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Abstract 
In our previous work, a new PSO algorithm called θ-
PSO based on phase angle was put forward, which has 
better optimization performance than standard PSO 
algorithm when dealing with some simple benchmark 
functions. But this algorithm may easily stick in the 
local minima when handling some complex or multi-
mode functions. In this paper, an improved θ-PSO 
with mutation operator is studied. And this improved 
algorithm has better optimization performance when 
solving some complex benchmark functions. 
Benchmark testing shows that this improved θ-PSO 
algorithm can overcome the local minima and achieve 
the goal of global minimum in limited iterations. 
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1. Introduction 
PSO is one of the famous evolutionary computation 
techniques introduced by Kennedy and Eberhart in 
1995[1]-[2]. It is a population-based search algorithm 
which is initialized with a swarm of random particles. 
PSO makes use of a velocity vector to update the 
current position of each particle in the swarm under 
the rules: (1) maintaining own inertia; (2) using own 
personal best solution and (3) based the global best 
solution. The velocity vector is updated based on the 
history information gained by the swarm. And the 
positions of the swarm are updated to search for better 
positions according to the updated velocity vector [3]. 
In our early work, a new PSO algorithm, called θ-PSO 
was put forward [4]. In θ-PSO, increment of phase 
angle vector θ

r
Δ  replaces velocity vector v

r
and the 

positions are adjusted by the mapping function of 
phase angles. Benchmark testing of nonlinear 
functions shows that θ-PSO appears to be a promising 
approach of function optimization. But this algorithm 
may easily stick in the local minima when handling 
some complex or multi-mode functions such as Ackly 
and Rastrigrin etc. In this paper, an improved θ-PSO 
algorithm with mutation operator is studied. And this 
improved algorithm has better optimization 

performance when solving some complex functions. 
Experiments results show that this improved θ-PSO 
can overcome the local minima and achieve the goal 
of global minimum in limited iterations. 

2. Standard θ-PSO algorithm 
In θ-PSO, the increment of phase angle replaces 
velocity and the position is decided by the mapping of 
phase angle. The standard θ-PSO can be described in 
vector notation as follow: 
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with ),( maxmin θθθ ∈ij  ),( maxmin θθθ ΔΔ∈Δ ij , 

),( maxmin xxxij ∈ and f  is a monotonic mapping 
function, si ,,1 L= , nj ,,1 L= .  

We assume the global optimal particle is not on 
the boundary and 

s  is the size of the swarm. 
n  is the dimension of the problem 

1c  and 2c  are acceleration coefficients 
ω  is the inertia weight 
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 is the position of particle i  at time t , 

which is decided by the mapping function f  

)(tiθ
r

 is the phase angle of particle i  at time t  

)(tiθ
r

Δ  is the increment of phase angle of particle 
i  at time t  

)(tibθ
r

 is the phase angle of personal best solution 
of particle i  at time t  

)(tgθ
r

 is the phase angle of global best at time t  

)(tFi is the fitness value of particle i  at time t , 
which is decided by function uefitnessval  

)(tFib  is the personal best fitness value of 
particle i  at time t  



)(tFg  is the global best fitness value at time t  
And in this paper, we set 
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3. Improved θ-PSO algorithm 
Compared to basic PSO algorithm, θ-PSO algorithm 
has better optimization performance when dealing 
with some simple benchmark functions [1]. But it’s 
difficult for basic θ-PSO algorithm to overcome the 
local minima when handling some complex or multi-
mode functions. So in this paper, we adopt the 
mutation operator of genetic algorithm. If the personal 
fitness value has not improved compared the last 
iteration’s result, i.e., if )1()( −> tFtF ii , a mutation 
operator is introduced in the basic θ-PSO algorithm 
with a small probability. And the detail is as follow: if 

)1()( −> tFtF ii , create a random number )1,0(∈ijd , 
if Pmdij < , do  
      )5.0)((*)()( 33 −+−= trctt ijij

r
θθ                   （6） 

where ]1,0[∈Pm , 3c  is a non-negative real number, 
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~ )1,0(U , and limit ijθ  to )
2

,
2

( ππ
− . In this 

paper, a minus value of ijθ  is adopted because the 

range of phase angle is symmetrical. Simulation 
results show that the added disturbance item 

)5.0)((* 33 −trc
r

 is effective sometime.   
The improved θ-PSO algorithm can be 

summarized as follow: 
1) Create and initialize a n -dimensional swarm 
(phase angle )1(iθ

r
) and )1(iθ

r
Δ ; 

2) 1=t , calculate )1(ix
r

using Eq.(3), calculate the 
fitness value )1(iF  using Eq.(4) and set 

)1(ibF = )1(iF , )1(ibθ
r

= )1(iθ
r

, )1(gF = )1(min iF , 

and set )1(gθ
r

equal to the panes angles 

corresponding to )1(min iF ; Then set 2=t ; 

3) Update )(tiθ
r

Δ  using Eq. (1), and limit 

)(tiθ
r

Δ to ),( maxmin θθ ΔΔ ; 

4) Update )(tiθ
r

 using Eq. (2), and limit )(tiθ
r

 to 
),( maxmin θθ ; 

5) Update )(txi
r

using Eq. (3); 
6) Calculate )(tFi  using Eq. (4); 

7) If )()( tFtF ibi < , then set )()( tFtF iib =  and 

)()( tt iib θθ
rr

= ; If )()( tFtF gi < , then set 

)()( tFtF ig =  and )()( tt ig θθ
rr

= ; 

8) If )1()( −> tFtF ii , create a random number 
)1,0(∈ijd nj L,1= . And if Pmdij < , do 

mutation operation using Eq. (6), and calculate 
)(tFi ; 

9) If )()( tFtF ibi < , then set )()( tFtF iib =  and 

)()( tt iib θθ
rr

= ; If )()( tFtF gi < , then set 

)()( tFtF ig =  and )()( tt ig θθ
rr

= ; 
10) Set 1+= tt , go back to step 3 if stopping 
condition is not true. 

4. Benchmark functions test  
Standard θ-PSO has better performance than standard 
PSO when dealing with function Camel, Levy F3, 
Sphere and Jason. Generally speaking, Standard θ-
PSO can obtain the global optimal in hundreds 
iterations when handling some simple functions. But 
this algorithm may still easily stick in the local minima 
sometime when handling complex multi-mode 
functions such as Rosenbrock, Schwefel, Rastrigrin 
and Ackly. In this paper, we use these four benchmark 
functions to demonstrate our improved algorithm. The 
basic information of the functions is listed in table 1. 
Function Rosenbrock is a classical complex optimization 
case whose global optimal is located at a flat, long and 
narrow valley. This function gives little information and it’s 
hard to identify the search direction. Function Rastrigrin is a 
very difficult case that has thousands of local minima. There 
is few algorithms can obtain the global minimum 0 at 

)9687.420,9687.420( −− L of function Schwefel. 
Function Ackly is a multi-mode case with a lot of cloughs, 
and the local minima are located everywhere. All these four 
functions are complex, full of local minima.  

First, basic θ-PSO algorithm is tested by these 
four functions. According to the results of [4], in the 
following tests of this paper, we 
set 6.0=w , 7.11 =c and 7.12 =c , which can obtain 
better optimization performance. And in this case, the 
maximum iteration number is fixed to 10000 and the 
swarm size is 40. Each optimization experiment is run 
20 times with random initial value of θ  and θΔ . Our 
testing computer is IBM T60 notebook PC with 2 CPU 
at 1.66GHz and 512M memory, the operating system 
is Window XP, and the program is coded by Matlab 
6.5. The test results are listed in table 2. And we can 
see that basic θ-PSO algorithm can not get the optimal 
in the fixed iterations.  
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                                                                Table 1: The list of test functions. 
 

Function 
Minimum value of 
fitness value 

Maximum value of 
fitness value 

Average value of 
fitness value 

Rosenbrock  11.8792 19.7983  16.5436 
Rastrigrin  87.4972   151.2327   134.8754 
Schwefel 1189.6 1437.9 1263.9 
Ackly  17.8285 19.7033  18.8354 

                                                                  Table 2: Test results of standard θ-PSO. 
 
In the following experiment, we use these four 
benchmark functions to test our improved θ-PSO 
algorithm. The stopping conditions are (1) the goal of 
optimization is 0.01 and (2) the maximum iteration 
number is 10000. The swarm size is 40. Each 
optimization case is run also 20 times. We will observe 
the effect of parameters Pm and 3c . The results are 
shown in table 3. From the testing results, the improved 
θ-PSO algorithm can achieve the goal of optimization 
in the limited iterations and the average optimization 
time is only about several seconds. And the success 
rate is high when Pm and 3c are set properly. In the 
experiment, we find the performance is better while 

01.0≤Pm . For function Rosenbrock, when 
001.0=Pm and 23 =c , the indexes are best and the 

average iteration number is less than 1000. For 
function Rastrigrin, 01.0=Pm and 03 =c are proper. 
For function Schwefel, it works well 
when 005.0=Pm , 43 =c and 01.0=Pm , 43 =c , the 
average iteration numbers are about 400. For function 
Ackly, the convergence performance is worse than 
others. And from table 3, when 005.0=Pm and 03 =c , 
all the indexes are good. 

In order to illustrate the convergence of our 
improved θ-PSO algorithm, another experiment is done 
with 40 particles, 005.0=Pm and 03 =c . All these 20 
tests execute 10000 iterations. And the results are listed 

in table 4. Only one try sticks in the local minimum at 
the value 19.452, and other 19 cases have good 
convergence results with the precision at 14−e . Figure 
1 shows the average fitness values curve of the 19 good 
cases. Look back at figure 1, we can see the function 
Ackly has lots of local minima in the area when the 
fitness value is between 19 and 20. If the particles can 
jump out this area, the improved θ-PSO algorithm can 
converge very quickly. 

In the following experiment, we use these four 
benchmark functions to test our improved θ-PSO 
algorithm. The stopping conditions are (1) the goal of 
optimization is 0.01 and (2) the maximum iteration 
number is 10000. The swarm size is 40. Each 
optimization case is run also 20 times. We will observe 
the effect of parameters Pm and 3c . The results are 
shown in table 3. From the testing results, the improved 
θ-PSO algorithm can achieve the goal of optimization 
in the limited iterations and the average optimization 
time is only about several seconds. And the success 
rate is high when Pm and 3c are set properly. In the 
experiment, we find the performance is better while 

01.0≤Pm . For function Rosenbrock, when 
001.0=Pm and 23 =c , the indexes are best and the 

average iteration number is less than 1000. For 
function Rastrigrin, 01.0=Pm and 03 =c are proper. 
For function Schwefel, it works well  



 Number of iteration to achieve the goal                        
Function 

Pm  3c  
minimum maximum average1 

Average 
optimization time s 

Success 
rate 

0.001 1 1881 6312 3143 4.973 1 
0.001 2 862 2142 1275 1.929 1 
0.005 1 1283 2673 1785 2.824 1 
0.005 2 1090 1556 1296 2.050 1 
0.01 1 2408 6149 3897 6.166 1 

Rosenbrock 

0.01 2 1789 3687 2340 3.702 1 
0.001 0 1287 4908 2665 7.028 1 
0.001 1 1937 4209 2986 8.506 1 
0.005 0 2435 4859 3012 8.580 1 
0.005 1 4129 7791 5876 16.739 1 
0.01 0 1076 4734 2575 4.538 1 

Rastrigrin 

0.01 1 - - - - - 
0.001 3 4583 9043 6087 8.822 0.2 
0.001 4 619 2958 1643 2.381 1 
0.005 3 678 7647 5478 7.939 1 
0.005 4 211 1085 402 0.582 1 
0.01 3 335 7458 3690 5.347 1 

Schwefel 

0.01 4 136 901 431 0.606 1 
0.001 0 1401 4272 2803 11.492 0.9 
0.001 1 1349 7528 2876 12.233 0.9 
0.005 0 1294 3745 1907 7.693 1 
0.005 1 1351 8071 3536 14.497 0.85 
0.01 0 1215 3850 2987 12.246 0.85 

Ackly 

0.01 1 1582 4700 2622 10.750 1 
                                                          Table 3: Test results of improved θ-PSO. 

 

                                                           
1The average number of iteration to achieve the goal and the average optimization time are the average value of successful cases. 
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 Fig.1: The average fitness values curve of function Ackly. 
 
when 005.0=Pm , 43 =c and 01.0=Pm , 43 =c , the 
average iteration numbers are about 400. For function 
Ackly, the convergence performance is worse than 
others. And from table 3, when 005.0=Pm and 

03 =c , all the indexes are good. 
In order to illustrate the convergence of our 

improved θ-PSO algorithm, another experiment is 

done with 40 particles, 005.0=Pm and 03 =c . All 
these 20 tests execute 10000 iterations. And the 
results are listed in table 4. Only one try stick in the 
local minimum at the value 19.452, and other 19 
cases’ global best fitness values have good 
convergence results with the precision at 14−e . Figure 
5 shows the average fitness values curve of the 19 
good cases. Look back at figure 4, we can see the 
function Ackly has lots of local minima in the area 
when the fitness value is between 19 and 20. If the 
particles can jump out this area, the improved θ-PSO 
algorithm can converge very quickly. 

The effect of swarm size is tested and the results 
are shown in table 5. As the samethe stopping 
conditions are (1) the goal of optimization is 0.01 and 
(2) the maximum iteration number is 10000. The 
swarm size 20, 40, 60, 80 and 100 are used to 
demonstrate the optimization performance. Generally 
speaking, with the increasing swarm size, the 
minimum, maximum and average numbers of 
iteration to achieve the goal decrease. And the 
corresponding average optimization time increase. 
But the swarm size has little affection on the success  



Convergence 
value 

19.452 6.8390 14−e  6.4837 14−e 5.7332 14−e 5.0626 14−e 4.3251 14−e  3.9968 14−e

Times 1 1 3 5 6 3 1 

                                                              Table 4: The results of Ackly. 
 

 Number of iteration to achieve the 
goal 

Funciton Swarm
size 

Pm  3c  

minimum maximum average 

Average 
optimizatio
n time s 

Success 
rate 

20 0.001 2 1065 3908 1998 1.559 1 
40 0.001 2 862 2142 1275 1.929 1 
60 0.001 2 553 1633 999 2.259 1 
80 0.001 2 508 1416 818 2.454 1 

Rosenbrock 

100 0.001 2 501 1080 790 2.932 1 
20 0.01 0 1256 8571 3477 3.139 0.95 
40 0.01 0 1076 4734 2575 4.538 1 
60 0.01 0 1037 3117 1809 4.693 1 
80 0.01 0 904 5060 2117 7.365 1 

Rastrigrin 

100 0.01 0 829 5734 2125 9.194 1 
20 0.01 4 308 1407 747 0.538 1 
40 0.01 4 136 901 431 0.606 1 
60 0.01 4 91 692 321 0.668 1 
80 0.01 4 97 838 322 0.885 1 

Schwefel 

100 0.01 4 105 484 270 0.927 1 
20 0.005 0 1894 5569 3034 6.662 0.75 
40 0.005 0 1294 3745 1907 7.693 1 
60 0.005 0 1079 4792 2183 14.019 0.9 
80 0.005 0 1043 6835 2013 16.446 1 

Ackly 

100 0.005 0 957 4261 2006 20.235 1 
                                           Table 5: The list of test results of improved θ-PSO. 
 
rate. Function Ackly is something special, compared to 
other three functions, the swarm size effects the 
maximum and average numbers of iteration to achieve 
the goal with some randomicity for the thousands of 
local minima. 

5. Conclusions 
An improved θ-PSO algorithm with mutation operator 
is put forward, which will jump out the local minima 
readily by adjusting the parameters Pm and 3c  properly. 
Simulation results of four complex or multi-mode 
benchmark functions show that, this improved 
algorithm can obtain the goal of global optimal in 
limited iterations with high success rate. But this 
algorithm still needs further study. For example, in our 
experiments, to function Ackly, 3c should be set to near 
zero, while to function Schwefel, when 3c is about 4, 
the optimization performance is good. So how to set 
the parameter 3c  according to the testing function is an 
interesting research direction. 
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