from SVM decision interface, the byproduct of 
WSVM, which facilitates computation greatly. For 
decision function of SVM (A-vs-r), fA, viewed under 
theoretical light, it is optimal in the sense of structural 

risk minimization. Viewed from geometry light, to 
point x on level curve fA (x) = 0, the gradient vector fA’ 
(x) indicates the perpendicular orientation along which 
data can be well separated over x’s neighborhood. 
That is, fA’ (x) tells the local relevance of input features 
in the sense of identifying class A. 

We probe a representative point PA from class A to 
generate the discriminant direction with respect to A. 
The point closest to curve fA is selected as PA. Clearly, 
PA comes from support vector set, so it can be found by 
following optimization: 

min x  fA (x),      with   x∈A.        (13) 
Denote fA’(PA) = gA = (gA1, gA2,…, gAn,). Then 

magnitude of each component reveals the importance 
of the corresponding dimension when identifying class 
A. Based on this idea, class-wise metric special for class 
A is defined as: 

( , ) ( ) ( )T A
ACd x y x y x yμ= − −         (14) 
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Introduce the center of sNEIA of class A, x(A), to 
yield the distance from x to A: 

( ) ( )( , ) ( ) ( )A AT A
ACd x A x x x xμ= − −    (16) 

4.3. sNEIA Specification 
The investigation of sNEIA is pricy. This paper uses 
the max gap of distance information from query to 
A-class members to set that size. That is: 

1

1
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Here distance list CdA (Q, xj) is sorted in the 
ascending order. Set CdA (Q, x0) = 0, and CdA (Q, x1) = 0, 
then tA tells the number of sNEIA members including Q 
itself. 

5. Experimental Results 
Data SVM1r SVM11 FCM FSVM OOMF

Thyroid 4.37 4.42 4.92 5.14 4.26
Heart 5.76 6.14 5.27 7.11 5.31

Diabetes 11.12 12 10.9 11.2 8.14
Wine 28.4 26.2 27.3 26.5 30.67

Waveform 3 2.6 3.6 3.3 3 
Liver 8.12 8.3 8.2 7.6 7.92

Table 2: Comparison on classification error (%) (30% data 
are sampled randomly for training.) 

 
First six datasets are taken from UCI Machine 
Learning Repository [6]. In Table 2, OOMF is 
compared with two SVM-based classifiers: SVMs of 
1-vs-r version (SVM1r) [7] and SVMs of 1-vs-1 
version (SVM11) [8]; and two fuzzy classifiers: FCM 



[9], and FSVM [10]. These classifiers set hyper 
parameters by cross validation. 

Compared with two SVM-based classifiers, 
OOMF’s improvement is obvious due to its soft 
decision fashion. Two SVM-based approaches are 
competitive. In three of six datasets OOMF achieves 
best result and this behavior is better over two fuzzy 
classifiers, which comes from the employment of local 
MFs. OOMF behaves not so well in Wine dataset, 
because in this set 178 data cover 13 dimensions and 
the neighborhood information is too weak to facilitate 
online MF’s job. For two fuzzy methods, FSVM 
exhibits better behaviors on average. It relies on the 
nonlinear decision interface produced by SVM, while 
FCM depends on regular partition based on Euclidean 
metric, so the lack of adaptation to datasets leads to 
high error ratios. 

Then OOMF is performed on News group [11]. 
This dataset is a compilation of about 20,000 articles 
(email messages) evenly divided among the 20 
categories like religion, politics and sports. We label 
each newsgroup as follows: 

NG1: alt.atheism; NG2: comp.graphics; NG3: 
comp.os.ms.windows.misc; NG4: 
comp.sys.ibm.pc.hardware; NG5: 
comp.sys.mac.hardware; NG6: comp.windows.x; NG7: 
misc.forsale; NG8: rec.autos; NG9: rec.motorcycles; 
NG10: rec.sport.baseball; NG11: rec.sport.hockey; 
NG12: sci.crypt; NG13: sci.electronics; NG14: sci.med; 
NG15: sci.space; NG16: soc.religion.christian; NG17: 
talk.politics.guns; NG18: talk.politics.mideast; NG19: 
talk.politics.misc; NG20: talk.religion.misc. 

We apply tf.idf weighting schema to express 
documents. We delete the stop words and words that 
appear too few times, and then normalize each 
document vector to have unit Euclidean length. Some 
other approaches are considered on the average 
classification error rates of 10 runs: Simple kNN; C4.5 
decision tree [12]; Machete [4], a recursive partitioning 
procedure, where the dimension used for splitting at 
each step is the one that maximizes the estimated local 
relevance; Scythe [4], a generalization and 
modification of Machete method; DANN, an adaptive 
nearest neighbor method [13]; and Adamenn, another 
adaptive nearest neighbor approach proposed in [14]. 
For the clearness of table, these methods are denoted 
as: a) kNN, b) SVM1r, c) SVM11, d) C4.5, e) Machete, f) 
Scythe, g) DANN, h) Adamenn, i) OOMF. We sample 
from some classes to form experiment subsets, and 
these subsets are listed below, where numbers in 
bracket are sampling size. Experiment results are 
recorded in Table 3. 
1) {NG2, NG3, NG4} (300) 
2) {NG2 (150), NG3 (50), NG4 (200)} 
3) {NG6, NG7, NG8} (150) 
4) {NG7 (200), NG8 (150), NG9 (350)} 
5) {NG1, NG2, NG7, NG8} (200) 

6) {NG1 (50), NG2 (100), NG7 (150), NG8 (50)} 
7) {NG7 (100), NG8 (50), NG12 (200), NG16 (50), 
NG17 (100)} 
 

a) b) c) d) e) f) g) h) i)
1) 32.0 30.8 31.9 37.7 33.1 34.4 35.8 30.2 30.2
2) 33.7 30.8 31.2 34.9 31.0 29.0 31.4 31.2 31.2
3) 17.5 16.4 15.9 17.1 15.9 15.3 16.7 15.7 16.1
4) 15.9 15.1 16.3 18.3 16.5 15.2 14.8 14.5 14.3
5) 15.8 13.2 12.9 14.4 13.8 13.7 13.6 12.5 12.6
6) 14.9 13.8 13.9 13.6 13.7 12.6 13.0 13.8 13.6
7) 15.6 12.3 12.3 14.7 12.9 12.0 11.6 12.5 12.2

Table 3: Classification error comparison on News Group (%) 
 
From Table 3, it finds that in the subsets where 

class boundaries are not distinct, like {NG2, NG3, 
NG4}, {NG8, NG9, NG10}, OOMF shows a unique 
good job among its peers. This is attributed to the 
contribution of local MFs to identify data’s label 
context-dependently. In the subsets where class 
boundaries are distinct, OOMF yields steady and 
moderate results and usually its result follows 
secondly the optimal result. Here, SVM1r does a better 
job than SVM11. C4.5 and Machete work poorly in 
some sets due to their greedy idea. Scythe modifies the 
greedy nature used by Machete and thereby achieves 
higher accuracy. DANN work well, but the metric it 
employs approximates the weighted Chi-squared 
distance, which will causes its failure in datasets of 
non-Gaussian distribution. Adamenn works well in 
most cases, but it requires huge cost to tune six 
parameters. If cost is considered, OOMF is a fine 
choice. 

6. Conclusions 
A fuzzy classification algorithm OOMF is described in 
this paper. Its offline MFs are defined by WSVM. 
WSVM modifies SVMs schema by equipping basic 
classifier with decision weights, which are integrated 
into decision function to form MFs. If the offline 
model presents poor confidence, the online MFs are 
created by NkNN. NkNN also use a weighted strategy 
to do label assignment. The neighborhood where 
NkNN works is formulated under the class-wise 
metric that is derived from SVM decision function. 
Training dataset size is reduced and hyper parameters 
are learned data-dependently, which bring 
computational benefit. Experiments on real datasets 
evidence fine performance and efficiency of OOMF. 
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