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Abstract 
Multiwavelets own better properties than those of 
traditional wavelets. In the paper multiwavelet packet 
coefficient entropy (MPCE) is defined through 
combining decomposition coefficient of multiwavelet 
packet with entropy. A novel transient signals 
recognition method based on MPCE and artificial 
neural network (ANN) is proposed. Firstly, the 
appropriate multiwavelet packet decomposition of the 
sampled transient current signal is performed and each 
MPCE of transient current is calculated. Then 
eigenvector of multiwavelet packet of the current 
signal is constructed, and by taking the eigenvector as 
training samples the radial basis function (RBF) neural 
network is trained to implement the transient signals 
recognition. At last the proposed method is compared 
with the means based on traditional wavelet packet and 
ANN. Simulation results show that the proposed 
method is effective and feasible and the recognition 
capability is better than the method based on traditional 
wavelet packet and ANN. 
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1. Introduction 
Detecting and recognition transient signals are widely 
used in power system, such as fault detecting and 
classification, relays protection, power quality 
assessment, fault location, equipment condition 
monitoring, and transient stability analysis. Effective 
classification of transient signal leads to quick and 
reliable transient protection operation. 

Many theories, like wavelet analysis, mathematical 
morphological, support vector machine, have been 
introduced into power system transient signal detecting 
and identifying. Much fruitful work have been gained 
in this field, especially in fault phase selection, power 
quality disturbance, lighting strokes and temporary and 
permanent fault [1]-[2]. However, to the whole power 

system, there are still many issues in recognition of 
certain signals and environments. 

Multiwavelets can own symmetry, orthogonality, 
short support and high order vanish moments; however, 
traditional wavelet cannot possess all these properties 
at the same time. Multiwavelets have been applied in 
power system [3]-[6]. In addition, there is more 
information on low and high frequency with 
multiwavelet decomposition than traditional wavelets. 
Multiwavelet packet is the extension of multiwavelets. 
And it has more high frequency information than 
multiwavelets do. In [7] de-noising and compression of 
fault signals in power system with multiwavelet packet 
has been studied. Multiwavelet packet has been tried in 
image compression in [8]. In [9] multiwavelet packet is 
used to diagnose the fault of gearbox. Multiwavelet 
packet possessing better properties than traditional 
wavelet packet can withdraw more abundant fault 
characteristics.  

A transient signals recognition method can be 
treated as a problem of input-data pattern recognition 
and pattern-recognition problems can be well handled 
by artificial neural networks (ANNs). Recently, ANN 
has gained success in many power applications 
[10]-[12]. Many advantages are inherent in ANNs, 
including the excellent noise immunity and robustness, 
making their use less susceptible to operating 
conditions than conventional approaches. In this paper, 
RBF neural networks are used to identify each transient 
signal. 

According to the feature of different transient 
signals in power system, and thinking about utilizing 
fully the abundant fault characteristics multiwavelet 
packet provides, a novel transient signals recognition 
method based on multiwavelet packet coefficient 
entropy and artificial neural network is proposed. At 
the same time the proposed method is compared with 
the means based on traditional wavelet packet and 
ANN.  



2. The definition of multiwavelet 
packet coefficient entropy 

2.1. Multiwavelet packet 

Wavelets have an associated scaling function )(tφ  
and wavelet function )(tψ , but multiwavelets have 
two or more scaling and wavelet functions. The set of 
scaling functions can be written using the vector 
notation T

r tttt )]()()([)( 21 φφφ L=Φ  , where 
)(tΦ is called multi-scaling function. Likewise, the 

multiwavelet function is defined from set of wavelet 
function as T

r tttt )]()()([)( 21 ψψψ L=Ψ , where r 
means the multiplicity of multiwavelets, and 2≥r . 
Multi-scaling function )(tΦ  satisfied following 
two-scale matrix equation: 
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Multiwavelet function )(tΨ  satisfies following 
two-scale matrix equation: 
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Where kH  and kG  ( ],0[ Mk ∈ , ZM ∈ ) 
are rr ×  impulse response constant matrix. 

The construction of multiwavelet packet is similar 
to wavelet packet. The multiwavelet filter bank 
procedure involves iterating the filtering operation on 
the low pass channel of the filter bank. Just as with 
scalar wavelets, new basis functions can be produced 
by iterating on the high pass channels of multiwavelet 
filter banks too. This new approach combines wavelet 
packet decomposition with multiwavelet 
decomposition. 

Multiwavelet packet in a manner analogous to the 
definition of wavelet packet is defined. 

Let )()(0 ttU Φ=  and )()(1 ttU Ψ= . 
Define 
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From the space decomposition of multiwavelet 
packet, the reconstruction formula is below: 
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Where ∗
kH  and ∗

kG  are respective conjugated 

transpose matrix of kH  and kG . 

2.2. Multiwavelet packet decomposition 

The frame of multiwavelet packet three layers 
decomposition is shown in Fig. 1, where we suppose 
the multiplicity of multiwavelets to be 2. For 
multiwavelet, the choice of pre-processing method is 
one of most important problems. The problem of 
pre-processing methods still exists in multiwavelet 
packet. Multiwavelet packet decomposition involves 
the pre-processing of original sampled signals. 
Different pre-processing methods result in the 
application effect of multiwavelet packet. In [5] the 
optimum pre-processing method of each widely-used 
multiwavelet basis is studied in depth.  
 

 
Fig. 1: Frame of multiwavelet packet decomposition. 
 

As shown in the Fig. 1, the original sampled signal 
is decomposed into signals of eight frequency bands, 
and the signal formation of each frequency band is 
matrix. Compared with traditional wavelet packet 
decomposition, multiwavelet packet can withdraw 
more abundant and refined fault features from original 
fault signals. 

2.3. The definition of multiwavelet packet 
coefficient entropy 

As same as physical entropy, information entropy is 
used to describe uncertainty and complexity degree of 
systems. In recent years, Entropy has gained some 
achievements in power system [13]-[14]. Information 
entropy defined by Shannon may be described as the 
following [14]: 

The uncertainty of any event is associated with its 
states and probabilities. The set of all possible states is 
called sample space X, },,,{ 21 nxxx L . Each piece 

of information ix  has a probability ii pxP =)( , 



10 ≤≤ ip , ∑ = 1ip . The entropy of X is denoted 

by )(XH . 
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When the uncertainty of each event is equal, the 
entropy has max value. The entropy of any certain 
event is zero. Therefore, entropy is the measurement of 
the uncertainty. 

Through i layers multiwavelet packet 
decomposition, a sequence of coefficient matrices 

jis , ( 12~0 −= ij ) are obtained. These matrices are a 
kind of dividing forms of original signals. Then these 
coefficient matrices are transformed into probability 
distribution sequences. These sequences can reflect the 
sparse degree of the coefficient matrices. So the 
transformation formula of coefficient matrices is 
defined as the following: 
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Where  
   )(,, ks mji  is the kth value of sequence mjis ,, ; 

N is the length of sequence mjis ,, ; 
m is the dimension of coefficient matrices, in this 

paper m=1,2. 
Then according to fundamental principle of 

information entropy, through combining multiwavelet 
packet decomposition coefficient probability 
distribution sequences with information entropy 
multiwavelet packet coefficient entropy (MPCE) is 
defined.  

∑
=

−=
N

k
mjimjimji kkH

1
,,,,,, )(log)( εε      (8) 

Where mjiH ,,  is the mth dimension MPCE of the 
jth frequency band of the ith layer decomposition. 

3. Feature extraction based on 
MPCE 

3.1. The model of transmission lines 

The EMTDC simulation model of a 500 kV 
transmission line is set up as Fig. 2. Bergeron model is 
adopted for transmission lines. Parameters are: Positive 
sequence parameters r1=0.035Ω/km, x1=0.424Ω/km, 
b1=2.726×10-6S/km; Zero sequence parameters 
r0=0.3Ω/km, x0=1.143Ω/km, b0=1.936×10-6S/km. On 

this transmission line model there are 11 transient 
signals: 1-phase-to-ground (AG, BG and CG), 
2-phase-to-ground (ABG, BCG and CAG), 
phase-to-phase (AB, BC and CA) and 3-phase (ABC) 
short currents and lightning current. Sampling rate is 
100 kHz. 
 

 
Fig. 2: Model of 500 kV transmission line. 

3.2. The model of lightning current 

The lightning current waveform, which is influenced 
by some stochastic factor, has uncertain amplitude, 
wave front and wave tail, etc. However, investigations 
show that the Heidler function can represent the 
lighting current waveform [15]. 
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Where 0I  is the maximum value of the current, 

η  is correction factor of the current peak, 1T  and 

2T  are time constants determining current rise-time 
and current decay-time, respectively. In Fig. 3 the time 
to front ft  and half peak ht  of a lightning current is 
depicted. In addition, IEC regards 
1.2/50 sμ ( st f μ2.1= , sth μ50= ) as the standard  
lightning waveform parameters in lightning impulse 
experimentation. 
 

 
Fig. 3: Lightning current waveform of Heidler function 
1.2/50 sμ  



3.3. MPCE feature extraction of transient 
signals 

GHM multiwavelet packet with GHM.init [5] 
pre-processing method is adopted to implement three 
layers decomposition of sampled fault currents resulted 
from the EMTDC simulation. Data window width is 

half power cycle of pre-fault and half power cycle of 
post-fault. The MPCEs of each phase current of two 
fault types and normal operation are calculated 
according to (7) (8). They are shown by Table 1 where 
the faults take place at 65% distance of line away from 
bus-bar A at 0.2 second in Fig. 2. 

 
Fault types H3,0 H3,1 H3,2 H3,3 H3,4 H3,5 H3,6 H3,7 

2.6880 2.4270 1.4270 0.1633 2.4641 0.1033 0.9247 1.0497 
Phase A 

2.6896 0.3954 0.0861 0.1525 0.1089 0.1434 0.1587 0.0933 
3.1492 1.3313 0.5431 0.4193 1.0178 0.3616 0.5927 0.7357 

Phase B 
3.1367 0.0339 0.0406 0.2740 0.0603 0.5550 0.0307 0.1778 
3.1384 1.0377 0.5203 0.3639 0.8465 0.3258 0.5359 0.7109 

AG 

Phase C 
3.1177 0.0328 0.0328 0.4131 0.0501 0.5109 0.0220 0.1652 
2.6889 0.5521 0.5724 0.6811 0.4993 0.5570 0.0928 0.1202 

Phase A 
2.7011 0.6680 0.4942 0.6262 0.6354 0.1395 0.3175 0.5999 
2.6784 0.6894 0.6726 0.7421 0.5589 0.6433 0.1319 0.1679 

Phase B 
2.6962 0.5877 0.3750 0.7158 0.6892 0.1949 0.2310 0.6893 
3.1587 0.8941 0.0805 0.0154 0.3269 0.0020 0.0219 0.0801 

AB  

Phase C 
3.1405 0.0036 0.0069 0.0283 0.0047 0.0191 0.0111 0.0427 
3.1621 0.3191 0.0241 0.0113 0.1016 0.0015 0.0066 0.0513 

Phase A 
3.1324 0.0011 0.0051 0.0676 0.0020 0.0191 0.0072 0.0435 
3.1574 0.9173 0.0825 0.0171 0.3285 0.0018 0.0234 0.0752 

Phase B 
3.1303 0.0038 0.0074 0.0665 0.0045 0.0194 0.0106 0.0449 
3.1582 0.9409 0.0852 0.0156 0.3382 0.0020 0.0238 0.0834 

Normal 
operation 

Phase C 
3.1407 0.0039 0.0072 0.0285 0.0040 0.0189 0.0113 0.0426 

Table 1: Each MPCE of the third layer through GHM multiwavelet packet decomposition 
 
According to the Table 1 the MPCEs of fault 

currents are significantly discriminated from the ones 
of normal currents that distributes more evenly, and the 
MPCEs have obvious difference when the faults are 
different. The results of simulation indicate that the 
MPCE can effectively withdraw the transient signals 
characteristics.  

4. Transient signals recognition 
algorithm based on RBF neural 
network 

4.1. RBF neural network 

A typical BP neural network is a nonlinear regression 
technique that attempts to minimize the global error. Its 
training process includes forward and backward 
propagation, with the desired output used to generate 
error values for back propagation to iteratively improve 
the output. However, it is not suitable for certain 
applications such as the real-time control problems. BP 
is limited partly by the slow training performance, so 

RBF neural network was developed instead. 
The RBF neural network is different from BP with 

sigmoid activation functions utilizing basis functions in 
the hidden layer, which are locally responsive to input 
stimulus. These hidden nodes are usually implemented 
with a Gaussian kernel. Each hidden node in a RBF 
neural network has a radially symmetrical response 
around the center vector, and the output layer is a set of 
linear combiner with weights.  

 

 
Fig. 4: Structure of RBF neural network. 
 

The RBF network has a topology of 
one-hidden-layer. The input and output dimensions of 
the network are denoted by nI and nO respectively, and 



nh is the number of hidden nodes. The network 
structure is shown in Fig. 4. Each output node is a 
linear combiner defined by 

∑
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Where 
InRX ∈   input vector;  

In
j RC ∈  RBF centers;  

⋅       denotes the Euclidean norm; 

jiθ      weights. 

4.2. Principle of transient signals 
recognition algorithm 

After signals features are extracted effectively from 
transient signals according to multiwavelet packet 
coefficient entropy, the algorithm of transient signals 
recognition needs to be set up. First, a great deal of 
transient currents under various situations is sampled. 
Each phase current should be implemented N layers 
multiwavelet packet decomposition to. MPCEs of 2N 
frequency bands of the Nth layer of each phase current 
are calculated utilizing (7) (8). Then the RBF neural 
network is trained by constructing these MPCEs as the 
input eigenvector. The trained RBF neural network can 
recognize whether a 1-phase-to-ground, 
2-phase-to-ground, phase-to-phase, 3-phase or 
lightning strokes fault has occurred. In addition, it can 
recognize the normal state. 
 

 
Fig. 5: Transient signals recognition process. 
 

When a fault occurs on the transmission lines, the 
MPCEs of the sampled fault currents are extracted. 
Then by taking the MPCEs as the input vector of the 
trained RBF neural network the result of the fault type 
can be obtained. 

5. Digital simulation 
An extensive series of simulation studies has been 
carried out on the model system described earlier. To 

cover all regions of operating conditions, training data 
and testing data were generated from the system by 
varying: 1）The selected fault inception angles are 
increased in steps of 100 from phase A voltage 
zero-crossing to 900; 2）The fault resistances are 
increased in steps of 50Ω from 0Ω to 300Ω; 3）Fault 
locations are varied in steps of 10% of line length from 
A-end to B-end. And on the simulation model different 
lightning currents are also set. Data window width is 
half power cycle of pre-fault and half power cycle of 
post-half.  

Three methods based respectively on SA4 and 
GHM multiwavelet packet and DB4 traditional wavelet 
packet are adopted to implement transient signals 
recognition. In order to compare conveniently 
recognition capability of the three methods two indices 
are selected: 1) relative error of recognition results; 2) 
variance of recognition results. 

Table 2 shows the recognition results of testing 
samples. Where: the inductive lightning 1 and 2 are 
inductive lightning strokes on the middle and end of 
the line respectively; non-fault lightning 1 and 2 are 
lightning strokes without faults on the middle and end 
of the line respectively; the lightning-induced severe 
fault is lightning strokes inducing severe grounding 
short-circuit (the fault inception angle is 900) on the 
middle of the line; the lightning-induced weak fault is 
lightning strokes inducing weak grounding short-circuit 
(the fault inception angle is 50). In the Table 2 ANN1 
column represents recognition results of RBF neural 
network, which is trained by fault features extracted 
with SA4 multiwavelet packet and balance 
pre-processing [5]. The number of SA4 multiwavelet 
packet decomposition layers is 3, that is to say N=3. 
ANN2 column shows the ones with GHM multiwavelet 
packet and GHM.init pre-processing. The number of 
GHM multiwavelet packet decomposition layers is 3. 
ANN3 column shows the ones with traditional Db4 
wavelet packet, which filter length is equal to the one 
of SA4 multiwavelet packet. The number of DB4 
wavelet packet decomposition layers is also 3. 

As shown in Table 2, recognition capability of 
RBF network trained by fault features extracted with 
SA4 and GHM multiwavelet packet is better than the 
one with DB4 wavelet packet. The main reason is that 
multiwavelet packet can provide more than one fold 
fault features than DB4 wavelet packet for RBF neural 
network, so the trained RBF neural network with SA4 
and GHM multiwavelet packet is more sensitive to 
different transient signals than the one with DB4 
wavelet packet. From Table 2 we can also find that the 
RBF neural network with multiwavelet packet is 
steadier than the one with traditional wavelet packet on 
recognizing different transient signals. 



Testing samples Recognition results  Relative error/% 
Location/% Fault Resistance/Ω Inception angle ANN1 ANN2 ANN3 ANN1 ANN2 ANN3

18 AG 170 0。 1.0518 1.0136 0.9970 5.18 1.36 -0.30 

18 ABC 14 0。 0.9988 0.9989 0.9938 -0.12 -0.11 -0.62 

21 AG 120 12。 0.9819 0.9972 0.9990 -1.81 -0.28 -0.10 

23 AB 22 12。 1.0028 0.9971 0.9871 0.28 -0.29 -1.29 

23 CG 240 19。 0.9702 1.0858 1.0790 -2.98 8.58 7.90 

24 CA 75 19。 0.9966 1.0102 0.9784 -0.34 1.02 -2.16 

27 BG 290 31。 1.0283 0.9569 0.8683 2.83 -4.31 -13.17

33 AB 80 31。 1.0192 1.0555 0.9592 1.92 5.55 -4.08 

35 ABC 5 42。 1.0669 0.9326 1.0650 6.69 -6.74 6.50 

48 CA 0 42。 1.0130 1.0408 0.9984 1.30 4.08 -0.16 

51.5 BG 45 55。 1.0011 0.9635 0.9184 0.11 -3.65 -8.16 

55 AB 63 55。 0.9985 1.0225 1.0070 -0.15 2.25 0.70 

62 BCG 80 63。 0.9866 0.9729 1.0563 -1.34 -2.71 5.63 

67 AG 7 63。 1.0220 0.9826 0.8772 2.20 -1.74 -12.28

Inductive lightning 1 (I=1 kA) 0.9789 0.9863 0.9980 -2.11 -1.37 -0.20 

Non-fault lightning 1(I=3 kA) 1.0222 0.9608 1.0724 2.22 -3.92 7.24 
1.2/50μs 
Lightning 
Current Lightning-induced severe fault (I=50 kA) 0.9192 0.9269 1.1001 -8.08 -7.31 10.01

Inductive lightning 2 (I=3 kA) 0.9861 0.9522 0.9933 -1.39 -4.78 -0.67 

Non-fault lightning 2 (I=5 kA) 1.0128 0.9901 1.0041 1.28 -0.99 0.41 
5/100μs 

Lightning 
Current Lightning-induced weak fault (I=20 kA) 0.9974 1.0849 1.0144 -0.26 8.49 1.44 

Variance  0.0181 0.0380 0.0705 — — — 
Table 2: Recognition results with three methods and comparison. 

 
Fig. 6 shows the comparison curves of relative 

error of recognition results with three methods. We can 
find that the relative error of SA4 multiwavelet packet 
is almost less than ±5%, and the relative error of DB4 
wavelet packet is the greatest in three methods. The 
recognition results of RBF network with multiwavelet 
packet are more precise than the one with traditional 
wavelet packet. 

6. Conclusions 

The paper presents a novel method of transient signals 
recognition based on multiwavelet packet coefficient 
entropy and RBF neural network. The simulation 
results show that the RBF neural network trained by 
multiwavelet packet is able to recognize different 
transient signals correctly under various conditions and 
the recognition capability of RBF neural network 
trained by multiwavelet packet is better than the one 
trained by traditional wavelet. 

 
Fig. 6: The comparison of relative error of recognition results 
with three methods. 
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