
The Study on Capacity Enhancement of

Distributed Systems Cloud Services

Xueping Liu
1,2

1 Engineering Training Center

Shenyang Aerospace University

Shenyang, China

2 College of Automation Engineering

Nanjing University of Aeronautics and Astronautics

Nanjing, China

liuxueping024@163.com

Ji Wang

Dalian information center of the fiscal and taxation

Dalian, China

czj_wangji@dl.gov.cn

Abstract—With the Number of users in distributed systems

clouds rapidly growing every day, increased workload, data

and network traffic are seen in the clouds. The SNP (social-

net processor) part would become the bottleneck probably as

it interacts with social-net providers super frequently. This

need to be evaluated pro-actively and coped with before the

whole cloud gets crashed due to the huge increased burden.

Adding new cloud with additional hardware and equipments

is a way but quite costly. As a more practical approach,

optimizing existing system to lift the capacity will be

extremely beneficial. This involves improving parts of system

infrastructure and workflow, fully utilizing cloud resources

and balancing the cooperation among components such as

SNP, Core Service, DB, Memcache etc. problem

identification, performance or capacity modeling, solution

design and implementation, and change impact assessment

are the main work-streams.This paper will detail the useful

principles and proven practices applied to the optimization.

Keywords—fuzzy face; low-quality images; shape features;

ASM method

I. INTRODUCTION

Cloud Services is a group of mobile internet services
provisioned to market[1,2]. With the number of user
rapidly increasing, we used to continuously setup new
clouds by purchasing hardware and equipment to
accommodate them[3]. More than 100 production cloud
physical server is currently a few K.This is too costly on
application servers, data storage equipments, network, data
center space, power and operation engineers[4,5]. In order
to reduce cost, we initiated the Capacity Enhancement
Project to increase our single child cloud’s
capacity[6].Currently, Cloud Computing is prevailing, it
does provide IaaS(Infrastructure as a Service) solutions to
reduce cost and enhance capacity by increasing the
efficiency of hardware resources[7], but it require
relatively more bigger effort, so it is a long run candidate
solution. In current phase, we only focus on increasing the
capacity by improving the application level[8], mostly
from current application architecture, design,
implementation aspects[9].

For any system, system optimization implements Use
Cases by its internal components collaborating[10]with
each other.

The division of components is System Structure.
The collaboration of components to implement an Use

Case is System Behavior.
System’s capacity can be quantified as the maximum

load that can still keep KPIs(Key Performance Indicators)
normal.

Software system structure domain model and System
optimization model are as follows:

Figure 1. Software System Structure Domain Model

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

© 2014. The authors - Published by Atlantis Press 761

Figure 2. System Optimization Domain Model

II. RELATED WORK

To do system optimization, firstly, we need to profile
current system status, including request counts, response
time and resource consumption. After that, we can setup an
optimization target based on current system status, the
capacity and performance we can accept. Then, try to find
the system bottleneck by stress test. Finally, find out the
related solutions to eliminate the bottleneck, reduce system
resource consumption and improve system performance.

Figure 3. System Optimization Activity Diagram

Before system optimization, we should understand
Cloud Services’ main feature:

1) the integration of popular social networks to

android device,

2) enable device users to connect friends more tightly

and socially by keeping the users online of internet,

3) and get SN updates of his or her friends in time,

4) post SN updates such as statuses, photos real time

and interact with friends.
For Cloud Services, to support each user, system will

compute SN statuses, friendfeed, friends, snmail,
comments changes by scheduler syncing,this work bring

the most part load to system.Take Renk users for example,
each user will has 24.2 works per hour for SNPSVC to
do.We also need to profile the each SN types’ change rate.

Figure 4. Renk Users

We realize that Quantify as KPIs under a Load.How to
quantify KPIs, According to System Structure:

System performance can be quantified as a serial of
KPIs as Sub Systems’ KPIs.

Each sub system performance can be quantified as each
Tier’s KPIs.

Each tier performance can be quantified as each layer’s
performance.

As we are focus on doing optimization in the sub
system SNPSVC, so we quantify its KPIs as

Application Tier
Application Layer
Works Submitted/second
Works Completed/second
Works Failed/second
Work Queue Size
Work execution time
OS Layer
CPU User Usage
CPU Load Average
Middleware Tier
MySQL DB
Inserts/second
deletes/second
updates/second
selects/second
KPIs’ normal value:
Works Submitted, Works Completed and Works Failed:

Work Failed number should be no more than 1% of Work
Submitted number.

Work Queue Size: The Work Queue Size value is
discrete, the normal state is work queue size fluctuate in a
empiric value and it is no more than 10 works in usually
case.

Work Execution Time: The normal state is work
execution time fluctuate in a empiric value and it is no
more than 1 sec in usually case.

CPU User Usage: CPU User Usage should be no more
than 65% -- 70%.

CPU Load Average: CPU Load Average should have
no more than 1--3 threads queued per processor.

Find Bottleneck by Stress Test:
In order to find bottleneck, stress test tool is need to

emulate the real load post to system. For Cloud Services,
as it need to use the SN provider’s services, also need to
implement fake SN provider services. In experience, we
found DB is the system bottleneck.

762

Analyze and Find Solutions:
The optimization goal is increasing system capacity, so

we will consider the solutions from below aspects.
1) Eliminate the system bottleneck by reducing DB

load.
2) Reduce system resource consumption.
3) Improve system performance.

III. EXPERIMENTAL RESULTS

A. Eliminate System DB Bottleneck

1) Apply Push Mechanism
To eliminate system DB bottleneck, we checked the

system each tier design, tried to find out if the unnecessary
work stream nodes is exist which can be removed. Finally,
we focus on the interaction between SNP and IWS.

In current system, the work stream of interaction
between SNPSVC and IWS as below.

SNPSVC request changes from Social Network.
SNPSVC store changes into SNP DB.
SNPSVC notify IWS come to get the changes.
IWS request SNPSVC to get changes by querying SNP

DB.
IWS store changes in transfer queue.
IWS response to SNPSVC.
SNPSVC receive the response, update sync-anchor and

last-updated-timestamp, and delete the changes in SNP DB.
We consider that SNPSVC can push the changes to

IWS directly.
After apply “push” mechanism, the work stream of

interaction between SNPSVC and IWS as below.
SNPSNV request changes from Social Network.
SNP push changes to IWS directly.
IWS store changes in transfer queue.
IWS response to SNPSVC.
SNPSVC receive the response, update sync-anchor and

last-updated-timestamp.
In a word, the “push” mechanism remove the

unnecessary SNP DB operations, including insert, query
and delete. It reduces the DB load and improve system
performance significantly.

Figure 5. Sub System Interactions Optimization Effect

2) Use Memcached instead of DB
a)Reduce one work’s execution time, improve the

system performance.
b)Reduce db select operations, make db is not the

bottleneck any more.

3) Remove Unnecessary DB Synchronous Code Block
This reduces the waiting time for DB synchronous

resource, improves DB performance.

B. Reduce System Resource Consumption

1) Prolong Polling Intervals
To reduce system resource consumption, the most

effective way is reducing the number of works in unit time.
So by trade off between cost with Qos, product team
approve the downgrade status, snmail, friendfeed’s Qos
from device user receive status updates no later than 5
mins to 20 mins, receive friendfeed updates no later than
10 mins to 30 mins, snmail's from 15 mins to 30 mins.

This will reduce works per user per hour from 24.2 to
9.2, make system capacity enhance 2.6 times.

2) Apply Suspend Mechanism for Inactive Users
For the users who did not login device beyond 48 hours,

system will set this user to “suspend” state. It means that
scheduler will not sync for this user until the users is
resumed.

This reduce the number of work, so reduce system
resource consumption.

3) Limit the Minimum Intervals between Two Sync-

Now Works of User
Sync now requests are triggered by users from

device. If two continuous such requests come to
servers within short intervals, the second request will
not get updates most possibly. To avoid wasting
resource, the unnecessary second request will be
discarded. Increasing the effective interval values can
be helpful.

C. Improve System Performance

1) Cache SN Provider API Call Result into

Memcached to Reduce SN Provider API Calls

This reduce one work’s execution time, increase

the system’s throughput, works completed number per

sec.

2) Downgrade Log Level to Reduce File IO

Operations
Our system only prints DEBUG level or more higher

level log in log file. So for some unnecessary log, we
downgrade them to TRACE level. This can reduce file IO
operations and reduce one work’s execution time, increase
the system’s throughput, works completed number per sec.

Figure 6. the KPIs’ comparison

From the KPIs’ comparison between “Optimized” and
“Not Optimized”, it can be found that we have eliminated
system DB bottleneck, reduced system resource
consumption and improved system performance, so the
optimization effect is significant.

763

IV. CONCLUSION

System optimization is a very complicated work, it
require analyzing all levels. To make sure high
performance, it require to take actions in nearly every
phases, including requirement phase, design phase,
implement phase, operation phase, and require efforts of
architect, designer, developer and QA and require the
scientific methods.

A. In Requirement Phase

For architect, need to
Define KPIs for performance analysis and monitoring.
Define requirements that log performance analysis and

load model needed data when implement features.
Define requirements that expose KPI as JMX for

performance analysis when implement features.

B. In Design Phase

For architect, need to carefully design the interactions
and interfaces, reduce unnecessary interactions and works.

For designer, when do detail design, DB is always a
bottleneck, we can reduce this bottleneck by using
Memcache to reduce DB operations.

C. In Implementation Phase

For developer, need to
Meet the performance related requirements defined by

Architect.
Make sure the implementation code is high efficiency.
Comply with the rule that use cache instead of
DB if needed

D. In Stress Test Phase

Tester will need to first profile the load model, make
sure the model is close to real case and scenario and make
a stress test tool to do stress test.

REFERENCES

[1] JIANG Wei-yin,LI Bin,LING Li, “Research on Data Consistency
and Concurrency Optimization of Distributed System,” China.
Computer Engineering,2012(2),vol.38,No.4.

[2] Sotomayar B,Montero R S, Lorente I M,et al.,“Virual
Infrastructure Management in Private and Hybrid Clouds[J] ,”
IEEE internet Computing,2009,13(5):14-22.

[3] Jaechun N. Data Consistency Protocol for Distributed File
Systems[C],Proc. of Conf. on Intelligent Data Acquisition and
Advanced Computing Systems:Technology and
Applications.Rende, Italy:[s.n.],2009.

[4] Choi Sung-Chune,Choi Min-Seuk,Lee Chun-Kyeong,et
al.Distributed Lock Manager for Distributed File System in
Shared-disk Environment[C],Proc.of the 10th Int’l Conference on
Computer and Information Technology.Bradford, UK:[s.n.],2010.

[5] Baliga J,Ayre R W A,Hinton K.et al, “Green Cloud
Computing:Balancing Energy in Processing Storage,and
Transport[J]”,Proceedings of the IEEE,2011,99(1):149-167.

[6] Younge A J,von Laszewski G,Wang LI-zhe,et al.Efficient
Resource management for Cloud computing
environmentsw[A],Proceedings of the International Conference on
Green Computing,2010[C].Washington,DC,USA,IEEE Computer
Society,2010:357-364.

[7] Jeffrey Dean, Sanjay Ghemawat Distributed Programming with
MapReduee Beautiful Code,2007,Chapter23.

[8] Wang Z,Tang K,Yao X, “A Memetic Algorithm for Multi-Level
Redun dancy Allocation[J],” IEEE Transactions on
Reliability,2010,59(4):754-65.

[9] Wang Z,Tang K,Yao X, “Multi-Objective Approaches to Optimal
Testing Resource Allocation in Modular Software Systems[J],”
IEEE Transactions on Reliability,2010,59(3):563-75.

[10] Qiu J, Lin Z, Tang C, et al, “Discovering Organizational Structure
In Dynamic Social Network,” 2009[C],IEEE.

764

