
An Improved CoAP Scheme for 6LoWPAN

Networks

Heng Wang

Key Laboratory of Industrial Internet of Things and

Networked Control

Chongqing University of Posts and

Telecommunications

Chongqing, China

wangheng@cqupt.edu.cn

Ping Wang

Key Laboratory of Industrial Internet of Things and

Networked Control

Chongqing University of Posts and

Telecommunications

Chongqing, China

wangping@cqupt.edu.cn

Na Bao

Key Laboratory of Industrial Internet of Things and

Networked Control

Chongqing University of Posts and

Telecommunications

Chongqing, China

georgina0000@126.com

Abstract—CoAP (Constrained Application Protocol) is a

lightweight protocol proposed and standardized by IETF

(Internet Engineering Task Force). It is designed for

constrained environments, such as sensor nodes and sensor

networks. In this paper, we present an improved CoAP

scheme based on 6LoWPAN (IPv6 over Low power Wireless

Personal Area Network) networks. The existing CoAP proxy

mechanism requires a large cache space in proxy endpoints

and is not optimized for large sensor networks. An enhanced

proxy and cache mechanism of CoAP is designed to address

this issue. The proposed mechanism uses query mode of

discovery and significantly reduces the energy consumption

and cache space usage. The cache is a two-dimensional array

that stores resource information and identifiers with same

structure at each line. Moreover, considering the alarm

service widely used in the sensor networks, we also add a

simple alarm method in CoAP to support the transmission of

alarm information. The improved proxy and alarm

mechanisms are implemented and verified in a 6LoWPAN

platform.

Keywords-CoAP; IPv6; wireless sensor networks; proxy;

alarm

I. INTRODUCTION

The use of web services for WSN (wireless sensor
networks) is an important part in M2M applications, such
as smart energy and lighting, building automation. The
CoAP (Constrained Application Protocol) is proposed by
IETF to suit of the REST web services architecture in
constrained environment, for example wireless sensor
networks. CoAP provides a request/response interaction
model between CoAP client and constrained servers.
Similar to HTTP, CoAP supports several key items of the
Web services, such as URIs, method definitions, code

description for responses, Internet media types, and so on.
Thus, CoAP is designed to easily interface to HTTP with
the Web. CoAP is based on UDP, which is quite different
with HTTP that based on TCP/IP. However, CoAP
applications in this transport pattern can easily cause errors
in the process of message interaction. Thus, CoAP
characterizes a reliable transport mechanism by supporting
a simple stop and wait mechanism and defining message
ID field in frame header for message reliable test and
request/response match. Constrained networks such as
WSN often have features of battery power shortage and
cache space limitation. In this case, the sensors in the
network often support a periodic dormancy mechanism.
When a sensor is asleep, requests are disregarded. These
limitations bring lots of inconvenience to the application
developer. To deal with the endpoints sleepy problem,
CoAP characterizes a proxy mechanism. A proxy is a
CoAP endpoint in WSN that can be tasked by CoAP client
or CoAP servers specified in advance to complete on their
duty. These proxy devices may need more battery power to
support being awake all the time. CoAP supports four
methods to perform operations to resources in servers.
Each method is defined along with its behavior, and
cutting from HTTP to satisfy special needs of WSN. CoAP
supports a safe and idempotent method GET, a neither safe
nor idempotent method POST, two unsafe but idempotent
methods PUT and DELETE.

II. 6LOWSN STACK

The CoAP scheme is designed and implemented in our
protocol stack named 6LoWSN (IPv6 over Low power
Wireless Sensor Networks). The hierarchical model of the
stack is made up of 6 layers: the application layer, the
transport layer, the network layer, the adaptation layer, the

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

© 2014. The authors - Published by Atlantis Press 847

javascript:void(0);
javascript:void(0);

media access control layer, the physical layer. The CoAP
scheme is designed and implemented in the application
layer of the 6LoWSN. Programming in C language, the
6LoWSN follows the FSM (finite-state machine) model.
Judging by the environment and situation of program, the
behavior of the device is different from time to time. The
FSM model of application layer is described in Fig. 1.

APS_

STATE_

IDLE

APS_STAT

E_COMMA

ND_START LOWSN_SV

C_APS_GE

NERIC_TX

LOWSN_SV

C_APS_GE

NERIC_TX

_WAIT

APS_STAT

E_CS_REQ

_TX_WAIT

1

APS_STAT

E_CS_REQ

_TX_WAIT

2

APS_STAT

E_NWK_PA

SSTHRU

APS_STAT

E_NWK_PA

SSTHRU_W

AIT

Figure 1. The FSM model of application layer.

START

Initialize Proxy

Enter Application

Layer FSM

Packet Received

Parse CoAP Header

Whether to Update

Resource Information

Parse Payload Field

Y

N Run into Callback

Function

Search in Cache for

Line Contains Same

Short Address

Whether

Exists

Y

N

Fist Time to Send

Resource Information and

Search for Null Line

Whether

Exisits

Y

N

Copy Payload to The

Line

Copy to The Line That Contains

The Smallest Cache Age

Write Current Time

to The Start of Cache

Age Field

Whether to Mark A

Warning Information
Y

N

Set Pib.DeviceWarn.

END

Join The Network

Figure 2. The flow chart of resource updating progress.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

0 1 2 3

Short Adrress Reserve Resource data

Attribute

Server

Type

Figure 3. The frame structure of payload field.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

0 1 2 3 4 5 6

Short Address of

Resource 1

Short Address of

Resource 2

Short Address of

Resource 3

Short Address of

Resource 4

Short Address of

Resource 5

Start of Cache Age

Start of Cache Age

Start of Cache Age

Start of Cache Age

Start of Cache Age

Attribute

Attribute

Attribute

Attribute

Attribute

Data

Data

Data

Data

Data

…

Figure 4. The structure of proxy cache.

III. COAP SCHEME

A. Proxy and Cache Mechanism

In an architecture for a constrained RESTful
environment, proxies are divided into "forward-proxy" and
"reverse-proxy", according to different functions. The
CoAP client usually selects forward-proxies itself and
entitles them the authority of clients. The reverse-proxy is
set in WSN and stands in for servers.

A lightweight proxy and cache mechanism is
optimized based on the original proxy function in CoAP.
The proxy acts as a "reverse-proxy", and periodic receives
and caches resource information from servers in the
network. The resource information is encapsulated in the
payload sent by servers periodically while awake. The
payload structure is described in Fig. 3. The CoAP client
sends operation requests to proxy rather than the servers
when the servers are asleep. Then the proxy receives and
starts to cache the data in payload field of the update
message. The cache is defined a two-dimensional array,
which contains resource information and resource
identifiers with same structure at each line. The cache
structure is described in Fig. 4. We use short address and
the type of servers to identify resources in cache space.
Servers periodically send packet that contains resource
information to specified proxy. The proxy parses each
packet and prepares to copy to the right line in cache. The
first and the second byte of each cache line records the
server short address that act as identifiers in cache of
different servers. The preparation before caching describes
as follows. The proxy parses the packets to see if it is a
resource updating packet. If positive, search in cache for
line that marked with the same short address. If negative,
discard the packet or call the user call back function. If a
resource is first to send update message to the proxy, a null
line is searched for data cache. If a resource is first to send
information to proxy without null line available, a line with
the smallest start value of cache age is searched for data
cache. This situation means that the cache space has been
filled up. So it is important to adjust the number of proxies
with the network scale. After right location found in cache,

848

javascript:void(0);
javascript:void(0);

the proxy copies the payload to the cache line in the order
describes in Fig. 3 and Fig. 4. At last, to complete the
information data update progress, the MAC timer is
recorded to the cache age field as the start value of cache
age in cache line. The information data update progress is
describes in flow chart in Fig. 2.

START

Receieved Packet

from Client

Parse CoAP Header

Whether to

Operate Cache

Parse Header

Y

N

Run Cache Update Progress

Search in Cache for

Line Contains Same

Short Address

Whether Exists

Y

N
Return Inexist Response

Record Current Time

and Subtract Start of

Cache Age

Judge Freshness

 Freshness = 1

Y

N

END

Parse Cache Line and

Generate Response

Return Warning

Response

Whether to Do

DELETE Operation

N

Y
Received DELETE Request

Delete Target

Return Operation

Succeed Response

Figure 5. The flow chart of resource operating progress.

Further, the reliability of resource information is
measured by a freshness judging model, optimized and
implemented in CoAP proxy and cache mechanism. This
model involves four data: the start value of cache age, the
final value of cache age, the max age defines in progress,
the freshness that judges the reliability of data in cache.
When receives a request from client, the proxy records the
MAC timer as the final value of cache age. Then minus the
final value of cache age with the start value of cache age
and record the difference. This difference is the value of
cache age of the resource information. Then compare the
max age with the cache age, if the max age equals to the
cache age or larger than the cache age, the freshness is set
to be 1. Otherwise, it is set to be 0. The reliability should
be judged by the value of freshness. If the value of
freshness is 1, the data in cache line is regarded as reliable
data. If the value of freshness is 0, the data in cache line is
regarded as unreliable data, which should be deleted in

cache. Then return response to the client according to
operations and freshness judge results. The cache
operating progress is described in flow chart in Fig. 5.

B. Alarm Mechanism

An alarm mechanism is designed and implemented in
CoAP scheme. On the server side, by marking out resource
that over passes threshold range as soon as the updating
packet is sent. On the proxy side, the resource information
is received as warning information being cached and
marked in proxy. This mechanism involves two parts: the
client realizes warning information from proxies, the client
realizes warning information and deals with warning
situation of servers. The progress described as follows.

On the proxy side, regardless of operation methods, the
marked out resource information is first sent back to CoAP
client. Then the CoAP client is able to realize the warning
information as soon as possible. After the alarm response
being sent back, the proxy would delete the marked out
information and clear warning status identifier. The alarm
mechanism in proxy is described in flow chart in Fig. 6.

START

Warning Packet Sent

Parse CoAP header

Pib.DeviceWarn = 1

N

Y

Set Pib.DeviceWarn

END

Copy Server Short

Address to Warning

Payload Response

Pointer Move

Forward (4 bytes)

Whether Same Resource

Identifiers

N Y

Receieved Client

Request

Encapsulating Warning

Response and Send Back to

Client

Delete Warning Resource

Data and Reset

Pib.DeviceWarn

Figure 6. The flow chart of proxy warning progress.

START

Warning Packet Sent

Set Pib.DeviceWarn

Received Client

Request

Whether A DELETE

Request with ‘open’ Option

N

Y
Reset Pib.DeviceWarn

Ignore Request and

Return Endpoint

Warning Response

END
Figure 7. The flow chart of server warning progress.

849

Further measures are developed to this alarm
mechanism on the server side. If a server is marked out for
warning resources, the server is in status of alarm.
Regardless of operation methods, the server under warning
status should first returns a state describe response to client.
If it is not true, via sending a DELETE request with a
‘open’ option value to the server, the client can clear the
alarm. If it is true, via sending a DELETE request that
contains a ‘close’ option value to the server, the client can
dissociated the server with the proxy and the client. Only
by sending a DELETE request that contains an ‘open’
option value to the server could associate the server to the
proxy and client again. The alarm mechanism in server is
described in flow chart in Fig. 7.

TABLE I. DESCRIPTION OF FUNCTIONS VERIFICATION IN DETAILS.

Operation

Object
Example URIs

Response

code

Response

 Payload

Time

Delay

 (ms)

GET

proxy

coap://[aaaa::1147:

00ff:fe00:1699]:61619/

?type=temperature

2.05 Content

<169a>;n="shortaddr",

<169b>;n="shortaddr",

<169c>;n="shortaddr"

217

server

coap://[aaaa::1147:

00ff:fe00:169a]:61619/

.well-known/core

<temp>;n="temperature",

<upper>;n="tempupper

 bound",<lower>;n="temp

lower bound"

172

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/temperature

The current

temperature is

17.4C.

182

POST

proxy

coap://[aaaa::1147:

00ff:fe00:1699]:61619

/169atemperatre

2.05 Content

169a: Fresh

temperature data

is 17.4C.

199

server

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/upperbound

2.01 Created

2.02 Deleted

2.04 Changed

Judged result:

 05C~95C.
195

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/lowerbound

2.01 Created

2.02 Deleted

2.04 Changed

Judged result:

 05C~95C.
187

PUT

proxy

coap://[aaaa::1147:

00ff:fe00:1699]:61619

/169atemperatre

2.05 Content

169a: Fresh

temperature data

is 17.4C.

210

server

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/upperbound

2.01 Created

2.02 Deleted

2.04 Changed

Changed to: 05C~95C. 187

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/lowerbound

2.01 Created

2.02 Deleted

2.04Changed

Changed to: 05C~95C. 192

DELETE

proxy

coap://[aaaa::1147:

00ff:fe00:1699]:61619

/169atemperatre

2.02 Deleted
169a: Temperature

resource deleted.
199

server

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/upperbound

2.02 Deleted
The upper bound

deleted.
190

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/lowerbound

2.02 Deleted
The lower bound

deleted.
186

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/open

2.05 Content

Operate succeed. 202

coap://[aaaa::1147:

00ff:fe00:169a]:61619

/close

Operate succeed. 209

IV. EXPERIMENTAL SYSTEM DEVELOPMENT

A realistic wireless sensor networks based on the
6LoWSN stack testbed have been implemented for our
CoAP scheme. The 6LoWSN is able to simulate sensing
data from the sensors interface, and transfer the sensing
information over 2.4 GHz IEEE 802.15.4 communications
upon the CC2530 hardware platform. The 6LoWSN
software is written in C language, and followes the FSM
model. The Copper (Cu) CoAP user-agent for Firefox
supports a handler for the CoAP URI scheme. It provides
users to browse and interact with IoT (Internet of Things)
devices. We chose Firefox browser equipped with Copper
(Cu) to be the CoAP client. Every sleepy sensor in the
network act as a server endpoint, that contains resources
and supports services. The non-sleepy node in the network
serves as a CoAP proxy endpoint to receive and cache
resources information and servers attribute. The testbed for
CoAP scheme is shown in Fig. 8. The validation is divided
into two parts: function verification and network
performance verification.

Figure 8. A part of the testbed for CoAP scheme.

A. Function Verification

The lightweight proxy and cache mechanism, supports
operation methods of GET, POST, PUT, and DELETE.
The function verification of cache operating details is
shown in Table. I. An example of function verification of
cache data update is shown in Fig. 9.

When proxy received warning information, CoAP
client first returns the warning information including the
short address of the warning server. The function
verification of warning mechanism in proxy is shown in
Fig. 10. The function verification of warning mechanism
in servers is shown in Table. I.

B. Network Performance

The network time delay is an important data to measure
the network interface. Time delay is caused by transporting
messages from one endpoint of the network to another .It
includes sending time delay, transporting delay,
processing delay, and queuing delay. Among them,
sending time delay and processing delay is our main
considerations.

In Table. I, we listed the time delay from an operation
request being sent to a match operation response being
displayed. Judge from the time delay details in Table. I,

Gateway

CoAP Client

CoAP Servers

CoAP Proxy

850

the CoAP scheme we designed and implemented works
well in WSN environment with short time delay. The
6LoWSN has a good network performance.

Figure 9. An example of the lightweight proxy and cache mechanism.

Figure 10. An example of the alarm mechanism in proxy.

V. CONCLUSION

In this paper, we present an improved CoAP scheme
with enhanced proxy and alarm mechanisms. The scheme
is implemented and tested in 6LoWPAN networks. The
proposed scheme has the advantage of low energy
consumption and proxy cache space.

ACKNOWLEDGMENT

This work was supported by the Fundamental and
Advanced Research Program of Chongqing (Grant No.
cstc2013jcyjA40008), the National Natural Science
Foundation of China (Grant No. 61301125), and the Youth
Top-notch Talent Support Program of Chongqing.

REFERENCES

[1] A. Rahman, Enhanced Sleepy Node Support for CoAP:
InterDigital Communications, LLC, draft-rahman-core-sleepy-04
[P], 2013-08-08[2014-04-11].

[2] E. Dijk, Ed., A. Rahman, Ed.. Miscellaneous CoAP Group
Communication Topics: Philips Research, InterDigital
Communications, LLC, draft-dijk-core-groupcomm-misc-05 [P],
2013-09-09[2014-09-12].

[3] E. Dijk, Ed., Sleepy Devices using CoAP - Possible Solutions:
Philips Research, draft-dijk-core-sleepy-solutions-02 [P], 2013-11-
08[2014-05-12].

[4] Girum Ketema Teklemariam , Jeroen Hoebeke , Ingrid Moerman ,
Piet Demeester. Facilitating the creation of IoT applications
through conditional observations in CoAP [J]. EURASIP Journal
on Wireless Communications and Networking, 2013, Vol.2013 (1):
1-19.

[5] Jouni Mäenpää, Jaime Jiménez Bolonio, Salvatore Loreto. Using
RELOAD and CoAP for wide area sensor and actuator networking
[J]. EURASIP journal on wireless communications and
Networking, 2012, Vol.2012 (1): 1-22.

[6] K. Li, CoAP Payload-Length Option Extension: Huawei
Technologies, draft-li-core-coap-payload-length-option-02 [P],
2013-08-16[2014-02-17].

[7] T. Fossati. A Link-Format Attribute for Locating Things:
KoanLogic, draft-fossati-core-geo-link-format-attribute-01 [P],
2013-08-11[2014-04-14].

[8] T. Fossati. Multipart Content-Format Encoding for CoAP:
KoanLogic, draft-fossati-core-multipart-ct-03 [P], 2013-08-
14[2014-04-17].

[9] T. Fossati, P. Giacomin, S. Loreto. Publish Option for CoAP:
KoanLogic, Freelance, Ericsson, draft-fossati-core-publish-option-
02 [P], 2013-08-20[2014-04-23].

[10] Y. Doi, K. Lynn. CoAP Content-Type Parameter Option:
TOSHIBA Corporation, Consultant, draft-doi-core-parameter-
option-03 [P], 2013-08-08[2014-02-09].

[11] Z. Shelby, S. Krco, C. Bormann. CoRE Resource Directory:
Sensinode, Ericsson, Universitaet Bremen TZI, draft-ietf-core-
resource-directory-00 [P], 2013-06-03[2013-12-05].

851

