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Abstract—This study investigates the numerical simulation 

and theoretical modeling of longitudinal compressive failure 

in fiber reinforced composite materials. Firstly the 

numerical simulation of longitudinal compressive failure is 

conducted. The simulated results show that at one moment 

of the loading, the localized deformation catastrophically 

appears in the material, and in this initiation of the localized 

deformation, the reduction of tangent shear stiffness plays 

an important role. Secondly the theoretical modeling of 

longitudinal compressive failure is implemented. A set of 

mathematical equations is obtained for the deformation of 

composite materials, and the mathematical solution of the 

equations is considered. There exists a state where 

arbitrariness appears in the solution of equations expressing 

deformation of composite materials, and it is indicated that 

the onset of arbitrariness in solution of equations expressing 

deformation of composite materials is closely related with 

the initiation of longitudinal compressive failure, and also 

related with the initiation of narrow localized band in the 

materials. Finally the numerical simulation is conducted for 

compressive failure in quasi-isotropic laminate. The 

localized deformation also appears in the laminate, and the 

simulated deformation of the material agrees with the 

microscope picture of the experimental result. 
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I.  INTRODUCTION 

Composite materials commonly have complex internal 
structures including fibers, matrix, interfaces and 
interlaminar regions, and when precise evaluation of 
fracture strength of the material is conducted, the internal 
fracture process in the materials is necessary to be taken 
into account in the numerical analysis [1]. In recent years, 
composite materials are being increasingly used in several 
industrial fields, and the precise evaluation of mechanical 
response of the material under various loading condition 
and environmental condition increases the necessity in 
design and improvement of industrial products [2]. 
Compressive failure is one of the typical failure modes in 
fiber reinforced composite materials [3-4], and fracture 
strength in compressive failure often becomes one of the 
limiting factors at the design phase of structural elements 
[5]. Not only uniaxial compressive strength but also 
compressive strength at around open holes and post-impact 

compressive strength in the materials are related to the 
fundamental compressive strength of the materials, and 
improvement of compressive strength would be related 
with the increase of the light weight potential of the 
materials. This study investigates the numerical simulation 
and theoretical modeling of longitudinal compressive 
failure in fiber reinforced composite materials. 

II. NUMERICAL SIMULATION OF LONGITUDINAL 

COMPRESSIVE FAILURE 

A. Numerical Model 

Firstly the numerical simulation of longitudinal 
compressive failure is conducted. Finite element method is 
used to simulate the longitudinal compressive failure. Fig. 
1 shows the numerical model of this analysis. The white 
and gray elements in Fig. 1 represent fibers and matrix, 
respectively. The thickness of the ply in y-direction is 600 
μm. The length in x-direction is 1000 μm, and the 
thickness in z-direction is 100 mm. The diameter of each 
fiber is set to 3.5 μm, and the interval of fibers is 11.9 μm. 
The fiber volume fraction of the materials is set to 29.8 %. 
Each fiber and matrix is modeled by two-dimensional plate 
elements. The elements have eight nodes and four 
integration points in order to avoid the shear locking and 
zero-energy mode deformation particularly in plastic 
deformation. The one fiber placed at the center has the 
initial misalignment as shown in Fig. 1. The initial 
misalignment of the fiber is introduced using the sine 
function. The x coordinate of each node is placed regularly 
at the interval of 5.0 μm, and the y coordinate of each node 
is calculated using the sine function. Only the central part 
of this fiber has the misalignment and the other part of the 
fiber is modeled as the straight line. The other fibers are 
also modeled as the straight lines and the fiber axial 
direction is parallel to the x-direction. 

Due to the atomic structure in the inside of the fibers, 
the fibers commonly have the different material property 
in between fiber axial and transverse directions. Here, the 
fibers are modeled by the transversely isotropic elastic 
material. Table I shows the material property of the fibers. 
Carbon fiber AS4 (Hexcel Corp.) is assumed [6]. Matrix is 
modeled by isotropic elastic-plastic material. Commonly 
the compressive failure of composite materials is affected 
by the nonlinear stress-strain relation of matrix, thus in this 
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analysis the nonlinear stress-strain curve of matrix shown 
in Fig. 2 (hardening M) is applied, and the nonlinear finite 
element analysis is conducted. Table II shows the material 
property of matrix. Epoxy resin 3501-6 (Hercules 
Chemical Company, Inc.) is assumed [6]. The quasi-static 
and room temperature environment are assumed in the 
analysis. 

Since the geometrical nonlinearity commonly affects 
the buckling phenomena of the materials, the geometrical 
nonlinear effect is incorporated in the analysis. The 
incremental analysis in the finite element analysis is 
conducted by the arc-length method. In the initial 
increment, the average applied strain to the material in x-
direction is set to 0.002 %. The analysis is conducted until 
the average applied strain 2.0 %. The domain 
decomposition method is applied to conduct the parallel  
 
 

 

Figure 1. Numerical model for longitudinal compressive failure. 

 

TABLE I. MATERIAL PROPERTY OF FIBER. CARBON FIBER AS4 (HEXCEL 

CORP.) IS ASSUMED [6]. 

Elastic modulus in fiber axial direction 225 GPa 

Elastic modulus in transverse direction 15 GPa 

In-plane Poisson’s ratio 0.20  

In-plane shear modulus 15 GPa 

Transverse shear modulus 7.0 GPa 

TABLE II. MATERIAL PROPERTY OF MATRIX. EPOXY RESIN 3501-6 

(HERCULES CHEMICAL COMPANY, INC.) IS ASSUMED [6]. 

Elastic modulus 4.2 GPa 

Poisson’s ratio 0.34  

Yield stress 90 MPa 

 

computing in the numerical calculation. The authors 
produced fortran program for this analysis, and the 
analysis is conducted using this program. 

B. Simulated Results and Discussions 

Figs. 3 and 4 show the simulated results of deformation 
and stress distribution of the material, respectively. 
Simulated results show that in the initial state of the 
loading, the stress concentration occurs in the material 
around the initial misalignment of fiber, and when the app- 

 

 

 

Figure 2. Stress-strain curve of matrix. 

 

 
Figure 3. Simulated results of deformation in longitudinal compressive 

failure. 
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Figure 4. Simulated results of stress distribution in longitudinal 

compressive failure. 

 
lied load is increased, local areas of matrix around the 
stress concentration start to yield, and deformation is 
locally increased. At one moment of the loading, a large 
deformation occurs within a narrow band, and a band of 
localized deformation develops rapidly. This band of 
localized deformation passes across the misalignment part 
of center fiber. As shown in the figures, fibers cause 
bending deformation, and fiber direction is largely rotated. 
Matrix causes shear deformation, and the shape of the 
elements is close to rhombus shape which is rectangle 
shape in initial state. After the yielding of matrix, the 
elastic-plastic tangent shear stiffness of matrix 
significantly reduces, and the shear strain rapidly increases. 
Then the shear deformation of this part of matrix increases, 
and due to the shear deformation of the part, the band of 
localized deformation is formed. The reduction of shear 
stiffness of matrix is the essential factor in the initiation of 
the localized deformation of the material.  

III. THEORETICAL MODELING OF LONGITUDINAL 

COMPRESSIVE FAILURE 

A. Equations Expressing Deformation of Composite 

Materials 

Here, the equations expressing deformation of 
composite materials are compiled. The equations consist of 
motion equation and constitutive equation. The motion 
equation is represented as the following, 

 i

j

iji f
X

P

t

u
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2

0  








 (1) 

where 0  is density, t  is time, iu  is displacement, jX  is 
coordinate at reference configuration, ijP  is the first 
Piola-Kirchhoff stress and if  is external force. The 
nonlinear stress-strain relation of composite materials is 
represented by the nonlinear deformation theory shown by 
Tohgo et al. [8]. 

 εCσ dd comp   

     KCSCCCC
1

1


 mmffmcomp V  (2) 

      ffmmff VV CCSCCK  1   

where σd  is stress rate, εd  is strain rate, compC , fC  and 

mC  are constitutive tensors of composites, fibers and 
matrix, respectively, fV  is fiber volume fraction and S  is 
Eshelby tensor. In order to apply the stress-strain relation 
in (2) in numerical analysis, evaluation of equivalent 
stress of matrix is necessary. The following relation is 
applied to evaluate the equivalent stress of matrix from 
the applied stress in composite materials. 

       σCISSCCCKISCσ
1 dd mmfmmm

11    (3) 

where mdσ  is stress rate of matrix and I is unit tensor. 
Next, the effect of geometrical nonlinearity during the 
material deformation is considered. Here the constitutive 
tensor in spacial description is defined in the relation 
between the second Piola-Kirchhoff stress and the right 
Cauchy-Green deformation tensor. 
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where spa

abcdC  is constitutive tensor in spacial description, 

abS  is the second Piola-Kirchhoff stress and CG

cdC  is the 
right Cauchy-Green deformation tensor. The constitutive 
tensor in material description is represented by the 
constitutive tensor in spacial description as follows, 
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where 
mat

ijklC  is constitutive tensor in material description, 

iaF  is deformation gradient, ijFJ det  is Jacobian and 

Average applied strain 0.10 % 
-8000MPa                 -1000MPa       -140MPa                       140MPa 

Stress in fiber                             Stress in matrix 

 -235MPa                     -205MPa       -4.40MPa                    -4.25MPa 

Average applied strain 1.20 % 
-8000MPa                 -1000MPa       -140MPa                       140MPa 

Average applied strain 1.20 % (Magnified picture) 
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ix  is coordinate at present configuration. Cauchy stress is 
represented by the second Piola-Kirchhoff stress, 
deformation gradient and Jacobian as follows,  

 jlklikij FSFJ 1  (6) 

 

 jlklikjlklikij FSFJFSFJ  11     

jlklikjlklik FSFJJFSFJ 11     (7) 

where ij  is Cauchy stress and ij  is the material time 
derivative of Cauchy stress. Here, the time derivative of 
deformation gradient and Jacobian is   

 kjikij FLF  , iiLJ   (8) 

where ikL  is velocity gradient. Then 

jlklikjlklmkimij FSFJFSFLJ  11     

jlklikmmjmmlklik FSFLJLFSFJ 11     

llijjkikkjikjlklik LLLFSFJ    1  (9) 

where 

     onom

spa

klmnonom

spa

klmn

CG

mn

spa

klmnkl FFCFFCCCS     

pnopom

spa

klmnonpmop

spa

klmn FLFCFFLC   (10) 

op

spa

klmnonpmjlikjlklik LCFFFFJFSFJ 11     

op

spa

klmnpnomjlik LCFFFFJ 1   

op

mat

ijopop

mat

ijpo LCLC
2

1

2

1
   

  kl

mat

ijklkllk

mat

ijkl DCLLC 
2

1
 (11) 

Therefore 

 llijjkikkjikkl

mat

ijklij LLLDC    (12) 

This coinsides with the formulation of Truesdell rate of 

Cauchy stress. Therefore, here the formulation of finite 

deformation is based on Truesdell rate of Cauchy stress. 

Then the rate of the first Piola-Kirchhoff stress is 

represented as follows, 
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where ik  is Kronecker delta. From (1) and (13), a set of 
equations expressing deformation of composite materials 
is obtained.  
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B. Arbitrariness Appearing in Solution of Equations 

Expressing Deformation of Composite Materials 

Equations (14) and (15) are unified to one differential 
equation.  
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where tensor ijklA  is 
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Equation (16) plays a role of governing equation in the 

deformation of composite materials. When the reference 

configuration is taken at the moment of the present time, 

and in the place where the external force doesn’t act, (16) 

becomes as follows, 
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where   is density at the present time. Here, we conduct 
the transformation of coordinate system for this equation. 
Firstly each variable is transformed as the following in the 
transformation of coordinate system. 
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where ax  is the coordinate system after the 
transformation. Then (18) is transformed as follows,  
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Commonly the governing equations for natural 
phenomena do not change their form in the coordinate 
transformation. Next, when the deformation is locally 
isotropic in 2’ and 3’ directions, 2x and 3x  are 
equal to zero, and when the deformation is quasi-static, 
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t becomes equal to zero, which corresponds with the 
case when inertia term is infinitesimal,  then (20) becomes 
as follows, 

 0
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Here, the eigenvalue problem of the tensor 11caA  is 
considered. Using the eigenvalue   and the eigenvector 

cv of the tensor 11caA , the eigenvalue problem is 
represented as 

 ccca vvA  11  (22) 

When the tensor 11caA  has zero eigenvalues, (22) becomes 
as follows, 

 011 
cca vA  (23) 

Multiplying the arbitrary function  1x , 

   0111  xvA cca   (24) 

Then taking the partial differenciation of 1x , 
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x
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This equation means that  1xvu cc
   is one of the 

solution of (21). Since  1xvu cc
   is the solution of (21) 

for arbitrary function  1x , (21) have multiple solutions, 
or the arbitrariness appears in the solution of (21). This 
case causes when the tensor 11caA  has zero eigenvalues. 
When the tensor 11caA  has zero eigenvalues, the 
determinant of 11caA  becomes zero, 

   0det 11 
caA  (26) 

From (19), the tensor 11caA  is represented by the original 
coordinate system of tensor ijklA . 
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Here, we introduce two tensors jn  and aiJ  which express 
the coordinate transformation. 

 
j

j
x

x
n




 1 , 

i

a
ai

x

x
J




  (28) 

Then (26) becomes as follows, 

   1

11 detdet
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Since   0det aiJ , 

   0det ljijkl nnA  (30) 

As the conclusion of this analysis, when (30) is satisfied, 

the arbitrariness appears in the solution of (21) which is a 

specific case of the governing equations for the 

deformation of composite materials. Equation (30) is 

considered as the initiation condition of arbitrariness in 

the solution of the equations for the deformation of 

composite materials. This is interesting because in 

structural mechanics it is well recognized that the 

buckling of the structures is represented by a condition 

where the determinant of the stiffness matrix of the 

structures is equal to zero. 

   0det K  (31) 

where  K is the stiffness matrix. There is a significant 
similarity in between (30) and (31). In the case of (31), at 
the time when the equation has equality, the structural 
instability or the buckling phenomena appear in the 
structures, and the material and geometrical nonlinearity 
of the stiffness matrix play important roles in these 
instability or the buckling. In the case of (30), when the 
equation has equality, the material instability or the 
microbuckling phenomena appear in the materials, and the 
material nonlinearity including the effect of matrix 
nonlinear stress-strain relation and geometrical 
nonlinearity including the effect of fiber misalignment 
play important roles in these instability or the 
microbuckling. In addition, from (17), (30) also becomes 
as follows, 

   0det  ljikjllj

mat

ijkl nnnnC   (32) 

The first term of this equation depends on the constitutive 
tensor of the material, including the elastic and plastic 
property of the material. It is also related with the material 
nonlinear effect. The second term of the equation depends 
on the multi-axial stresses. It is related with the 
geometrical nonlinear effect. The equation indicates that 
the appearance of arbitrariness is related with the material 
property and the multi-axial stresses. The angle of 
microbuckling is able to affect through the variable jn , 
but the width of the band of the microbuckling possibly 
does not affect the arbitrariness condition. It is also 
notable that due to the nonlinearity including the material 
and geometrical nonlinearity, the arbitrariness is able to 
appear, it indicates that the fact that the governing 
equations for the deformation of composite materials are 
nonlinear equations is essential for the appearance of 
arbitrariness. Considering the actual deformation, the 
resultant displacement in the arbitrariness seems to have 
the following formula, 

  cxHvu Lcc  1
  (33) 

where the function  1xHL
  is the Heaviside function. 

Since theoretically arbitrary displacement is allowed, the 
width of the band of microbuckling is able to relate with 
the initial misalignment shape in the material around the 
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area of initiation of the microbucling. When we put the 
tensor ljijkl nnA  as ika , the determinant of (30) is 
explicitly represented in two-dimensional as the following, 

 0det 21122211  aaaaaik  (34) 

In fiber reinforced composite materials, commonly the 
elastic modulus in fiber axial direction has much higher 
value than the value of transverse direction and stress 
value, and because of this, matC1111 has much higher value 
than the other components of constitutive tensor mat

ijklC and 
the components of stress tensor ij , that is 

ij
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mat CC ,1111    matmat

ijkl CC 1111 . Since only 1111A  and 

11a  includes matC1111 , ijklAA 1111   1111AAijkl   and 

ikaa 11   11aaik  . Thus the equation becomes, 
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a  (35) 

Here the vector jn is represented using an angle   as 
follows, 
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Then 22a is represented as follows, 
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From this equation, 
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222222212111 tan matmat CC   

   tan2 1222212122  matmat CC  (38) 

11  is the value of applied compressive stress to the 
material in longitudinal direction. When this applied stress 
reaches the value of right hand side of (38), the 
determinant of (30) becomes equal to zero, and the 
arbitrariness is allowed to appear, which means the 
instability appears in the material and microbuckling is 
able to occur in the actual situations. The value of 11  at 
the time of being equal to right hand side of (38) is 
considered as the critical compressive stress cr  or the 
buckling stress in microbuckling. 
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2222222121 tan matmat

cr CC   

   tan2 1222212122  matmat CC  (39) 

Using elastic-plastic tangent shear modulus ep

LTG , 
transverse tangent modulus ep

TE , in-plane Poisson’s ratio 

12  and 21  and shear stress 12 , the equation becomes as 
follows, 

 


 2

22

2112

tan
1

1













 ep

T

ep

LTcr EG   

                       tan2 1222212122  matmat CC  (40) 

In the case of uniaxial compression and if matC2122  and matC2221  
are close to zero, the compressive strength is 
approximately represented as follows, 

 


 2

2112

tan
1

1 ep

T

ep

LTcr EG


  (41) 

Equation (41) corresponds with the expression for 

longitudinal compressive strength of composite materials 

given by Budiansky [9]. It is indicated that the 

arbitrariness condition in equations of deformation of 

composite materials is closely related with the initiation 

condition of compressive failure of composite materials.  
Moreover, the critical stress value is also represented 

by the properties of fibers and matrix. From (2), 

    
   ep

mLT

ep

m

e

fLTf

e

fLTf

ep

mLT

ep

m

e

fLTfep

m

ep

LT
GSGGV

GVGSGGV
GG






1

1
  

     
     ep

mLTf

e

fLTLTf

ep

mLTf

e

fLTfLTfep

m
GSVGSV

GSVGVSV
G






111

111
 (42) 

where ep

mG  is the elastic-plastic tangent shear modulus of 
matrix, e

fLTG  is the elastic in-plane shear modulus of fiber 
and LTS  is the shear component of Eshelby tensor. When 
the shear modulus of fiber is much higher than the shear 
modulus of matrix ep

m

e

fLT GG  , 

 
  
  e

fLTLTf

e

fLTfLTfep

m

ep

LT
GSV

GVSV
GG






1

1
  

 

















1

1
1 LT

f

fep

m S
V

V
G  (43) 

The Eshelby tensor depends on the geometrical shape of 
reinforcement fibers. Here, two kinds of fibers shown in 
Fig. 5 are assumed. The case 1 in Fig. 5 is the case where 
fibers and matrix have plate shape, and the case 2 in Fig. 5 
is the case where fibers are cylinder solids and matrix 
surrounds fibers. In case 1, the value of Eshelby tensor in  
 
 

    

Figure 5. Two kinds of model of composites. 
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shear component is 1LTS . Then 

f

ep

m

f

fep

m

ep

LT
V

G

V

V
GG





















11
1  (44) 

 
f

ep

m
cr

V

G




1
  (45) 

On the other hand, in case 2, 21LTS . Then 

 ep

m

f

f

f

fep

m

ep

LT G
V

V

V

V
GG























1

1

1

2
1  (46) 

 ep

m

f

f

cr G
V

V






1

1
  (47) 

In addition, the elastic-plastic tangent shear modulus of 

matrix is closely related with the current yield state of 

matrix. From (3), 

 
 

      compep
mLTf

e
fLTLTff

ep
mLT

e
fLTLT

m d
GSVGSVV

GSGS
d ,12

111

1





 (48) 

where 
md  is shear stress rate of matrix and 

compd ,12  is 
applied shear stress rate of composites. When the shear 
modulus of fiber is much higher than the shear modulus of 
matrix ep

m

e

fLT GG  , 

 
   compe

fLTLTff

e

fLTLT

m d
GSVV

GS
d ,12

1



   

  comp

LTff

d
SVV

,121
1

1





  (49) 

   mLTffcomp dSVVd 
1

,12 1


  (50) 

Then considering the integration until the time when the 

significant degradation of tangent modulus occurs, 

   mYLTff SVV 
1

12 1


  (51) 

where 12  is applied shear stress to composites and mY  is 
yield stress of matrix. Generally the fibers have a slight 
misalignment, and this misalignment affects the local 
stress distribution of the material. Considering the 
equilibrium condition of applied stress in between 
misalignment coordinate system and coordinate system 
associated with global fiber direction, 

 12  xyxx  (52) 

 
 










xymYLTffxy

cr

SVV 





1

12 1
 (53) 

where xx  and xy are stress in longitudinal direction and 
shear stress in the coordinate system associated with 
global fiber direction, respectively and   is the 
misalignment angle of fiber. From this equation, the 

relationship of compressive strength with matrix yield 
stress, applied shear stress, and fiber volume fraction are 
represented as the linear relation, and the relationship with 
misalignment of fiber is represented as inversely 
proportional. In addition, the dependency of compressive 
strength for the fiber volume fraction fV  is related with 
the shear component of Eshelby tensor LTS . When fibers 
are plates, 1LTS  and 

 





xymY

cr


  (54) 

When fibers are cylinder solids, 21LTS  and 

 
 






xymYf

cr

V 


1
 (55) 

C. Numerical Analysis for Longitudinal Compressive 

Strength Using Arbitrariness Condition 

Here the numerical analysis is conducted for the actual 
material property using the arbitrariness condition. For this 
purpose, incremental analysis is conducted. As the initial 
condition, stress is set to zero. Then the stress is 
incrementally applied. In each increment, total stress is 
calculated and matrix plastic state is updated. Constitutive 
tensors of fiber, matrix, and composites are calculated, and 
the determinant in (30) is evaluated. When the determinant 
in (30) becomes approximately equal to zero, the 
arbitrariness is assumed to occur, and the microbuckling is 
assumed to initiate. At this increment, the calculation is 
finished, and the applied compressive stress at this time is 
recorded as the material strength or the microbuckling 
stress. For transverse failure modes, failure criteria 
presented by Pinho et al. [10] are applied. The material 
property of carbon fiber reinforced plastics (CFRP) 
AS4/3501-6 [6] is assumed. For strain hardening curve of 
matrix, two kinds of hardening curves M and N shown in 
Fig. 2 are applied and the results are compared. The 
analysis is repeated with changing each one parameter, and 
the results for the relationship between material strength 
and each one parameter are obtained.  

Fig. 6(a) shows the analysis results for relationship 
between compressive strength and the multi-axial stresses. 
The shear stress reduces the compressive strength and this 
relation is approximately represented as the linear relation. 
Tensile and high compressive transverse stress also 
reduces the compressive strength, while under the small 
compressive transverse stress, the compressive strength is 
almost constant. In addition, the dependency of the multi-
axial stresses changes with the change of the strain 
hardening curve. Fig. 6(b) shows the analysis results for 
the relationship between compressive strength and the 
constituent material property. The matrix yield stress and 
fiber volume fraction increases the compressive strength 
and these relations are also close to the linear relation. The 
initial fiber misalignment reduces the compressive strength 
and this relation is close to the inversely proportional 
relation. The dependency of the material strength for each 
parameter almost agrees with the experimental results 
shown in the previous investigations [3-4]. 
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(a) Effect of multi-axial stress 

 

 
 

(b) Effect of material property 
 

Figure 6.  Numerical results for compressive strength in longitudinal 

compressive failure. 

 
 

IV. NUMERICAL SIMULATION OF COMPRESSIVE 

FAILURE IN QUASI-ISOTROPIC LAMINATE 

A. Numerical Model 

Finally the numerical simulation of compressive failure 
in quasi-isotropic laminate is conducted. Fig. 7 shows the 
numerical model of the compressive failure in quasi-
isotropic laminate. The stacking sequence of the laminate 
is [45/0/-45/90]s symmetric laminate. The thickness of 
each ply is 145 μm. The length in x-direction of the model 
is 500 μm, and the thickness in z-direction is 100 mm. The 
diameter of each fiber is set to 7.0 μm, and the interval of 
fibers in 0-degree plies are 10.0 μm. The fiber volume fra- 

 

(a) Numerical model of quasi-isotropic laminate 

 
 

(b) Initial misalignment of fiber 

Figure 7. Numerical model for compressive failure of quasi-isotropic 

laminate. 

 

TABLE III. MATERIAL PROPERTY OF ±45-DEGREE PLIES [6]. CFRP 

AS4/3501-6 IS ASSUMED [6]. 

Elastic modulus in x-direction 61 GPa 

Elastic modulus in y-direction 11 GPa 

In-plane Poisson’s ratio 0.28  

In-plane shear modulus 5.8 GPa 

TABLE IV. MATERIAL PROPERTY OF 90-DEGREE PLIES [6]. CFRP 

AS4/3501-6 IS ASSUMED [6]. 

Elastic modulus in x and y-direction 11 GPa 

In-plane Poisson’s ratio 0.40  

In-plane shear modulus 4.3 GPa 

 
 
ction of the materials is set to 60.0 %, and there are 15 
fibers in each 0-degree ply. Similar to the analysis in Sec. 
II, the initial misalignment of fiber is introduced as shown  

500 μm 

1160 

μm 

y 

x 

Periodic boundary condition 

45-degree ply 

Fig. 7(b) 

Misalignment 

of fiber 

Fiber 

Matrix 

0-degree ply 

-45-degree ply 

90-degree ply 

90-degree ply 

-45-degree ply 

0-degree ply 

45-degree ply 
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Figure 8. Simulated result of load-strain curve. 

 

Figure 9. Simulated results of stress distribution in 0-degree ply. 

 
 

 

Figure 10. Simulated results of deformation and stress distribution. 

 
 
in Fig. 7(b). The periodic boundary condition is introduced 
in both edge of the laminate to avoid the edge fracture of 

the material. The average applied strain in the initial 
increment is set to 0.004 %. In this analysis, in order to 

Average applied strain 0.20 % 

Stress in fiber                             Stress in matrix 

 -550MPa                     -230MPa        -10.0MPa                    -8.0MPa 

Deformation                    Stress in fiber                    Stress in matrix 

  -2000MPa              2000MPa   -140MPa               140MPa 

Average applied strain 1.45 % 

  -2000MPa              2000MPa   -140MPa               140MPa 

Average applied strain 8.5 % 

  -2000MPa              2000MPa   -140MPa               140MPa 

Average applied strain 15.0 % 

 (a) Deformation and stress during damage evolution 

Simulated 

Experimental 

(Microscope picture) 

(b) Comparison with experimental result 
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simulate the bending breaking of each fiber, the fibers in 0-
degree plies are modeled by circle cross-section beam 
elements, and the cohesive elements are inserted in the 
connection of fiber beam elements. When the high bending 
deformation occurs in fiber beam elements, the cohesive 
elements open and the fiber bending breaking occurs in the 
analysis. The fiber beam elements applied in this analysis 
are the Timoshenko type beam elements and have three 
nodes and four integration points. The matrix in 0-degree 
plies and ±45, 90-degree plies are modeled by two-
dimensional plate elements. ±45, 90-degree plies are 
modeled as the homogeneous composite materials, and the 
individual fibers and matrix are not modeled here. The 
material property for ±45 and 90-degree plies used in this 
analysis is shown in Table III and IV [6]. 

B. Simulated Results and Discussions 

Fig. 8 shows the simulated result of load-strain curve. 
After starting the loading, the load response is initially 
close to linear. When the load value increases, there is a 
slight nonlinearity in load-strain curve. The reason of the 
slight nonlinearity is considered to be due to the slight 
rotation of fibers in 0-degree plies during the loading 
because of the misalignment of fibers. Due to the 
misalignment, when the load is applied the fibers in 0-
degree plies slightly rotate, then the average elastic 
modulus of the laminate in x-direction slightly reduces 
during the loading, consequently the nonlinearity causes in 
load-strain curve. When the load value reaches 5.6 kN, and 
the average applied strain is 1.20 %, the load is 
catastrophically decreasing in load-strain curve, and after 
this decrease the load level keeps low level. The maximum 
supported load value in load-strain curve is recorded to be 
5.6 kN.  

Fig. 9 shows the stress distribution in 0-degree ply at 
strain 0.20 %. As shown in Fig. 9, the stress concentration 
occurs around the initial misalignment of fiber in 0-degree 
plies. At strain 1.20 %, the fiber bending breaking initiates 
in 0-degree plies. After the initiation of fiber bending 
breaking in 0-degree plies, the damage gradually develops 
as the applied strain increases, and the final fracture is 
formed as shown in Fig. 10. After the significant load 
decrease in load-strain curve, the load value keeps low 
level during the damage evolution, which is considered as 
the residual strength of the material. Fig. 10(b) shows the 
comparison between the simulated failure and the 
microscope picture observed in the experiment. The 

deformation after the failure of the material in the analysis 
agrees with the microscope picture of the experimental 
result. 

V. CONCLUSIONS 

The numerical simulation model and theoretical model 
for longitudinal compressive failure are obtained. In the 
numerical simulation, the deformation after the failure of 
the material agrees with the microscope picture of the 
experimental results. In theoretical modeling, the critical 
stress value is represented in several forms. The present 
analysis models are applicable for computer analysis of 
material strength. 
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