
Optimization of Access Policy among Multiple 

Objects in Java Card 
 

Longlong Jiang 

School of Computer Science and Technology 

Guangdong University of Technology 

Guangzhou, China 

long001898@163.com 

Daiping Li 

School of Computer Science and Technology 

Guangdong University of Technology 

Guangzhou, China 

l-dp@163.com

 

 
Abstract—Applets which are in different contexts in java 

card use shareable interface object to pass information and 

provide method services. This kind of access applications 

method is only suitable for the situation between two applets 

in different contexts. When pass information and services 

among three or more applications, it appears the security 

issues that it is unable to control the data flow. To find the 

reason of the problem, analyze the whole access process and 

point to the key of the judgment method. In order to solve 

this problem, propose a new security access policy among 

multiple objects, use the feature set of the applet, and 

calculate the feature set by JCRE logical judgment module. 

According to the result of calculation, decide whether to 

allow application to use the shareable interface object. The 

new policy implements data security access and adapts to a 

variety of data-access requirements. 

Keywords- context; applet isolation; security access control; 

shareable interface objec; feature set 

I.  INTRODUCTION  

Java smart card is more and more used in all aspects of 
society. The advantage of the java card include: convenient 
program, safe, especially multiple applications on one card. 

Java card application firewall provides isolation 
between different applications [1]. Isolation means that the 
applet does not readily accessible to other applications and 
services, or communication to obtain information [2]. If 
the applet need communicate with other applications, 
system resource or service programs that in a different 
context, should follow certain rules in order to complete 
the communication, access to information or transmitting 
information [3]. 

Applet can access static fields and methods, static 
fields and methods belong to the global object [4]. Applets 
in the same context environment can reciprocally 
communicate with each other which are not subject to 
restrictions. Between different contexts access rules are as 
follows: 

(1) Access between JCRE and applet 
i. Java Card runtime environment (JCRE) belongs 

to a particular context, that context is a system 
context, with special privilege, unrestricted access 
to the context of the application of space. So 
access is not restricted from JCRE to applet. 

ii. Data access from the applet to JCRE systems 
require JCRE Entry object. Applet cannot access 

readily JCRE system resources, when needs 
necessary data access, JCRE should provide 
specific JCRE Enter and the applet can only use 
the JCRE Enter of its own. 

(2) The data access between applets in different 
contexts in applet space requires shareable interface object 
(SIO) supported by Java smart card technology to carry out 
visits or calls. Shareable interface defines a set of interface 
methods, these methods can be called by context [5]. 

II. SHAREABLE INTERFACE OBJECT 

Shareable interface object provides interfaces for 
communication between applets in different contexts [6], 
specific access steps are described as follows: 

First, applet A that provides the shareable interface 
object registers the reference of the object to the JCRE. 

Second, applet B that will access to the applet A 
requests the reference of the shareable interface toward A 
via the JCRE. Applet A returns the reference of the 
shareable interface object via the JCRE. Applet B receives 
the referenced and can access the contents in the shareable 
interface object. Then, it implements the communication 
between applets in two different contexts. 

Third, when applet B calls a method in the shareable 
interface object, accordingly JCVM does context switch. 

The whole process as shown in the Fig.1: 

JCRE Context

JCRE Context
Apple 

B

Context 2

Apple 

A

Context 1

Apple 

A

Context 1

Apple 

B

Context 2

Apple 

A

Context 1 First step register

Second step request and return 

reference

Third step context switch

12

3 4

 
Figure 1.  Access steps between different context applet via shatreable 

interface object. 

Applet B requests the shareable interface object 
reference through the JCRE by calling the API method 
JCSystem.getAppletShareableInterfaeeobjeet [7]. After 
receipt the requisition applet A will validate whether the 
applicant has permission to use the shareable interface. 

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

© 2014. The authors - Published by Atlantis Press 973



A. Summary of Shareable Interface Object 

Application firewall mechanisms specified in Java 
smart card Technical specification provide logical 
application essentially multiple application collections 
labeled by the object context [8]. Objects access in the 
same collection is legitimate, and objects access of 
between different contexts is conditional. The access rules 
crossing different contexts is the shareable interface object 
access mechanism. 

 Analyze the Java Card API that involved in shareable 
interface object access mechanism, can get the information 
that the shareable interface object reference security 
checks would be done in the Applet that provides the 
shareable interface object. 

Shareable interface object mechanism essentially puts 
the data that will be provided to other application that 
require these data and outside the firewall and methods 
into one special object. 

 Java card application firewall allows such objects to be 
accessed by applications that are in other contexts. 
Firewall application does not make any verifications, it is 
allowed access through the firewall. For the judgment of 
applicant, applications full that receives applicant make 
their own decisions. If the judge allows the application to 
access, send the shareable interface reference to JCRE, and 
JCRE will return the reference to the applicant, otherwise 
access will be denied. 

III. ANALYSIS OF SHAREABLE INTERFACE OBJECT  

A. Problem in the Process among Three Objects 

This communication policy between applications is 
suitable for the two objects. If it is more than two objects 
that communicate using this policy, there will be big 
problems. 

There are three applet: applet A, applet B and applet C 
in Fig.2. Applet A provides data and method through 
shareable interfaces, applet B request to use the data and 
methods. After receive the application, applet A will return 
the shareable interface reference to the applet B. Applet B 
obtain the right to use this object. If at the same time applet 
B provides data and methods for applet C also using 
shareable interface, there may be such problem: applet B 
may put reference of object of applet A into shareable  
interface object of its own which is requested by applet C, 
then after getting the object reference of applet B, applet C 
also gets the data of the applet A. Actually, these data 
belonged to applet A is only available to applet B, and 
only applet B can use it, but applet B put the shareable 
interface reference into its own shareable interface object, 
and unexpected applet C access to these data. 

B. Insufficient of the Access Policy  

One of insufficient point is that once the applet 
implements a shareable interface object and put the data 
and methods into the shareable interface object, these data 
and methods within the object will no longer be under the 
control of its own applet. 

This problem is due to when applet A accept the 
requisition of applet B and provide the shareable interface 
reference, it only uses the AID of applet B and judge 
whether applet B’s AID is in its AID list or not. This 

judgment does not adapt data access across multiple 
applications. 

Another insufficient point is that applet needs to 
maintain a list of AID. If there are frequent changes, there 
need a constantly update the AID list. 

C. Analysis of Other Method 

Girand and his copartners proposed a level object 
sharing mechanism based on partial sequence grid [9]. In 
order to control the flow of data, you can specify a level 
for all objects generated by the card application, the data 
information can only flow from a low level applet object to 
a high level of object in java card. This approach has three 
problems: 

First, if there is a malicious program having obtained 
the highest level, all data and method in the related applet 
will no longer be safe. Malicious programs applet can 
freely access the data information in the other application 
that it wants to get [10]. 

The second is how to specify the level of Java objects 
in a smart card , especially if the new downloadable 
application to access the shareable interface object of the 
original application in the card, the virtual machine how to 
specify the level of shareable interface object newly 
created by applet objects; 

Third, this sharing object mechanism is not suitable for 
a variety of sharing access requirements. If an applet 
program requires both low-level information and high-
level information and itself must be set to the middle level, 
it will not be able to suitable for this mechanism. Another 
situation, if there is need to change the applet level and 
will need to re-set level, then all associated applet needs to 
reconsider its level setting. This situation is quite 
complicated. 

So this approach is not suitable for many application 
scenarios of java smart card. Access mechanism based on 
existing shareable interface objects, as well as other access 
methods, introduce a new shared object access mechanism 
and give its formal definition. 

IV. SOLUTION OF MULTIPLE APPLET SHAREABLE 

INTERFACE OBJECT 

Each applet sets a feature set of its own. When applet B 
requests shareable interface of applet A, it will transmit its 
feature set to JCRE. When applet A receives the 
requisition, it is not need to do any of judgment and 
transmit its feature set and shareable interface object 
reference to JCRE. Then JCRE calculate both feature set to 
decide whether applet B has the permission to access the 
object of applet A. As shown in Fig.2: 

When the third applet C asks for access to SIO of 
applet B, it sends its own feature set to JCRE, applet B 
upon receipt of the request at the same time transmits its 
SIO and feature set to JCRE. Then JCRE is to judge the 
requisition, but due to the SIO of applet B contain the SIO 
reference of applet A ,JCRE will once again send a 
notification to applet A. Applet A receive the notice and 
sends its own feature set to JCRE.  

The result whether applet C can obtain the SIO 
reference of applet B is decided by the two judgment that 
the judgment against both feature sets of applet B and 
applet C and the judgment against the both feature sets 
applet A and applet C. This is an "and" operation. Only 

974



two judgment success, can applet C obtain the SIO 
reference of applet B. 

Applet A

Context 
1

Applet B

Applet B
Logical 

Judgement module

Applet C

12

3 4

12

3 6

4
5

JCRE 

Context

JCRE 

Context

Logical 
Judgement module

Context 
2

Context 
2

Context 
3

SIO reference of applet A

 
Figure 2.  Security access control among multiple applet shareable 

interface object 

V. FORMAL DESCRIPTION 

The specification through formal descritption of new 
proposed shareable interface object access mechanism is as 
follows: 

Define: 
SIO represents a set of all shareable interface objects; 
APPLET represents a set of all applets [11]; 
Fapplet represents a set of all applet feature sets, where 

appletAPPLET; 
SIOASIO represents the shareable interface object of 

applet A, where AAPPLET; 
Trust(applets, appleta) represents the trust relationship, 

that is applets which represents the provider of the SIOs 
trust the appleta which represents the applicant for the SIOs; 
If and only if the operation results of the feature set is true, 
the logical is true. 

Judge(Fs, Fa, SIOs) represents logical decision of the 
JCRE through calculating the both feature sets, Fs 
represents the feature set of the SIOs provider and Fa 
represents the feature set of applicant for the SIOs. 

By above definition, standardization logic strategy can 
be expressed as follows: 

Trust(applets , appleta) ↔ Judge( Fs , Fa , SIOs)  (1) 

Only when the logic judgment condition is true, the 
trust relationship is true. 

For the Fig.2, formula (2) that represents the applicants 
apply to the provider’s SIO is as follows: 

Trust(As , Ba) ↔ Judge(FA , FB , SIOA)         (2) 

where AAPPLET, BAPPLET, SIOASIO               
If the judgment of FA and FB is true, applet A will 

accept the requisition, otherwise refuse the requisition. 
This is the situation of two applet that one accesses the 

other one’s shareable interface object. 
For the latter situation in the Fig.2, among three applet: 

Trust(Bs , Ca) ↔ Judge(FB , FC , SIOB)        (3) 

where BAPPLET, CAPPLET, SIOBSIO 
Because SIOASIOB , SO : 

Judge(FB , FC , SIOB)  

= Judge(FB , FC , SIOb) ∧ Judge(FA , FC , SIOB) 

=  Judge(FB , FC , SIOb) ∧ Judge(FA , FC , SIOA) 

=  Trust(Bs , Ca) ∧ Trust(As , Ca)                      (4) 

where A APPLET, B APPLET, C APPLET, 

SIOASIO, SIOBSIO, SIObSIO. 
SIOb represents the SIO of applet B except the 

reference of applet A’s SIO. Here, use the SIOb to 
distinguish the SIOB that represents the SIO of applet B 
contains the reference of applet A’s SIO. 

After conversion, Standardization formula is as follows: 

Trust(Bs , Ca) 

↔ Judge(FB , FC , SIOb)∧Judge(FA , FC , SIOA)(5) 

This formula represents the judgment condition for the 
situation that is descripted in the lower part of the Fig.2. 

From the new judgment condition, can get the new 
trust relationship as follows: 

Trust(Bs , Ca) ↔ Trust(Bs , Ca) ∧ Trust(As , Ca)    (6) 

This formula represents the new trust relationship that 
is contained in the Fig.2. 

A. Specification of Formal Description 

If the requested SIO contains other SIO reference, there 
must be an additional judgment that judge the feature set 
of the applicant and the feature set of the applet that 
contain the other SIO. So as shown in Fig.2, the security 
control rule is: 

1) determine whether the applet C satisfy access 
conditions of applet B; 

2) determine whether the applet C satisfy access 
conditions of applet A; 

Only two conditions are satisfied, applet C can access 
the SIO of applet B. 

Here Hidden another condition, it is B satisfy the 
access conditions for applet A. In general, if there is not 
the reference of applet A shareable interface object in the 
shareable interface object of applet B, the problem of three 
applets access requisition does not exist. The access 
requisition among three applets can be broken down into 
access requisition between two applets. Only when the 
requisition of applet C to shareable interface object of 
applet B involves the third party, it will be the safety 
problem that applet A can’t control the data in its own 
shareable interface object. So, the hidden condition is: 

There is the shareable interface object reference of 
applet A in the shareable interface object of applet B. 

That is, applet B must satisfy the access condition of 
applet A. 

VI. FEATURE SET DESCRIPTION 

Feature set is include applet’s identity, rights, and some 
characteristics of need, and it judge whether satisfy the 
access conditions between different objects. Feature set 
should have at least one element, elements’ status is equal. 
Feature set contains elements in general are: 

975



1) its own identity: applet AID, use the applet AID can 
quickly judge whether the applicant applet satisfy the 
conditions of access control. 

2) access regular: permission and role [12]. This is the 
basic access regular, when each applet package was 
installed into the card system, the JCRE system defined its 
permission and role [13]. 

3) the other feature: include the access condition that 
defined by developer or issuer. This feature should be 
installed into the java card system when application was 
installed on the card. 

A. Advantage of Feature Set 

Using the feature set to describe each apple and to 
judge whether the requisition can be allowed has great 
flexibility and convenience. There are three reasons: 

First, using feature set to describe the applet can 
increase the safety of the applet. Illegal applet wants to 
fake other legal application is bound to become more 
difficult. Feature set can make different security measures 
together data such as security access mechanism, identity 
recognition, permissions and role etc. Even a malicious 
applet steals the identity information from a legal 
application such as AID [14]. But if there is no other 
security features, it will not be able to access other 
applications shareable interface object. 

Second, provide flexible judgment method and 
decision module can use a single element to make the 
decision, can also use the combination of elements to make 
the decision. It depends on the use of smart card specific 
environment and security access level [15]. 

Third, simplify the setting of the security access. 
Different context can inherit the same set of feature set. 
When develop applet in a certain context group, the feature 
set of the applet can be directly inherit the group’s feature 
set. Do not need to set a specific security access every time, 
also do not need to update AID list of related applets every 
time. 

VII. CONCLUSION 

The advantage that all applets at the same time provide 
the feature set used to judge whether the requisition satisfy 
the security requirements is that it is good adaptability and 
flexibility to be suitable for access request diversity. In the 
simplest case of application between two objects, it just 
need to verify their AID to decide whether to accept the 
application. If there not set up an AID list, then you can 
determine through the high level of access control regular, 
so that it reduces the frequency of setting applet AID list 
when develop the applet program, and does not require 
frequent updates AID list. And through JCRE systems 
level of judgment using the feature set, the new access 
policy may reject some cases that malicious applications 
access applet shareable interface object by illegally 
obtained access right. 

Through the actual Java card test environment and the 
access interaction among three applets, has verified the 
effectiveness and reliability of the new security access 
strategy. From the perspective of the overall analysis, the 
new security access mechanism, not only solves the 
problem of access to each other among more than two 
application objects, but also improves the overall security 

of the smart card. And the design of the new solution does 
not need to take up additional memory or calculation 
resource, only need to integrate some existing security 
mechanism. It improves the availability of this method, 
and makes the Java card to well adapt to development and 
utilization of multiple applications. 

REFERENCES 

[1] Oracle Corporation. “Virtual Machine Specification Java Card 
Platform. Version 3.0.1, Classic Edition.” 2009. 
http://www.oracle.com/  

[2] Oracle Corporation. “Runtime Environment Specification Java 
Card Platform. Version 3.0.1 Classic Edition.” 2012.  
http://www.oracle.com/ 

[3] Xu Yixin and Zhang Qishan. “Analysis and Implementation of 
Security Object Sharing Policy in Java Card.” Journal of Computer 
Applications. Vol 29, No 6, 2009. pp: 1615-1617.  

[4] Kyongho Han, Yongsang Song, and Jongmoo Choi. “Multimodal 
Security Enhancement Scheme for Java Card.” 2011 International 
Conference on Network-Based Information Systems. 2011.IEEE 
Computer Society ,  doi: 10.1109/NBiS.2011.105 

[5] Sun Yaqin and Wu Yuchuan. “Analysis and Research to Security 
Testing of Smart Card.” 2009 International Conference on 
Electronic Commerce and Business Intelligence. 2009. IEEE  
Computer Society. pp. 99-101, doi: 10.1109/ECBI.2009.66. 

[6] Liu Hui. “Java card Security Analyses and Research.” Shandong 
University. 2008. 

[7] Jiangpei Xu, Liji Wu, Xiangjun Yang, Yuzhong Wang and 
Xiangmin Zhang. “A Security Vulnerability of Java Card on Array 
Access in Financial System.” Beijing Smart Card Research 
Institute of Zhongchao Credit CARD co.,Ltd. pp: 707-710. 

[8] Marco Avvenuti, Cinzia Bernardeschi, Nicoletta De Francesco, and 
Paolo Masci. “JCSI: A Tool for Checking Secure Infromation Flow 
in Java Card Applications.”  The journal of Systems and Software, 
Vol. 85, 2012, pp. 2479-2493. 

[9] Michael Lackner, Reinhard Berlach, Michael Hraschan, Reinhoid 
Weiss and Christian Steger. “A Defensive Java Card Virtual 
Machine to Thwart Fault Attacks by Microarchitectural Support.”  
2013. International Conference on Risks and Security of Internet 
and Systems. 

[10] Jason Howarth, Irfan Altas, and Barney Dalgarno. “Information 
Flow Control Using the Java Virtual Machine Tool Interface.” 
2010. International Conference on Availability, Reliability and 
Security. IEEE Computer Society. pp.689-695, 
doi:10.1109/ARES.2010.75. 

[11] Won-Ho Choi, Se-Won Oh, Gwang Jung, and min-Soo Jung. “A 
Novel Scheme for Efficient Installation of Applets for Advanced 
Java Card System.” 2009 World Congress on Computer Science 
and Information Engineering. IEEE Computer Society. pp. 60-66, 
doi: 10.1109/CSIE.2009.867. 

[12] Ahmadou Al Khary Sere, Julien Iguchi Cartigny, and  Jean Louis 
Lanet. “Checking the Paths to Identify Mutant Application on 
Embedded Systems.”  Lecture Notes in Computer Science 6485, 
FGIT 2010. pp. 459-468. 

[13] Julien Lguchi-Cartigny and Jean Louis Lanet. “Developing a 
Trojan Applets in a Smart Card.”  Journal of Computer Virolugy 
and  Hacking Techniques, Vol, 6. 2010. pp. 343-351.  doi: 
10.1007/s11416-009-0135-3. 

[14] Ewout Keuleers and Jean Marc Dinant. “Data Protection and 
Multi-application Smart Cards – the Use of Intelligent Servers to 
Ensure Interoperability and Data Flow Requirements.”  Computer 
Law and Security Report, Data Protection Implications of Smart 
Card Schemes. Vol, 21, 2005, pp. 146-153. doi : 
10.1013/j.clsr.2005.02.001. 

[15] WeiNgan Chin, Tuan Huang Pham, and Anh Hoang Truong. “A 
Fast Algorithm to Compute Heap Memory Bounds of Java Card 
Applet.”  2008 Sisth IEEE International Conference on Software 
Engineering and Formal Methods. 2008. IEEE  Computer Society. 
doi: 10.1109/SEFM.2008.30. 

 

976




