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Abstract—Whether there is a feasible flow of ventilation 

network that meets the demand of fixed airflow and the 

balance of airflow, when the number, quantities of fixed 

branches are all uncertain. It is called fixed airflow 

distribution problem, which was transformed into flow 

distribution problem. All branches have the upper and lower 

capacities bounds. The upper and lower capacities of fixed 

airflow branches were set to their values, while the upper 

capacities of other branches were set to infinity, and lower 

capacities were set to zero. Two virtual sources-sink nodes 

was added to the network, while the fixed branches were 

splitted into two new branches connected with the virutal 

source-sink nodes. The classical max flow algorithm was 

adopted to solve the new network. There was a solution of 

fixed airflow distribution when the new network had a 

feasible flow and each splitted branches reached its capacity. 

At last, the method was analysed by means of two examples. 

Keywords-ventilation network; fixed airflow; independent 

circuit; max flow; the upper and lower capacities 

I. INTRODUCTION  

The first step of ventilation net work solution is to 
distribute airflows that satisfied with the flow conservation 
law. If there are fixed airflow branches, the traditional 
methods just consider that fixed airflow branches are all in 
the remaining tree [1]. But in practical application, fixed 
airflow branches do not always fall in the remaining tree 
due to the restrictions of ventilation network topology. A 
self-adaption method was proposed to estimate the 
resistance of some tunnels [2]. The key of this method lies 
in how to determine the existence of the airflow 
distribution solution, sink the demand of fixed airflow and 
the balance of airflow, while the parameters of fixed 
airflow branches such as position, quantity are uncertain.  

These problems above are all related to the fixed 
airflow distribution algorithm. In this paper, a new 
algorithm was proposed on the basis of max flow 
algorithm with the upper and lower bounds, compared with 
the algorithm based on agument path. 

 

II. RESISTANCE INVERSION BASED ON FIXED AIRFLOW 

Ventilation resistance measurement is an important 
technical means to obtain ventilation network basic datas 
such as resistance and airflow. Errors exist in all measuring; 
therefore some resistances are far from the true values [3]. 
A self-adaption method was proposed to correct the 
resistance of some tunnels. Some airflow of tunnels with 

large erros is fixed artificially, and then we can correct 
inversely the resistance of these tunnels.  

For a single source-sink ventilation network with n 
branches and m nodes, we handpick a spanning tree to 
determine r=n-m+1 independent cycles and r linearly 
independent branches in the remaining tree. So the airflow 
of any branch can be represented by the linear function of 
these independent branches [4].  
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In the meanwhile, r independent cycles are satisfied 
with the resistance balance law: 
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Where sic  is the direction coefficient of ith branch in 

the sth cycle, ysq is the airflow of the sth independent 

branche, m
3
/s, iq  is the airflow of the ith branch, m

3
/s, ir  

is the resistance of the ith branch, kg/m
7
, sh  is the 

additional resistance of the sth independent cycle, Pa, and 

sf  is the resistance sum of the sth independent cycle, Pa.  

We can suppose that k branches with fixed airflow are 
known. In order to facilitate the description, branches will 

be renumbered. Fixed airflow branches are k,,2,1   and 

other branches are nkk ,,2,1  . So the resistance of 

independent cycles with fixed airflow branches can be 
detailed as flows: 
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Where sg  is the resistance sum of branches that do not 

contain fixed airflow branches in the sth independent cycle, 

Pa. If the ith branche is in the sth cycle, 1sic , 

otherwise 0sic .  
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Let iisisi qqc , equation (3) can be simplified as: 
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In order to ensure that independent cycles are satisfied 

with the resistance balance law, let 0sf . It is supposed 

that the number of independent cycles with fixed airflow 

branches is l , so the above euqation can be developed as a 

linear equations: 
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The matrix coefficient 
klA 

 is denoted as follows: 
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According to the theory of linear algebra, the solution 
of linear equations (7) is denoted as follows [5]:  

1) When kbArAr  ),()( , equation (7) has a 

unique solution, the wind resistance of fixed airflow 
branch is also the only one.  

2) When kbArAr  ),()( , there are infinitely 

many solutions of equation (7).  

3) When ),()( bArAr  , there is no solution. 

III. FIXED AIRFLOW BALANCE ALGORITHM BASED ON 

AUGMENTING PATH 

From the perspective of network flow, fixed airflow 
balance problem can also be treated as flow distribution 
problem. The capacities of fixed airflow branches are 
equal to its values while the capacities of other branches 
are infinite. A fixed airflow balance algorithm based on 
augmenting path was proposed [2]. It is similar to the max-
flow algorithm based on augmenting path. It continually 
finds augmenting paths and augmenting flow among all 
paths until there is no such augmenting path in the network.  

For the flow network ),( EVG  with a single 

source-sink node, each branch ),( vu  in E has a capacity c, 

and c satisfies the condition 0),( vuc . The capacities of 

the fixed airflow branches are equal to their fixed its values, 
while the capacities of other branches are all infinite. Each 

branch ),( vu is given airflow ),( vuf . The key of the 

augmenting path algorithm is building the residual 

network G  , each branch ),( vu  in the original network 

G  is mapped as a forward branch ),( vu  and a backward 

branch ),( uv . The capacities of the two branches can be 

denoted as follows [6]: 
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Let P be an augmenting path,   be an augmenting 

airflow.   is denoted as )},({min
),(

vuc
Pvu




 . We can 

search an augmenting path P in the residual networkG , 

add   to the quantities of the forward branches in P, and 

reduce   from the quantities of the backward branches in 
P. So the cycle repeats until there is no P can be found in 

G . 
Fig .1 shows a ventilation network example taken from 

literature [2] and TABLE 2 shows the two different 
augmenting processes and results. The max-flow of the 
two different augmenting processes is both 120. Obviously, 
the search order of augmenting path makes a direct 
influence on the final results.  
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Figure 1.  Ventilation network with fixed airflow (from: reference[2], 

P137) 

TABLE I.  TWO AUGMENTING PROCESSES OF VENTILATION  

NETWORK  AS SHOWN IN FIG .1 

Augmenting process proposed in 
reference [2] 

A new augmenting process 

1) augmenting path P1={v1,v2, 
v4,v6,v8}, augmenting airflow 20, 
saturated branch (v4,v6) 
2) augmenting path P2={v1,v2, 
v4,v5,v7,v8},augmenting airflow 
60, saturated branch (v2,v4) 
3) augmenting path P3={v1,v3, 
v5,v7,v8}, augmenting airflow 40, 
saturated branch (v5,v7) 
Conclusions: all fixed airflow 
branches are saturated and the 
max-flow value is 120. 

1) augmenting path P1={v1,v3,v5, 
v7,v8}, augmenting airflow 100, 
saturated branch (v5,v7) 
2) augmenting path P2={v1, v2, v4, 
v6,v8}, augmenting airflow 20, 
saturated branch (v4, v6) 
3) no augmenting paths can be found 
Conclusions: fixed airflow branch 
(v2, v4) is not saturated, the residual 
airflow is 60, and the max-flow 
value is 120. 

IV. FIXED AIRFLOW BALANCE ALGORITHM BASED ON 

MAX-FLOW ALGORITHM 

The agumenting path algorithm only took into account 
the upper bound of the branch capacity. In this paper, both 
the lower and the upper bound of the branch capacity were 
taken into account. The upper and lower capacity of the 
fixed airflow branches is equal to its quantities. So the 
fixed airflow distribution problem was transformed into 
determing whether there is a feasible flow of the network 
limited by the upper and lower capacity bounds. All the 
flow problems can be solved by the max-flow algorithm.  

The classical max-flow algorithm only considers 
satisfying the upper capacity bound [7]. Besides, the 
airflow of the branch must satisfy the lower capacity 
bound in the network that has the upper and lower bounds. 
In the premise that the flow network has upper and lower 
bounds, we built an extra network without the source-sink 
nodes, splitted the lower capacity into a new branch, and 
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resort to the max-flow algorithm for determining the 
feasible flow.  

A. Definition of flow network with the upper and lower 

bounds and the source-sink nodes 

Different from the flow network definition of the 
traditional max-flow problem, qunatities of the branches in 
flow network with upper and lower bounds must be greater 
than or equal to a certain lower bound. For the flow 

network ),( EVG  with a single source-sink node, s is 

the Source, and t is the sink node. Each branch 
),( vu

 in E 

has a lower capacity bound ),( vub  and an upper capacity 

bound ),( vuc , and they satisfy the equations: 

0),( vub  and 0),( vuc . Each branch 
),( vu

 is 

denoted by a flow ),( vuf . If f satisfies two conditions as 

follows, it is a feasible flow of G.  
(1) Flow balance conditions: i is one of the nodes in the 

network except the Source s and the sink node t, and it 

must satisfy the equation: 



EviEiu

vifiuf
),(),(

),(),(  

(2) Capacity bounds conditions: any branch 
),( vu

 in 

E must satisfy the equation: ),(),(),( vucvufvub  .  

B.  Feasible flow in the network with the upper and 

lower bounds and without the source-sink nodes 

From the perspective of network flow, the flow is a 
circulation flow, and each node’s inflow and outflow are 
equal, satisfying the flow conservation law[8]. Considering 
a flow network C with the upper and lower bounds and 
without the source-sink nodes, it demands that any node 
should satisfy the airflow balance and the capacity bounds, 
and find a feasible flow.  

The flow of the branch is defined by ),( vuf , which 

must be greater than or equal to the lower capacity. 

),(),(),( vugvubvuf             （11） 

we can ensure that ),(),( vubvuf  , if 0),( vug .  

),(),(),( vubvucvug             （12） 

Let ),(),(),( vubvucvuc  . We can construct a 

new flow network ),( EVC  , ),( vug  is the flow of 

the branch. In new network C , and ),( vuc  is the 

capacity of the branch.  

In order to deal with the lower bounds ),( vub , 

euqation (11) was put into the airflow balance expression. 
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The euqation right end is denoted by )(im , which is 

the sum of the inflows minus the sum of the outflows of 
the ith node’s lower bound. 
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Excluding the excess flow )(im  from the network C  

in order to make the nodes in the network C satisfy the 

airflow conservation conditions: 
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0)( im  means that the inflow of lower capacity is 

greater than the flow of lower capacity, and make excess 

flow )(im  transfer to a new branch ),( is . The capacity 

of the new branch is: 

)(),( imisc                                 （17） 

0)( im  mean that the inflow of lower capacity is 

less than the flow of lower capacity, and make excess flow 

transfer to a new branche ),( ti  . The capacity of the new 

branch is: 

)(),( imtic                               （18） 

In the networkC , if any branch’s flow was saturated, 

a feasible flow g  must be corresponding with a feasible 

flow f of the original network C .On the contrary, each 

feasible flow f of the network C  must be corresponding 

with the saturated flow that all branches ),( isg   and 

),( tig    reached their capacities.  

C. Feasible flow in the network with the upper and 

lower bounds and with the source-sink node  

By means of the method above, we would like to 

construct an extra network G  as shown in Fig .2, adding 

a virtual source source s  and a virtual sink t . Then the 

branches with the upper and lower bounds were splitted 
into three new branches according to euqation (17) and 

(18). The first and second branches are ),( vs  and ),( tu  . 

The third branch is ),( vu , the capacity of that is equal to 

),(),(),( vubvucvuc  . At last,  the source and the 

sink are connected by a new branch ),( st , making the 

network be of no source-sink.  

So the task is to find a feasible flow from s  to t  . If 
all the outflow branches of s are saturated, there is a 

feasible flow in the original network G , which is satisfied 

with the demand of fixed air flow and the airflow balance.  
The classic maximum flow algorithm was adopted to 

find a feasible flow. There are many max-flow algorithms 
such as Ford-Fulkerson method, Shortest Augmenting Path 
(SAP), Edmonds-Karp Algorithm, Dinic Algorithm, 
Improved SAP Algorithm, Maximum Capacity Path 
Algorithm, Capacity Scaling Algorithm, Push-Relabel 
Algorithm and so on. Those maximum flow algorithms are 
very mature and perfect. Please reference the literature [9, 
10].  
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Figure 2.  Schematic diagram of additional network G' 

V. 4 EXAMPLE ANALYSIS 

The example as previously shown in Fig .1 was a 
single source-sink network, the source and sink 
respectively was v1 and v8. The upper and lower bounds of 
the branch capacities were shown in TABLE II. The new 
branches were added into the extra network according to 
euqation (17) and (18), shown in TABLE III. The final 
extra network was shown in Fig .3. The capacities of all 
the branches in the extra network were shown in TABLE 
IV.  

The maximum flow was used to find a feasible flow 

from s  to t  , then the result was shown in TABLE V. It 

could conclude that all the ourflow branches of the virtual 

source node s were saturated, so there was a feasible 

solution of air flow, satisfying with both the demand of 
fixed airflow and the flow balance. The result of fixed air 
flow distribution was shown in TABLE VI.  

v1

v2 v4 v6

v8

v7
v3 v5

(0)

(0)

(0) (+∞)

(+∞)
(+∞)

(+∞)

(+∞)

(+∞)

s't'

(80) (100)
(60)

(100)

(20)

(+∞)
 

Figure 3.  The extra network 

TABLE II.  THE UPPER AND LOWER BOUNDS OF BRANCH CAPACITY 

IN VENTILATION NETWORK 

Source  Target Bounds Source  Target Bounds  

v2 v4 80-80 v3 v5 0-+∞ 

v4 v6 20-20 v4 v5 0-+∞ 

v5 v7 100-100 v6 v8 0-+∞ 

v1 v2 0-+∞ v7 v8 0-+∞ 

v1 v3 0-+∞    

TABLE III.  THE UPPER AND LOWER BOUNDS OF FIXED BRANCH 

CAPACITY AFTER BEING SPLITTED 

Node 
The sum of 

inflows  

The sum of 

the outflows  
m(u) 

Add the branch 

and capacity 

v2 0 80 -80 v2->t', c'=80 

v4 80 20 60 s'->v4, c'=60 

v5 0 100 -100 v5->t', c'=100 

v6 20 0 20 s'->v6, c'=20 

v7 100 0 100 s'->v7, c'=100 

TABLE IV.  BRANCH CAPACITIES OF THE EXTRA NETWORK 

Source  Target Capacity Source  Target Capacity 

s' v4 60 v1 v2 +∞ 

s' v6 20 v1 v3 +∞ 

s' v7 100 v3 v5 +∞ 

v2 t' 80 v4 v5 +∞ 

v5 t' 100 v6 v8 +∞ 

v8 v1 +∞ v7 v8 +∞ 

TABLE V.  THE FEASIBLE FLOW OF EXTRA NETWORK BY MEANS OF 

THE MAXIMUM FLOW ALOGIRTHM 

Source Target Capacity Flows Whether saturated 

s' v4 60 60 Yes 

s' v6 20 20 Yes 

s' v7 100 100 Yes 

v2 t' 80 80 Yes 

v5 t' 100 100 Yes 

v8 v1 +∞ 120 No 

v1 v2 +∞ 80 No 

v1 v3 +∞ 40 No 

v3 v5 +∞ 40 No 

v4 v5 +∞ 60 No 

v6 v8 +∞ 20 No 

v7 v8 +∞ 100 No 

TABLE VI.  THE FIXED AIR FLOW DISTRIBUTION 

Source  Target  Airflow Source  Target  Airflow 

v2 v4 80 v3 v5 40 

v4 v6 20 v4 v5 60 

v5 v7 100 v6 v8 20 

v1 v2 80 v7 v8 100 

v1 v3 40 - - - 

Let’s modify the network shown in Fig .1, the fixed air 
flow of the branch (v5, v7) is 50. Obviously, there was not 
a feasible solution for fixed air flow distribution. The extra 
network was shown in Fig.4 and the result of the max-flow 
algorithm was shown is TABLE VII. We found that the 
branch (s', v4) was not saturated, so there was not a 
resonable solution to meet the demand of fixed air flows 
and the airflow balance.  
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Figure 4.  The extra network  

TABLE VII.  THE FEASIBLE FLOW OF EXTRA NETWORK BY MEANS OF 

THE MAXIMUM FLOW ALOGIRTHM 

Source  Target Capacity Flows Whether saturated 

s' v4 60 50 No 

s' v6 20 20 Yes 

s' v7 50 50 Yes 

v2 t' 80 20 No 

v5 t' 50 50 Yes 

v8 v1 +∞ 70 No 

v1 v2 +∞ 20 No 

v1 v3 +∞ 0 No 

v3 v5 +∞ 0 No 

v4 v5 +∞ 50 No 

v6 v8 +∞ 20 No 

v7 v8 +∞ 50 No 

VI. CONCLUSION 

The algorithm of fixed airflow distribution based on 
augmenting path is similar with the classical maximum 
flow algorithm. The drawback of this algorithm is that 
only the upper bound of branch capacity is taken into 
account. So the search order of augmented paths directly 
influences the result of fixed air distribution.  

The fixed air flow distribution problem was 
transformed into finding a feasible flow, which can be 
solved by means of the max-flow alogirhm with the upper 
and lower bounds. In order to use the classic max-flow 
algorithm, we made a little change to the flow network, 
adding two virtual source-sink nodes, splitting the excess 
flow into new branches. Then the conditions of applying 
the classic max-flow algorithm were also reached. The 
classic max-flow algorithm is very mature and quick, so 
the fixed air flow distribution problem can be well solved.  
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