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Abstract—With the number of 3D shapes has risen sharply, 

a fast and robust matching technology suitable for large 3D 

shape databases is one of the key technologies to enhance the 

retrieval performance. We proposed a general novel 

matching algorithm for 3D shape retrieval: SRRSM, based 

on sparse representation of signals. Using feature database 

of 3D shape as over-complete dictionary, the matching 

problem can be transfer to the problem of sparse 

representation of signals. It is a second-cone programming 

(SOCP) problem and can be solved in polynomial time by 

interior point methods. The proposed approach combines 

signal reconstruction, sparse and discrimination power in 

the objective function for matching. It is more sparse and 

robust for effective matching than the Euclidean distance the 

most commonly used for matching. Meanwhile, the proposed 

method is very suitable for large 3D shape database. 

Theoretical analysis and comparative experiment verify the 

efficacy of the proposed algorithm. 

Keywords-sparse representation; matching; 3D shape; 

robust; large database 

I. INTRODUCTION  

Recently, developments in 3D scanning technologies 
and hardware-accelerated 3D graphics are making 
acquisition high quality 3D data easily. As technologies 
are improving, the number of 3D models is growing 
rapidly and a lot of models are already feasible from 
proprietary and public databases. The problem in creating 
new 3D models has shifted to search for suitable 3D 
models in databases or on the Internet. Thereupon, the 
development of shape matching algorithm is required for 
the retrieval suitable 3D models from large repositories. 
The fundamental aim of shape matching is to measure the 
similarity between two given shapes by employing some 
distance measure. Therefore, similarity measures are the 
kernel of every shape matching algorithm. 

Since a few years, a large number of articles focus on 
3D shape matching. A lot of the current 3D shape 
matching algorithms are worried on global similarity. Such 
as [1], who directly analyze the 3D meshes using curvature 
correlograms. Some others, such as [2], use a 2D view 
based method. They offer an analogy nearest neighbor 
framework to determine the feature views of a 3D model. 
These methods have rigid transformations invariance for 
matching similar models. Other methods are enabling 
retrieval of models different from non-rigid 
transformations including character articulation or shape 

bending[3]. They are generally based on the connection 
graph or skeleton extracting of a 3D model[4][5]. 

Other approaches to shape matching are met as 
partially similar shapes are proposed. This kind of shape 
matching plays a key role in many applications such as 
indexing or modeling by example. Partial similarity of 
shape matching plays a central role in a lot of applications 
such as modeling or indexing by parts. It usually uses the 
part recognition idea [6]: segmentation the whole shape 
into significant parts and then matching pairs of parts as 
whole shapes. Reference [7] also proposed transferring the 
3D shape matching problem to a multi-criterion 
optimization problem attempting to maximize the 
similarity and the significance of the matching parts at the 
same time. 

In this paper, we submit a new approach for 3D shape 
matching based on signal processing: sparse representation 
for robust shape matching (SRRSM). In our way, the 
problem of 3D shape matching is transferred into the 
problem of searching for the sparse representation of 
signals over an over-complete dictionary. We alter the 
standard sparse representation framework of signals for 3D 
shape matching. Firstly, instead of using the generic 
dictionaries (e.g., Warelet, Fourier, Gabor and Curvelet), 
we use feature database of 3D shape as an over-complete 
dictionary whose basic elements are the feature vectors. 
Secondly, the discrimination power takes the place of the 
reconstruction error in the objective function of the sparse 
representation is more appropriate for 3D shape matching. 
The proposed approach in this paper combines signal 
reconstruction, sparse and discrimination power in the 
objective function for matching. With the theoretical 
framework of SRRSM, our method is a sparse and more 
robust for effective matching. 

The rest of this paper is organized as follows. Section 2 
describes the theory framework of the standard sparse 
representation of signal. Section 3 discussed the 
motivations for proposing SRRSM by analyzing the 
reconstructive methods and discriminative methods for 3D 
shape matching. The formulation and solution of SRSM 
are presented in Section 4. Experimented results with 
synthetic and real data are showed in Section 5 and Section 
6 concludes the paper with a summary of the proposed 
work and discussions. 
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II. SPARSE REPRESENTATION FOR SIGNAL 

Nowadays, there exists such an ascending momentum 
in the research field of sparse representations of signals. 
Sparse representation of signals has applied in many fields 
including compression, regularization, feature extraction, 

and more. Using an over-complete dictionary M NA R   

that includes prototype signal-atoms as its columns 
1

N

j j
d


 . 

A signal 1Nb R   can be decomposed as a linear 

combination of these signal 

atoms 1 1 2 2 ...... N Ny d d d       . The signal can be 

representative as matrix-vector product y Ax . The 

vector 1Nx R  contains the representation coefficients 

( 1 , 2 ,……, N ) of the signal y . If M N and A is row 

full-rank matrix, the solutions of the representation 

problem ( y Ax ) form a linear subspace. Numerous 

solutions can available. Hence, constraint functions in the 
solution will be set for obtaining a unique solution. 
Classical approach to find an optical solution uses 
minimize 2-norm: 

( 2l ): 2
2

argminx x


  Subject to Ax y  (1) 

( M NA R  , M N , Nx R , Mb R ,
2
 is the 2-norm) 

The solution is a minimum-energy solution, having 
analytically tractable and physical interpretation as 
minimum energy. But the solution is typically nonzero in 
every component and the wrong principle for most 
applications. Therefore the solution with the least nonzero 
coefficients is absolutely an attractive representation. This 
sparsest representation can get by solving the following 
optimization problem: 

0

0 0
( ) : argminl x x



  Subject to Ax y   (2) 

( M NA R  , M N , Nx R , Mb R ,
0
 is the 0-norm) 

In general, solution of (1) requires enumerating all subsets

 of the direction (matrix M NA  ) searching the smallest sub-

set can represent the signal  y , and then, the complexity 

of this algorithm grows exponentially with N . It is now k-

now that sparse solution can be obtained by convex opti-

mazation, this has been found empirically[2,8] and theore-

tically[9-11] . Consider replacing the 0-norm in (2) by  the

 1-norm, getting the minimization 1-norm problem 

 1

1
: argminl x   Subject to Ax y   (3) 

( M NA R  , M N , Nx R , Mb R ,
1
 is the 1-norm) 

This can be viewed as a kind of convexification of (2) 
[12]. In fact, (3) can be cast as a linear programming 
problem and solved by modern interior point methods, 
even for very large number M and N. 

III. SRRSM THEORY FRAMEWORK 

Sparse representation are important in applications 
such as de-noising, smoothing and coding, where the 
original signal y should be reconstructed as precisely as 
possible. However, for applications like 3D shape 
matching, the representation coefficients are matching 
results for the given feature vector. That is to say, the 
sparest representation is naturally matching: among all 

feature vectors of feature database, it selects the feature 
vectors which most compactly expresses the input feature 
vector and rejects all the others. That is the matching 
processing. 

In this paper, we use sparse representation of signal to 
perform 3D shape matching. Instead of using the generic 
dictionaries (e.g. Fourier, Wavelet, Discrete cosine, and 
Gabor), we use a specifically over-complete dictionary 
whose column vectors (base elements) are feature vectors 
of 3D shape feature database. If sufficient feature vectors 
belong to different classes in feature database are available, 
the query feature vector can represent as a linear 
combination of just similar feature vectors. This 
representation must be sparse, including only little fraction 
of the overall feature database. In SRRAM, the number of 
feature vector in database is must enough bigger than 

dimensionality of feature vector ( m nA  , m n ) for 

building over-complete dictionary. Otherwise feature 
database can not as over-complete dictionary, and there 
has not sparse representation for matching. 

The SRRSM problem is formulated mathematically as: 

 1l  1
min

x
x  Subject to y Ax    (4) 

Matrix m nA R  is feature database with every column 

is a dimisionm feature vector of a 3D shape. 

Vector
1my R  is the feature vector of query 3D shape. 

Since the entries of x encode the identity of a 3D shape 
feature vector y , we can find the associated class of y by 

solving the linear system of equation y Ax . In [13], it is 

proved that if certain conditions on sparse is satisfied, 
minimize 1-norm will obtain the sparse solution as 

minimize 0-norm. Finding solution 1nx R  can be 

efficiently solved by basis pursuit using linear 
programming (LP).  

When a 3D shape mixing noise as query shape, the 
matching methods mentioned above may fail because they 
have little information is included in matching algorithm to 
deal with noise and missing data. In fact, the feature vector 
of query 3D shape usually corrupted by noise when 
conveying on the internet. Therefore, we allow for some 
degree of noise and solve a noise-aware variant, such as: 

 1,l   1
min

x
x  Subject to 

2
y Ax      (5) 

The is a relaxation factor,  
This is a second-cone programming (SOCP) problem 

and can be solved in polynomial time by interior point 

methods. [优化] 

IV. EXPERIMENTS AND ANALYSIS 

A. Synthetic Example 

We make the random matrix 20 100A   as feature database 

and a random vector
1100y 

as feature vector of a query 3D 

shape. Every random column vector is feature vector of a 
3D shape. The aim is find the most similar feature vector 
(3D shape descriptor) in the feature database to matching 

query 3D shape. If the some columns of matrix 20 100A  are 

the most similar to query feature vector, then the 
corresponding elements of x are nonzero and the other 

elements are zero. If the i th column of 20 100A  just is the 

same as query feature vector, then i th element of x is one 

and the other elements are zero. We do synthetic 
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experiments to verification the thinks using Euclidean 
Distance method and SRRSM for matching. The 
experiment results as follows: 

Firstly, the query vector 1y a  is one of columns of matri-

x 20 100A  . Experimental results as Fig. 1 and Fig. 2. The ex-

periment results show SRRSM has significant high matchi-

ng effectiveness. It can find the same model while exclude

ng those independent models. Euclidean distance metric c-

an also find the same model, but the other independent mo-

dels have been as return results for matching. 

Secondly, the query vector y  ( 7 9 100.5 0.7 0.3y a a a   ) 

is linear combination of some columns in matrix 20 100A  .   

Experimental results as Fig. 3 and Fig. 4. The experiment r

esults show SRRSM has more accurate matching results f-

rom Fig. 3. In Fig. 4 we can conclude that Euclidean dist-

ance does not return the correct results. 

B. Real Example 

We use method in [8] extracting feature vector from one t

housand models form feature library and dimensionality o

f feature vector is two hundred and thirty. Extracting quer-

y model feature uses the same method. After that, we use 

SRRSM and Euclidean distance metric as the matching   

method. The experimental results are as Tab. 1. The Preci-

sion-Recall curve is Fig 5. Experimental results show the 

method has significant high retrieval effectiveness. 

V. CONCLUSION 

The main contribution of this paper is the idea of using sp-

arse representation of signals for robust 3D shape matchin

g. The key feature of SRRSM is that it provides a theory   

framework within matching problems can transfer into a   

sparse representation of signals, and it is a SOCP problem 

can be solved in polynomial time by interior point method

s. SRRSM includes reconstruction property, discriminate-

on power and sparsity for robust 3D shape matching. We 

e-xtensively evaluated the SRRSM on Synthetic and real 

3D shape datasets and compared it against Euclidean dist-

ance metric method. The evaluation results lead to the co-

nclusion that the SRRSM has very high discriminative po-

wer and more robust for 3D shape matching. However, S-

RRSM is suitable for large 3D model database. The num-

ber of models in database is much larger than dimensiona-

lity of  feature vector, so that we can obtain a spare and r-

obust m-atching result. Otherwise, it is not suitable for us-

ing SRRSM. 

 
[1] Li, Y., Cichocki, A., & Amari, S. I,“Analysis of sparse 

representation and blind source separation”. Neural 
computation,vol.16, 2004, pp.1193-1234,. 

[2] Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S, “Orthogonal 
matching pursuit: Recursive function approximation with 
applications to wavelet decomposition.” In Signals, Systems and 
Computers, 1993. 1993 Conference Record of The Twenty-
Seventh Asilomar Conference on , IEEE. November, 1993,pp.40-
44. 

[3] Chen, S. S., Donoho, D. L., & Saunders, M. A, “Atomic 
decomposition by basis pursuit,” SIAM journal on scientific 
computing, vol.20, 1998,pp.33-61. 

[4] Donoho D L,“For most large underdetermined systems of linear 
equations the minimal 1‐ norm solution is also the sparsest 
solution,”Communications on pure and applied mathematics, 
vol.59,2006,pp. 797-829. 

[5] Yan R, Shao L, Liu Y, “Nonlocal hierachical dictionary learning 
using wavelets for image denoising” ,IEEE transactions on image 
processing,vol.22, Dec.2013, pp.4689-4698. 

[6] Chen Y, Nasrabadi N M, Tran T D. Hyperspectral image 
classification via kernel sparse representation[J]. Geoscience and 
Remote Sensing, IEEE Transactions on, vol.51,2013, pp.217-231. 

[7] Chen S S, Donoho D L, Saunders M A, “Atomic decomposition by 
basis pursuit”, SIAM journal on scientific computing, vol.20, 
1998,pp. 33-61. 

[8] Osada R, Funkhouser T, Chazelle B, et al, “Matching 3D models 
with shape distributions”,Shape Modeling and Applications, SMI 
2001 International Conference on. IEEE, 2001,pp.154-166. 

[9] Donoho D L, Huo X, IEEE Translate information  
theory,vol.47,2001, pp.2845-2862. 

[10] Elad M, Bruck stein A M, In processings of the IEEE international 
conference on image processing (IEEE, New York),2001. 

[11] Elad M, Bruck stein A M, In processings of the IEEE international 
conference on image processing (IEEE, New York), vol.48, 2001, 
pp.2558-2567. 

[12] Donoho, David L., and Michael Elad. "Optimally sparse 
representation in general (nonorthogonal) dictionaries via ℓ1 
minimization." Proceedings of the National Academy of 
Sciences, vol.100 , 2003, pp.2197-2202. 

[13] Lee K, Bresler Y, “Admira: Atomic decomposition for minimum 
rank approximation”, Information Theory, IEEE Transactions on, 
vol. 56, 2010,pp.4402-4416. 

[14] Boyd S P, Vandenberghe L. Convex optimization[M]. Cambridge 
university press, 2004. 

 

1007



 

 
 

 
 

 

 
 

 

 

 

 

Figure 1. Euclidean Distance as metric 

Figure 2. SRRSM method 

Figure 3. Euclidean Distance as metric 
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TABLE  1. Some experiment results  

 

Matching 

method 
Input model Result_1 Result_2 Result_3 Result_4 Result_5 

SRRSM       

Euclidean 

Distance 
      

SRRSM       

Euclidean 

Distance 
      

 

Figure 4. SRRSM method 
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