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Abstract—The form invariance and the Lie symmetry are 

defined for Hamilton systems. A relation between the form 

invariance and the Lie symmetry is derived. The Hojman 

conserved quantity is constructed by using the generators of 

Lie symmetry. An approach to find Hojman conserved 

quantities in terms of the form invariance is presented. An 

example is given to illustrate the application of the results. 
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I. INTRODUCTION  

The symmetry of mechanical systems is one of the 
most important subjects in physics, which has been 
investigated for a long time. The symmetry of a 
mechanical system will be useful for integrating the 
equations of motion, since it is closed to invariants of the 
system. The modern approaches of finding invariants are 
mainly in terms of the Noether symmetry, the Lie 

symmetry and the Mei form invariance
[1-3]

. In 1992，
Hojman presented a new conservation law without using 
either Lagrangian or Hamilton solely based on the 
existence of symmetries

[4]
. This direct method has attracted 

much attention
[5-10]

. In this paper, we study Hojman 
conserved quantities by using the Mei form invariance for 
the Hamilton systems. 

II. DEFINITION AND CRITERION OF FORM INVARIANCE 

FOR HAMILTON SYSTEMS 

If the differential equations of motion of a mechanical 
system can be written in the form 
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Then such system is called a lagrangian system. 
Introducing the generalized momentums and the Hamilton 
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Then (1) may be written in the canonical form 
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Where is the Hamilton.introduce the infinitesimal 
transformations with respect to time, generalized 
coordinates and generalized momentums 
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Or their expansion formula 
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Where   is an infinitesimal parameter, , s  and s  

are called infinitesimal generators. Under the infinitesimal 

transformation (5), Hamilton  pq,,tH  becomes 

 
pq ,,tH . 

Definition 1: Under the infinitesimal transformation (5), 
if the canonical  (3) keep their form invariant, 
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Where  

   pq ,,tHH                      (7) 

Then such invariance is called a form invariance of the 
Hamilton systems. Introduce the differential operator of 
the infinitesimal generators 
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Expanding 
H , one has 
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From (6)—(10), the following criterion can be obtained. 

Criterion 1：the infinitesimal transformation (5) is a 

Mei symmetric transformation of the system(3), if and 

only if the infinitesimal generators  , s  and s  satisfy 
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Proof: substituting (10) into (6), using (3), and 
neglecting the higher infinitesimal terms, (11) will be 
obtained. 

 

III. THE HOJMAN CONSERVED QUANTITY FOR 

HAMILTON SYSTEMS 

The basic idea of the Lie symmetry is to keep the 
equations of motion(3) invariant under the infinitesimal 
transformations (5) . For convenience, equation(3) are 
rewritten in following form 
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Where ss pHg  / , and ss qHh  / . 

Definition 2: the infinitesimal transformations (5) is a 
Lie,s symmetric transformation of the system(3), if and 

only if there exist function  , s  and s  that satisfy the 

following determining equations 
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Where  
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In terms of the generators of the Lie symmetry for e(3), 
the following theorem concerning conserved quantities can 
be proved. 

Theorem 1: the system(3) possesses the following 
conserved quantity 
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It is straightforward to show that for any   pq,,tA  
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And substituting (18) into (17) and using (13),we 
obtain 
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Finding the partial differential of (16) with respect to 

t , kq  and kp  respectively, and substituting the results 

into (19), and using  (13),one can get  

         0
dt
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                                          （） 

By virtue of above theorem, one can easily deduce 
following corollaries:  

Corollary 1: the system (3) possesses the following 
conserved quantity 
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And  pq,,t  admits the (16).  

Corollary 2: the system (4) possesses the following 
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And function  pq,,t  admits the (16). 

Corollary 3: the system (4) possesses the following 
conserved quantity 
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And function  pq,,t  admits  (16). 

IV. NECESSARY AND SUFFICIENT CONDITION UNDER 

WITCH THE FORM INVARIANCE IS A LIE SYMMETRY 

From the deductions of  (11) and (13), it can be seen 
that the form invariance is generally different from the Lie 
symmetry. For seeking their relations, the equation (3) 
may be rewritten as follows: 
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Then for the system (3), the determining equations of a 
Lie,s symmetry have new form 
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Some direction calculations yield 
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Equation(29) demonstrates the relation between the 
form invariance and the Lie symmetry. From the relation, 
the following proposition can be derived. 

Proposition 1: for the Hamilton system, the necessary 
and sufficient condition under which the form invariance is 
a Lie symmetry is that the following relations hold 
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Proof: substitution of (11) and (30) into (29) leads to 

  0)1( FX  and   0)1( GX . According to the 

determining (28), we know that the form invariance is a 
Lie symmetry. 

Particularly, if 0 , then the conditions (30) become 
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V. HOJMAN CONSERVED QUANTITY DEDUCED FROM 

FORM INVARIANCE 

The Hojman conserved quantity can be located by 
using the form invariance. 

Proposition 2: For the Hamilton system, under the 
infinitesimal transformation (5), if the infinitesimal 

generators  , s  and s   satisfy (11) and (30), and there 

exists a function  pq,,t   admits the equation (16), 

then form invariance leads to the Hojman conserved 
quantity(15). 

Proof: if the infinitesimal generators  , s  and s   

satisfy (11) and (30), by using proposition 1, we now that 
the generators are also Lie symmetry. And we can 
subsequently obtain the conserved quantity (15) by using 
the theorem 1. 
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Proposition 3: For the Hamilton system, under the 
infinitesimal transformation(5), if the infinitesimal 

generators  , s  and s   satisfy (11) and (32), and there 

exists a function  pq,,t   admits the (16), then 

form invariance leads to the Hojman conserved quantity 
(21). 

Proof: if the infinitesimal generators  , s  and s   

satisfy (11) and (32), proposition 1 means that the 
generators are also Lie symmetrical. Corollary 1 yields 
subsequently the conserved quantity (21). 

VI. AN ILLUSTRATIVE EXAMPLE 

As an illustration of the theory developed in the 
preceding sections, consider the case of a simple degree of 
freedom linear damped oscillator 

     0 qq                                        

First, transform Eq.(33) into a Hamilton system, and its 
Lagrangian is  
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Therefore 
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Eq.(11) leads to  
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It can be easily verified that 

;0,1,0                      

pq 
2

1
,,1                

 
Are toe solution sets of (36). Since the generator (37) 

satisfies the (13), so it is also the Lie symmetry of the 
system (34). However, the generators (38) do not satisfy 
the (13), so it is not the Lie symmetry of the system (34). 
From (16), one has  

0ln 


dt

d
                       

Equation (39) exists a solution  

ppe t    
                   

Inserting (37) and (40) into (25) leads to conserved 
quantity 

ppe
I

t 


 




                  

VII. CONCLUSIONS 

For Hamilton systems, we present an approach to find 
Hojman conserved quantities in terms in terms of the form 
invariance. 
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