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Abstract—This study investigates the numerical simulation
and theoretical modeling of longitudinal compressive failure
in fiber reinforced composite materials. Firstly the
numerical simulation of longitudinal compressive failure is
conducted. The simulated results show that at one moment
of the loading, the localized deformation catastrophically
appears in the material, and in this initiation of the localized
deformation, the reduction of tangent shear stiffness plays
an important role. Secondly the theoretical modeling of
longitudinal compressive failure is implemented. A set of
mathematical equations is obtained for the deformation of
composite materials, and the mathematical solution of the
equations is considered. There exists a state where
arbitrariness appears in the solution of equations expressing
deformation of composite materials, and it is indicated that
the onset of arbitrariness in solution of equations expressing
deformation of composite materials is closely related with
the initiation of longitudinal compressive failure, and also
related with the initiation of narrow localized band in the
materials. Finally the numerical simulation is conducted for
compressive failure in quasi-isotropic laminate. The
localized deformation also appears in the laminate, and the
simulated deformation of the material agrees with the
microscope picture of the experimental result.
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l. INTRODUCTION

Composite materials commonly have complex internal
structures including fibers, matrix, interfaces and
interlaminar regions, and when precise evaluation of
fracture strength of the material is conducted, the internal
fracture process in the materials is necessary to be taken
into account in the numerical analysis [1]. In recent years,
composite materials are being increasingly used in several
industrial fields, and the precise evaluation of mechanical
response of the material under various loading condition
and environmental condition increases the necessity in
design and improvement of industrial products [2].
Compressive failure is one of the typical failure modes in
fiber reinforced composite materials [3-4], and fracture
strength in compressive failure often becomes one of the
limiting factors at the design phase of structural elements
[5]. Not only uniaxial compressive strength but also
compressive strength at around open holes and post-impact
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compressive strength in the materials are related to the
fundamental compressive strength of the materials, and
improvement of compressive strength would be related
with the increase of the light weight potential of the
materials. This study investigates the numerical simulation
and theoretical modeling of longitudinal compressive
failure in fiber reinforced composite materials.

II.  NUMERICAL SIMULATION OF LONGITUDINAL

COMPRESSIVE FAILURE

A. Numerical Model

Firstly the numerical simulation of longitudinal
compressive failure is conducted. Finite element method is
used to simulate the longitudinal compressive failure. Fig.
1 shows the numerical model of this analysis. The white
and gray elements in Fig. 1 represent fibers and matrix,
respectively. The thickness of the ply in y-direction is 600
pm. The length in x-direction is 1000 um, and the
thickness in z-direction is 100 mm. The diameter of each
fiber is set to 3.5 um, and the interval of fibers is 11.9 ym.
The fiber volume fraction of the materials is set to 29.8 %.
Each fiber and matrix is modeled by two-dimensional plate
elements. The elements have eight nodes and four
integration points in order to avoid the shear locking and
zero-energy mode deformation particularly in plastic
deformation. The one fiber placed at the center has the
initial misalignment as shown in Fig. 1. The initial
misalignment of the fiber is introduced using the sine
function. The x coordinate of each node is placed regularly
at the interval of 5.0 um, and the y coordinate of each node
is calculated using the sine function. Only the central part
of this fiber has the misalignment and the other part of the
fiber is modeled as the straight line. The other fibers are
also modeled as the straight lines and the fiber axial
direction is parallel to the x-direction.

Due to the atomic structure in the inside of the fibers,
the fibers commonly have the different material property
in between fiber axial and transverse directions. Here, the
fibers are modeled by the transversely isotropic elastic
material. Table I shows the material property of the fibers.
Carbon fiber AS4 (Hexcel Corp.) is assumed [6]. Matrix is
modeled by isotropic elastic-plastic material. Commonly
the compressive failure of composite materials is affected
by the nonlinear stress-strain relation of matrix, thus in this



analysis the nonlinear stress-strain curve of matrix shown
in Fig. 2 (hardening M) is applied, and the nonlinear finite
element analysis is conducted. Table Il shows the material
property of matrix. Epoxy resin 3501-6 (Hercules
Chemical Company, Inc.) is assumed [6]. The quasi-static
and room temperature environment are assumed in the
analysis.

Since the geometrical nonlinearity commonly affects
the buckling phenomena of the materials, the geometrical
nonlinear effect is incorporated in the analysis. The
incremental analysis in the finite element analysis is
conducted by the arc-length method. In the initial
increment, the average applied strain to the material in x-
direction is set to 0.002 %. The analysis is conducted until
the average applied strain 2.0 %. The domain
decomposition method is applied to conduct the parallel
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Figure 1. Numerical model for longitudinal compressive failure.

TABLE |. MATERIAL PROPERTY OF FIBER. CARBON FIBER AS4 (HEXCEL
CoRP.) Is ASSUMED [6].

Elastic modulus in fiber axial direction 225 | GPa
Elastic modulus in transverse direction 15 | GPa
In-plane Poisson’s ratio 0.20

In-plane shear modulus 15 | GPa
Transverse shear modulus 7.0 | GPa

TABLE II. MATERIAL PROPERTY OF MATRIX. EPOXY RESIN 3501-6
(HERCULES CHEMICAL COMPANY, INC.) IS ASSUMED [6].

Elastic modulus 42 | GPa
Poisson’s ratio 0.34
Yield stress 90 MPa

computing in the numerical calculation. The authors
produced fortran program for this analysis, and the
analysis is conducted using this program.

B. Simulated Results and Discussions

Figs. 3 and 4 show the simulated results of deformation
and stress distribution of the material, respectively.
Simulated results show that in the initial state of the
loading, the stress concentration occurs in the material
around the initial misalignment of fiber, and when the app-
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Figure 2. Stress-strain curve of matrix.
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Figure 3. Simulated results of deformation in longitudinal compressive
failure.
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Figure 4. Simulated results of stress distribution in longitudinal
compressive failure.

lied load is increased, local areas of matrix around the
stress concentration start to yield, and deformation is
locally increased. At one moment of the loading, a large
deformation occurs within a narrow band, and a band of
localized deformation develops rapidly. This band of
localized deformation passes across the misalignment part
of center fiber. As shown in the figures, fibers cause
bending deformation, and fiber direction is largely rotated.
Matrix causes shear deformation, and the shape of the
elements is close to rhombus shape which is rectangle
shape in initial state. After the yielding of matrix, the
elastic-plastic  tangent shear stiffness of matrix

significantly reduces, and the shear strain rapidly increases.

Then the shear deformation of this part of matrix increases,
and due to the shear deformation of the part, the band of
localized deformation is formed. The reduction of shear
stiffness of matrix is the essential factor in the initiation of
the localized deformation of the material.
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I1l.  THEORETICAL MODELING OF LONGITUDINAL

COMPRESSIVE FAILURE

A. Equations Expressing Deformation of Composite
Materials

Here, the equations expressing deformation of
composite materials are compiled. The equations consist of
motion equation and constitutive equation. The motion
equation is represented as the following,

oy, R

otr ox.

]

oo f; 1)

Po

where p, is density, t is time, u; is displacement, X is
coordinate at reference configuration, P, is the first
Piola-Kirchhoff stress and f; is external force. The
nonlinear stress-strain relation of composite materials is
represented by the nonlinear deformation theory shown by
Tohgo et al. [8].

do =C,,,,de
Ceomp =Cn {(1_Vf ch -C, )S +C, }_l K 2
K={-V, }c, -C,)s+C,}+V,C,
where de is stress rate, de is strain rate, C C; and

comp !

C, are constitutive tensors of composites, fibers and
matrix, respectively, V, is fiber volume fraction and S is
Eshelby tensor. In order to apply the stress-strain relation
in (2) in numerical analysis, evaluation of equivalent
stress of matrix is necessary. The following relation is
applied to evaluate the equivalent stress of matrix from
the applied stress in composite materials.

do, =C,(S- 1K, +(c, -C,)s)s-1)*C, "ds (3)

where de,, is stress rate of matrix and 1 is unit tensor.
Next, the effect of geometrical nonlinearity during the
material deformation is considered. Here the constitutive
tensor in spacial description is defined in the relation
between the second Piola-Kirchhoff stress and the right
Cauchy-Green deformation tensor.

spa 6Sab
abcd T CcG
0Cqy

(4)

where CJe, is constitutive tensor in spacial description,
S,, is the second Piola-Kirchhoff stress and CSF is the
right Cauchy-Green deformation tensor. The constitutive
tensor in material description is represented by the
constitutive tensor in spacial description as follows,

CiroEt =2] _1FiaFijkcFldC;ggd

:21 OX; OXj 0%, 0X

spa
abcd

®)
J X, oX, oX, OX,

where Ci' is constitutive tensor in material description,
F. is deformation gradient, J =detF; is Jacobian and
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X; is coordinate at present configuration. Cauchy stress is
represented by the second Piola-Kirchhoff stress,
deformation gradient and Jacobian as follows,

Oij = J 71Fikskl Fjl (6)
d-ij =J _1Fikskl Fu+J _1|:ikskl Fi
+J 7R, SyFy — 3RSy @)

where o is Cauchy stress and o;; is the material time
derivative of Cauchy stress. Here, the time derivative of
deformation gradient and Jacobian is

Iiij = Likaj' J= L

(8)
where L;, is velocity gradient. Then

F
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where
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(11)

Therefore

G, = Cf,—"ﬁ‘ Dy + Loy + ol — oyl (12)
This coinsides with the formulation of Truesdell rate of
Cauchy stress. Therefore, here the formulation of finite
deformation is based on Truesdell rate of Cauchy stress.
Then the rate of the first Piola-Kirchhoff stress is
represented as follows,

X .
P =1 E(Gik +oy Ly _GiILkI)

oX .
J - (C'mat Dy +O'|m|-i|)

imkl

X,
OX (i au
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(13)
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where &, is Kronecker delta. From (1) and (13), a set of
equations expressing deformation of composite materials
is obtained.

GZU- apu
po atz 8XJ pO i ( )
. oX ]
B =J _](Cinrritl + O-Iméik)% (15)

b ox, X,

B. Arbitrariness Appearing in Solution of Equations
Expressing Deformation of Composite Materials

Equations (14) and (15) are unified to one differential

equation.
o4, .0 ou
Z T _ s f=—"[|A, =K 16
po atz po i axj [Ajkl aXIJ ( )
where tensor Ay, is
X (i
Aja =1 aTJ(Cimktl +O—Im5ik) (17)

m

Equation (16) plays a role of governing equation in the
deformation of composite materials. When the reference
configuration is taken at the moment of the present time,
and in the place where the external force doesn’t act, (16)

becomes as follows,
ou
(Aijkl KTJ

where p is density at the present time. Here, we conduct
the transformation of coordinate system for this equation.
Firstly each variable is transformed as the following in the
transformation of coordinate system.

o%, o
P a,

o (18)

o ., . O . O oXg O
dx = —-dx;, Uy = —-Uy, —=—-—"
OX; OXy oX  OX, OXy
’ ! ’ g ax
= D e O Oy O O
OX, OX OX) Ox, OX OXy OXy
O%; OX; X, oX,
L=t T Phe T Y 19
AJH aX; axl; axk 8Xé bed ( )
where x; is the coordinate system after the
transformation. Then (18) is transformed as follows,
o, o ou;
2= A ¢ 20
P50 axé(Aabcd GXJ (20)
Commonly the governing equations for natural

phenomena do not change their form in the coordinate
transformation. Next, when the deformation is locally
isotropic in 2’ and 3’ directions, 9/dx;, and &/ox, are
equal to zero, and when the deformation is quasi-static,



0/t becomes equal to zero, which corresponds with the
case when inertia term is infinitesimal, then (20) becomes
as follows,

o

21
5 (21)

, 61.'1;
[Aalcl _J =0

o

Here, the eigenvalue problem of the tensor A, is
considered. Using the eigenvalue A’ and the eigenvector
v, of the tensor A, , the eigenvalue problem is
represented as

Ar;lcl é = ”Vé (22)

When the tensor A/, , has zero eigenvalues, (22) becomes
as follows,

AsaVe =0 (23)
Multiplying the arbitrary function ¢'(x!),
KaaVeg (%) =0 (24)
Then taking the partial differenciation of x;,
A, 2 g(4) =0 (25)
24

This equation means that U, =v¢'(x]) is one of the
solution of (21). Since U/ =v/#'(x]) is the solution of (21)
for arbitrary function ¢’ x{), (21) have multiple solutions,
or the arbitrariness appears in the solution of (21). This
case causes when the tensor A, has zero eigenvalues.
When the tensor A, has zero eigenvalues, the
determinant of A, becomes zero,

det(A,,)=0 (26)

From (19), the tensor Al,., is represented by the original
coordinate system of tensor Ay,

0, % 0%

o (27)
oX; OX; OX; O,

A;m = Aijkl

Here, we introduce two tensors n; and J, which express
the coordinate transformation.

OX{
n =

_ OX]
I v Yai
OX;

a

OX:

(28)

Then (26) becomes as follows,

gt

ai ¥ ck

det(Aélcl): det(Aﬁjklnjnl J )
— det(An;n, )- det(3,, )- det(Jck’l)z 0 (29)

Since det(J,)=0,
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dEt(Ajklnjnl ): 0 (30)

As the conclusion of this analysis, when (30) is satisfied,
the arbitrariness appears in the solution of (21) which is a
specific case of the governing equations for the
deformation of composite materials. Equation (30) is
considered as the initiation condition of arbitrariness in
the solution of the equations for the deformation of
composite materials. This is interesting because in
structural mechanics it is well recognized that the
buckling of the structures is represented by a condition
where the determinant of the stiffness matrix of the
structures is equal to zero.
det[K]=0 (31)

where [K]is the stiffness matrix. There is a significant
similarity in between (30) and (31). In the case of (31), at
the time when the equation has equality, the structural
instability or the buckling phenomena appear in the
structures, and the material and geometrical nonlinearity
of the stiffness matrix play important roles in these
instability or the buckling. In the case of (30), when the
equation has equality, the material instability or the
microbuckling phenomena appear in the materials, and the
material nonlinearity including the effect of matrix
nonlinear  stress-strain  relation and  geometrical
nonlinearity including the effect of fiber misalignment
play important roles in these instability or the
microbuckling. In addition, from (17), (30) also becomes
as follows,

det(C{j“f,tnjn, +Jj,6iknjn,)=0 (32)
The first term of this equation depends on the constitutive
tensor of the material, including the elastic and plastic
property of the material. It is also related with the material
nonlinear effect. The second term of the equation depends
on the multi-axial stresses. It is related with the
geometrical nonlinear effect. The equation indicates that
the appearance of arbitrariness is related with the material
property and the multi-axial stresses. The angle of
microbuckling is able to affect through the variable n.,
but the width of the band of the microbuckling possibfy
does not affect the arbitrariness condition. It is also
notable that due to the nonlinearity including the material
and geometrical nonlinearity, the arbitrariness is able to
appear, it indicates that the fact that the governing
equations for the deformation of composite materials are
nonlinear equations is essential for the appearance of
arbitrariness. Considering the actual deformation, the
resultant displacement in the arbitrariness seems to have
the following formula,

,_
c =

V,H,(x —c) (33)

u
where the function H,(x) is the Heaviside function.
Since theoretically arbitrary displacement is allowed, the
width of the band of microbuckling is able to relate with
the initial misalignment shape in the material around the



area of initiation of the microbucling. When we put the
tensor Ayn;n as a, , the determinant of (30) i
explicitly represented in two-dimensional as the followmg

det &y =818y — 88y =0 (34)
In fiber reinforced composite materials, commonly the
elastic modulus in fiber axial direction has much higher
value than the value of transverse direction and stress
value, and because of this, C/5 has much higher value

than the other components of constitutive tensor Ciif and

the components pf stress .tensor o , that is
Cl > Cdl"ﬁt, oy Cin # Cl"l‘itl) Since only A, and
a,; includes C1111 v A >> Ay (Ankl * Amll)
a, >>a, (a, #a, ). Thus the equation becomes,
a
a,, = A8 ~0 (35)
A,

Here the vector n; is represented using an angle g as
follows,

!

n;
iT
6 i

=(cos g sinp) (36)

Then a,, is represented as follows,

a22:A2j2In'nI
Czjz,n n +o;n;n

mat

(02121 + 0'11)005 B+ (C2122 +Co + 20—12)

c0s f3sin B+ (C, + 0,y Jsin> f~0  (37)

From this equation,

mat mat 2
oy = Copp + (02222 + 0y )tan B

+(Cm, +CR + 207, Jtan 3 (38)
—o,, is the value of applied compressive stress to the
material in longitudinal direction. When this applied stress
reaches the value of right hand side of (38), the
determinant of (30) becomes equal to zero, and the
arbitrariness is allowed to appear, which means the
instability appears in the material and microbuckling is
able to occur in the actual situations. The value of —o;, at
the time of being equal to right hand side of (38) is
considered as the critical compressive stress o, or the
buckling stress in microbuckling.

~Co, + (C2222 + 0, )tan 2P
(02122 + C;;Etl +207, )tan B

O-cr
(39)

Using elastic-plastic tangent shear modulus G;F |,
transverse tangent modulus E{®, in-plane Poisson’s ratio
vy, and v,, and shear stress 7, , the equation becomes as
follows,
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Oy ® GE‘I? + [;

1-vpvy

EP +022jtan2 Yij
rlem +Cl v2n,)tan g (40)

In the case of uniaxial compression and if CJy, and CJa,

are close to zero, the compressive strength is
approximately represented as follows,
1
O ® GIE_‘.'I’2 t— E‘?p tan2 18 (41)

—ViVa

Equation (41) corresponds with the expression for
longitudinal compressive strength of composite materials
given by Budiansky [9]. It is indicated that the
arbitrariness condition in equations of deformation of
composite materials is closely related with the initiation
condition of compressive failure of composite materials.

Moreover, the critical stress value is also represented
by the properties of fibers and matrix. From (2),

-V, NGer -G )sis +G}+V,Gey
(1 V, JGer —GP s, +GF
s {i-v, ;s +Vv, oo +(1 V-5, )G

" (1 v )SLT fLT+{1 (1 Vv )S }Grip

where G;” is the elastic-plastic tangent shear modulus of
matrix, Gf; is the elastic in-plane shear modulus of fiber
and S ; is the shear component of Eshelby tensor. When
the shear modulus of fiber is much higher than the shear
modulus of matrix G§; >> G,

GP ~GYF-

(42)

Gep Gep {(1 V )SLT +V }GfLT
L-v )sueiu

Y
~G¥ [1+——S
1-V,

The Eshelby tensor depends on the geometrical shape of
reinforcement fibers. Here, two kinds of fibers shown in
Fig. 5 are assumed. The case 1 in Fig. 5 is the case where
fibers and matrix have plate shape, and the case 2 in Fig. 5
is the case where fibers are cylinder solids and matrix
surrounds fibers. In case 1, the value of Eshelby tensor in

(43)

Matrix

Case 1 Case 2

Figure 5. Two kinds of model of composites.
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shear componentis S; =1. Then

Vv e

G® ~GP.[1+—— |= G (44)
1-V, | 1-v,
G

o, =~ 45

¥y, (49)

On the other hand, in case 2, S;; =1/2. Then

e e 2vf 1+Vf e
G® ~GP 1+ =——LG¥ (46)
1-V, | 1-V,
1+V
T —1_V: Gy (47)

In addition, the elastic-plastic tangent shear modulus of
matrix is closely related with the current yield state of
matrix. From (3),

S+Ghr +(1—S|_T )Gﬁp
dey ~ Az, oo (48)
m {\/f +(]_—Vf )SLT }G?LT +(1—Vf Xl_SLT k;;p 12, comp

where dz,, is shear stress rate of matrix and dz, .o, IS
applied shear stress rate of composites. When the shear
modulus of fiber is much higher than the shear modulus of
matrix Gf; >> G,

dr. ~ SirGiur dr
; {Vf +(1_Vf )SLT }G?LT 1 com
1
~——  _dr, 49
1—Vf +VfS|_T_1 12, comp ( )
A7y, comp (]'_Vf +VfSLT71}ij (50)

Then considering the integration until the time when the
significant degradation of tangent modulus occurs,

Ty ® (l_vf +VfSLT71)rmY (51)

where 7,, is applied shear stress to composites and 7z, is
yield stress of matrix. Generally the fibers have a slight
misalignment, and this misalignment affects the local
stress distribution of the material. Considering the
equilibrium condition of applied stress in between
misalignment coordinate system and coordinate system
associated with global fiber direction,

o-xx¢ + z-xy = le (52)

o = T2 — Tyy - (1_Vf +VfSLT71)TmY Ty
cr — ~
¢ ¢

(53)

where o,, and z, are stress in longitudinal direction and
shear stress in t¥1e coordinate system associated with
global fiber direction, respectively and ¢ is the
misalignment angle of fiber. From this equation, the

relationship of compressive strength with matrix yield
stress, applied shear stress, and fiber volume fraction are
represented as the linear relation, and the relationship with
misalignment of fiber is represented as inversely
proportional. In addition, the dependency of compressive
strength for the fiber volume fraction V, is related with
the shear component of Eshelby tensor S, . When fibers
are plates, S;; =1 and

Oy =" (54)

When fibers are cylinder solids, S,; =1/2 and

vy -, )

O-C r ¢

C. Numerical Analysis for Longitudinal Compressive
Strength Using Arbitrariness Condition

Here the numerical analysis is conducted for the actual
material property using the arbitrariness condition. For this
purpose, incremental analysis is conducted. As the initial
condition, stress is set to zero. Then the stress is
incrementally applied. In each increment, total stress is
calculated and matrix plastic state is updated. Constitutive
tensors of fiber, matrix, and composites are calculated, and
the determinant in (30) is evaluated. When the determinant
in (30) becomes approximately equal to zero, the
arbitrariness is assumed to occur, and the microbuckling is
assumed to initiate. At this increment, the calculation is
finished, and the applied compressive stress at this time is
recorded as the material strength or the microbuckling
stress. For transverse failure modes, failure criteria
presented by Pinho et al. [10] are applied. The material
property of carbon fiber reinforced plastics (CFRP)
AS4/3501-6 [6] is assumed. For strain hardening curve of
matrix, two kinds of hardening curves M and N shown in
Fig. 2 are applied and the results are compared. The
analysis is repeated with changing each one parameter, and
the results for the relationship between material strength
and each one parameter are obtained.

Fig. 6(a) shows the analysis results for relationship
between compressive strength and the multi-axial stresses.
The shear stress reduces the compressive strength and this
relation is approximately represented as the linear relation.
Tensile and high compressive transverse stress also
reduces the compressive strength, while under the small
compressive transverse stress, the compressive strength is
almost constant. In addition, the dependency of the multi-
axial stresses changes with the change of the strain
hardening curve. Fig. 6(b) shows the analysis results for
the relationship between compressive strength and the
constituent material property. The matrix yield stress and
fiber volume fraction increases the compressive strength
and these relations are also close to the linear relation. The
initial fiber misalignment reduces the compressive strength
and this relation is close to the inversely proportional
relation. The dependency of the material strength for each
parameter almost agrees with the experimental results
shown in the previous investigations [3-4].
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Figure 6. Numerical results for compressive strength in longitudinal
compressive failure.

IV. NUMERICAL SIMULATION OF COMPRESSIVE
FAILURE IN QUASI-ISOTROPIC LAMINATE

A. Numerical Model

Finally the numerical simulation of compressive failure
in quasi-isotropic laminate is conducted. Fig. 7 shows the
numerical model of the compressive failure in quasi-
isotropic laminate. The stacking sequence of the laminate
is [45/0/-45/90]s symmetric laminate. The thickness of
each ply is 145 um. The length in x-direction of the model
is 500 um, and the thickness in z-direction is 100 mm. The
diameter of each fiber is set to 7.0 um, and the interval of
fibers in O-degree plies are 10.0 um. The fiber volume fra-
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Figure 7. Numerical model for compressive failure of quasi-isotropic
laminate.

TABLE 11l. MATERIAL PROPERTY OF #45-DEGREE PLIES [6]. CFRP
AS4/3501-6 IS ASSUMED [6].

Elastic modulus in x-direction 61 | GPa
Elastic modulus in y-direction 11 | GPa
In-plane Poisson’s ratio 0.28

In-plane shear modulus 58 | GPa

TABLE IV. MATERIAL PROPERTY OF 90-DEGREE PLIES [6]. CFRP
AS4/3501-6 IS ASSUMED [6].

Elastic modulus in x and y-direction | 11 GPa
In-plane Poisson’s ratio 0.40
In-plane shear modulus 4.3 | GPa

ction of the materials is set to 60.0 %, and there are 15
fibers in each O-degree ply. Similar to the analysis in Sec.
I, the initial misalignment of fiber is introduced as shown
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in Fig. 7(b). The periodic boundary condition is introduced the material. The average applied strain in the initial
in both edge of the laminate to avoid the edge fracture of increment is set to 0.004 %. In this analysis, in order to
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simulate the bending breaking of each fiber, the fibers in 0-
degree plies are modeled by circle cross-section beam
elements, and the cohesive elements are inserted in the
connection of fiber beam elements. When the high bending
deformation occurs in fiber beam elements, the cohesive
elements open and the fiber bending breaking occurs in the
analysis. The fiber beam elements applied in this analysis
are the Timoshenko type beam elements and have three
nodes and four integration points. The matrix in 0-degree
plies and 245, 90-degree plies are modeled by two-
dimensional plate elements. 345, 90-degree plies are
modeled as the homogeneous composite materials, and the
individual fibers and matrix are not modeled here. The
material property for #45 and 90-degree plies used in this
analysis is shown in Table 11l and 1V [6].

B. Simulated Results and Discussions

Fig. 8 shows the simulated result of load-strain curve.
After starting the loading, the load response is initially
close to linear. When the load value increases, there is a
slight nonlinearity in load-strain curve. The reason of the
slight nonlinearity is considered to be due to the slight
rotation of fibers in O-degree plies during the loading
because of the misalignment of fibers. Due to the
misalignment, when the load is applied the fibers in O-
degree plies slightly rotate, then the average elastic
modulus of the laminate in x-direction slightly reduces
during the loading, consequently the nonlinearity causes in
load-strain curve. When the load value reaches 5.6 kN, and
the average applied strain is 1.20 %, the load is
catastrophically decreasing in load-strain curve, and after
this decrease the load level keeps low level. The maximum
supported load value in load-strain curve is recorded to be
5.6 kN.

Fig. 9 shows the stress distribution in 0-degree ply at
strain 0.20 %. As shown in Fig. 9, the stress concentration
occurs around the initial misalignment of fiber in 0-degree
plies. At strain 1.20 %, the fiber bending breaking initiates
in O-degree plies. After the initiation of fiber bending
breaking in 0-degree plies, the damage gradually develops
as the applied strain increases, and the final fracture is
formed as shown in Fig. 10. After the significant load
decrease in load-strain curve, the load value keeps low
level during the damage evolution, which is considered as
the residual strength of the material. Fig. 10(b) shows the
comparison between the simulated failure and the
microscope picture observed in the experiment. The
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deformation after the failure of the material in the analysis
agrees with the microscope picture of the experimental
result.

V. CONCLUSIONS

The numerical simulation model and theoretical model
for longitudinal compressive failure are obtained. In the
numerical simulation, the deformation after the failure of
the material agrees with the microscope picture of the
experimental results. In theoretical modeling, the critical
stress value is represented in several forms. The present
analysis models are applicable for computer analysis of
material strength.
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