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Abstract—Conventional multi-view theory fails to explain 

underwater stereo vision because of the refraction bends 

light rays. This paper focuses on one of the most common 

scenarios of underwater vision, a stereo vision system of 

two cameras with a flat housing, in which the light ray 

refracts twice, once at the air-housing interface, and once 

at the housing-water interface.The papermodelsthe 

geometry of the light propagation explicitly. Under the 

principle of light ray’s reversibility,discussion on one 

camera’s view in 2D follows the backward projection by 

casting a light ray from the camera center to the object 

point.After the entire light ray’s coplanarity is proved, the 

2D case extends to 3D space easily. In 3D case, 

computation of object point from the casted ray is derived 

from the stereo view model. An 3D reconstruction 

algorithm is also proposed. The algorithm is concise and 

feasible because no particular configuration or additional 

device is required. It is proved accurate and low error rate 

in the experiment. 

Keywords-underwater; stereo vision;reconstruction; flat 

housing; refraction 

I. INTRODUCTION 

Stereo vision is well studied and related technologies 
have been applied in industries, such as 3d 
reconstruction, measurement, navigation. Nevertheless 
there is still much work to do on stereo vision 
underwater, since the refractive mediums introduce 
challenges to stereo vision. 

Conventional multiple-view geometry,based on 
theprecondition that light travels along straight lines fails 
in underwater vision.[1]View through a flat housing is 
one of the most common underwater scenarios. In such 
scene light rays bends into poly-lines when travelling 
through water, housing, air and then into a camera. 
Moreover, the degree of bending is connected with the 
incidence angle when the light ray enters one material 
from the other. Consequently, the objects look not only 
closer but also slightly distorted in the images. Therefore, 
depth can’t be accomplished easily with traditional 
methods based on the light propagation in air. 

Many studies on underwater vision have been 
proposed in recent years, while most discussion on 
reconstruction requires cameras to be posed at particular 
orientation, for example, approximately orthogonal to 

the air-glass or glass-water interface,which may not be 
suitable for most real occasions.[2]Some other studies 
focus on image formation model and light transmission 
to improve the visibility underwater. A depth map is also 
obtained, usually with the help of additional means, such 
as structured light or polarized filter.[3, 4] Models of 
view through single or multiple refractive layers are also 
discussed, while these studies focus on single 
view.[5,6,7]In addition, many researches focus on 
reconstruction on large scale such as subsea terrain.[8]R. 
Kawahara’s[9] work is more likely to ours, but he has 
focused on encoded the refraction into the camera model, 
which is also more suitable for axial cameras. 

To reconstruct the scene underwater, this paper 
focused on building a model of underwater vision with a 
glass flat housing,and proposed an easy and feasible 
solution for computing objects’ position in water with 
two views. The model clarifies the geometry withtwice 
reflection on light ray’s path, once at the water-glass 
interface, once at the glass-air interface. By tacking the 
light projection, the relationship between image points 
and corresponding object points is articulated, and a 
concise 3D reconstruction function is also proposed. 

The contribution of this paper is as follows. Firstly, 
our model describes a general scenario of underwater 
vision, without requirement for the orientation of the 
camera, which is more applicable to real use than an 
axial camera model. Secondly, we propose a easy and 
feasible algorithm to reconstruct objects in water. We 
believe such function will build a foundation for 
underwater 3D reconstruction, measurement, and 
expand the application of stereo vision. 

The rest of this paper is divided into 3sections. 
Section 2definesour general geometry model of 
underwater vision, and introduces the computation of 
depth. Section 3 describes our experiment. Section 4 
makes the conclusion and discusses our future work. 

II. UNDERWATER VISION  MODEL 

A. Basic principles 

Light propagation is the basic theory of stereo and is 
also the fundament of the discussion. Two essential 
principles govern the propagation of light in a refractive 
situation. 
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As we know, refraction of light obeys Snell’s law,  

 
Figure 1. Underwater vision model 

 

 
Figure 2.Stereo vision with two cameras 

 
which defines the relationship between the incidence 
light and the refracted light as the follow equation: 

              
 
  

 
 (1) 

  and    are angles of incidence light and the 
refracted light with the respect of the normal of the 
interface.  

 
and 

 
 are the refractive indexes of the two 

materials. 
The other principle is the reversibility of light ray, 

which deducted from Huygens–Fresnel principle.  
Since both cameras share the similar situation, we 

focus on one camera’s scenario in Fig. 1 first. The 2D 
case expands to 3D spaceeasily, which will be proved 
later. In the underwater vision, a light ray from objects 
refracts twice before reaching the camera, first at water-
housing interface and then at housing-air interface. This 
forward projection is natural, but the forward derivation 
is highly nonlinear and difficult to compute because the 
position of object point is unknown.[2] Therefore, most 
of our discussion is on backward projection to simplify 
the derivation. Since the propagation of light is 
reversible, the former and the latter models are 
equivalent. 

B. 2D model of single view 

The two cameras in a stereo vision system share the 
similar situation of light casting, so our discussion starts 
with one camera’s model in 2D case. Derivation in 2D 
easily expands to 3D scene because of the coplanarity of 
light’s refraction[5], which will be proved later. 

The backward projection assumes light raysare 
casted from the camera center, and travels through three 
mediumsonto object. Fig. 1 describes the scene. The 
coordinate system is defined as the projection of the 
camera coordinate system in the figure’s plane. The 
origin O is the center of camera, also marked as C. The 
horizontal axis z is the projectionof the axis of camera, 
and the vertical axis u is defined orthogonal to z 
accordingly. For a pixel        in the image, the 
corresponding light ray intersects the air-housing 
interface at    and intersects the housing-water interface 

at   . The intersection angles with the surface normal   

are   and   . Then we will have the equations below by 

Snell’s law: 
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  denotes the refractive angle of light ray in water. 

  ,   and    are all acute angles.  
 
,  

 
 and  

 
 denote 

the refractive indexes of the three materials respectively. 
For convenience, we represent the direction of the light 
ray with vectors in the following discussion. The 
direction vectors of the light ray in air, housing and 
water are marked as   ,  and  . Obviously           
is a cameras-related and pixel-wise vector with   as the 

focal length and   √     .Since  
 
,  

 
 and  

 
 are 

constants,   can be derived from taken as a function  of 

  and  . 
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Eq. (5) is a deducted from Eq. (2). Analogously,    

can also be denoted as a function of   , and finally a 

function of   . 

      (    )    (          )=         (7) 

Since    and   is defined as a unit vector, its 

elements         will be easily calculated withEq. (5) or 

Eq. (7) and quadratic sum. Replacing the line from 
camera center to object point with vectors, the transitive 
relationship is acquired. 

           (8) 

            (9) 

            (10) 

In the equations above   ,    and    are constants 

denoting thickness of air, housing and water the light ray 
passes.  can be omitted since it’s the origin. By 
combining equations Eq. (4) to Eq. (10), we finally have 
the coordinate of point    on object. 

                               (11) 

C. 3Dmodel withstereo views 

Actually the discussion on 2D is based on an implicit 
precondition that the entire light ray path lies on the 
same 3D plane. The precondition can be easily proved 
from Snell’s law, and furthermore the 2D case extends 
naturally to 3D case under the condition. In the 
backward projection the casted ray travels through 
camera center C and a image point p by definition. 
When the light ray intersects the air-housing interface, a 
plane πis defined by the light ray and the interface 
normal at the intersection point. According to Snell’s 
law, the incidence ray, the normal of the refractive 
surface, and the refracted ray lies on the same plane. 
Then the refractive light ray     also lies onπ. The 
coplanarity is transited to the refraction on glass-water 
interface, thus the entire path of light-ray lies on the 
same planeπ. Consequently the equations in 2D 
discussion extends to 3D simply by extending the 
vectors from 2-dimension to 3-demension. Noticeably, 
definition of 3D vector    is as the following equations. 
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                                        (12) 

In this equation,    is the camera’s focal length, 
which lies on axis z in Fig. 1’s 2D scene.x and y still 
represent the image point’s coordinate in the dimension 
of length. The principle point lies at        .    and   

denote the amount of pixels in unit length on x and y 
direction with          and         .  and   are 

radial distortion components.  ,   ,  ,   and fc are pre-

calibrated intrinsic parameters of the camera or can be 
calculated with the parameters. Actual  is scaled to unit 
vector by dividing by the square root of the quadratic 
sum of all three components. Unit vectors   and   is 
also derivedfromEq. (4),Eq. (7) and the coplanar 
constrains. 

Now we can extend the 2D model into 3D and take 
the other camera in to consideration also. Fig. 2 
describes the casted light rays of both cameras in the 
stereo vision. Points on the light ray of the camera on 
right  ,    and   and lies on plane π, while points on the 

light ray from the other camera   ,     and     lies on 

planeπ’. The object point   lies on both light rays’ path, 
also both planes. Extending the light rays in air forward 
like the red lines, they will intersect at thepoint  , the 
virtual image of the real object point  . The object point 
looks locating at    because light rays are thought to be 
straight. Obviously, both    and    lie on the intersection 
line ofπ andπ’. 

Since the geometry of    and the cameras obeys the 
principles of conventional multi-view, the following 
spatial transformation is valid. 
           (13) 
  and    denote the point in the coordinates of the two 
cameras respectively.  and  are the extrinsic parameters 
of the stereo vision system. Representing with vectors, 
we have 
               (14) 
 and    are the distance between    and the camera 
centers, which can also be computed in conventional 
multi-view model. From Eq. (14) we get 

     
 

     
        (15) 

Then     can also be derived with (11).Point coordinates 
derived through Eq. (15) will be used for error analysis. 

According to Eq. (11), the surface normal  and the 

distance constants   ,    and    are necessary for 

computing   .   can be omitted because it’s only related 

to the direction of    and the depth of housing. However, 

     are affected by the position and orientation of the 
flat housing, so markers as Fig. 3 are introduced to 
calibrate the housing. Six markers are affixed on the 
outer surface of the housing, the corner’s coordinates 
can be computed with the fundamental matrix.[1] Then 
normal   can be computed from the coplanarity. 
Denoting the corners as             , since        ,    
can also be computed with the coplanar constrains of    
and   . 
                               (16) 
The values with all combinations of two markers are 
computed and the average value is used for computation. 
The similar equation also works for    , and then    and 
    can be computed from       . Finally coordinate 
of   is calculated with Eq. (11). 

D. Algorithm 

The actual step-by-step algorithm is listed as follows. 

 Calibrate the stereo vision system, including the 
intrinsic and extrinsic parameters of the two 
cameras, and compute the fundamental matrix 

 Detect the corners of markers and compute the 
normal of the housing surface 

 Extract the SIFT features and match the point 
pairs [11] 

 Compute   ,  ,  ,   , and  for every matched 

points in left picture. 

 Repeat last stepand compute the according 
vectors and constants for matched points in right 
picture. 

 Compute    and     with        for all point 
pairs 

 Reconstruct the points’ coordinates. 

 
 (a) (b) 
Figure 3. (a) Checkerboard marker used for interface normal 

calibration. (b)Experiment configuration 

III. EXPERIMENT 

A. Configuration and preparation 

Theactual experiment configuration is as Fig. 3 
shows.A 60cm*25cm*40cm glass water tank is used as 
the flat housing,with the thickness of 0.65cm and the 
measured refraction index as 1.46. Two Canon 5D 
cameras are used to simulate a stereo vision system, 
providing images of the resolution 3168 by 2112. The 
cameras are located on one side of the same flat surface, 
about 40cm from the water tank with an approximate 
40-degree angle between their orientations. 

The calibrationof the stereo vision system is 
implemented with Zhang’s method[10]. 14 image pairs 
of  a checkerboard pattern are taken, and the parameters 
as follows are derived. 

Intrinsic parameters of  camera1: 

            (
        

        
                  

) 

Intrinsic parameters of camera2: 

            (
        

        
                  

) 

Extrinsic parameters of camera2: 

  (
                   
                   
                  

) 

                                   
Fundamental matrix: 

  (
                    
                  
                    

) 

B. Result and analysis 

Some objects with different color design are 
immersed in the water for experiment. Images of the 
scene taken by the cameras are shown in Fig.4. The 
refraction through the water tank is quite obvious seeing 
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from the table’s edge behind the tank, while the color 
design of the objects are clear enough to be detected. 
The SIFT points in both imageare shown in Fig. 5. Most 
points lie on the standing plate because of the 
sophisticated and colorful pattern on it. Points on the 
mug are also detected. After matching the SIFT points, 
the object points’ coordinates are computed, shown in 
Fig. 7.We can see that many points are lost during 
matching. Points on the markers are omitted because 
they’re unnecessary for our reconstruction. Points on the 
reflected image on the housing are removed 
automatically since there is no pair for them.Only most 
of points on the mug fails to match. However points on 
the standing plane are well matched and recovered. 
From the dimensions in the figure we can see the points 
lie in the depth 0.6-0.65 with meter as the unit, which is 
approximate right at the object’s location. 

 
Figure 4.Real experimental image 

 
Figure 5.SIFT points in left and right images 

 
Considering the error analysis, to compare the result 

with reconstruction of the same scene in air is difficult 
for real operation.Therefore, anreprojection error for 
analysis   is defined as the differencebetween   and    . 
During the computation of   , the unit vectors of 
incidence light ray in air    and    are derived from 
their according image points, while in the computation 
of    , one of vectors is calculated with the other byEq. 
(  ). By plotting all   as points in 3D space, we 
visualize the errors as Fig. 6. Majority of the points lie in 
the range from -6 to 6 on three dimensions with 
millimeter as the unit. Then the distances   between 

every pair of    and     are also calculated, which is 
square root of the quadratic sum of the three components 
of   . Under the dimension of millimeter, the values of 
  fall between to 0.19 to 11.81, of which the average 

value is 4.1313 and the STD is 2.1994. That is to say the 
error rate is no more than 2%. 

 
Figure 6.Projection errors 

 
Figure 7.Reconstruction result 

 

IV. CONCLUSION AND FUTURE WORK 

We modelthe underwater stereo vision with a flat 
housing explicitly based on the light propagation in 
refractive mediums. Backward projection of single 
vision in 2D case is discussed sufficiently as the 
foundation. Then we expand the case into 3D on the 
basis of refractive light ray’s coplanarity. Furthermore, 
case of stereo vision with two cameras is also fully 
analyzed. Meanwhile, a 3D reconstruction algorithm is 
derived on the basis. In the algorithm, relationship 
between the casted light from two cameras is built for 
computing the object points, involving the extrinsic 
parameters and fundamental matrix of the stereo vision 
system. Simple markers on the housing’s surface are 
also introduced to calibrate the orientationof the housing. 
Experiment results prove that the method is effective 
and accurate. 

Our method shows low error rate on decimeter scale, 
which is similar to the distance of repairing underwater 
robots and its objects. The future work will be focused 
on two respects to make the method more practicable. 
Attempt with other features will be executed to match 
more points and new features may be introduced for 
specific scenario. On the other respect, scattering caused 
by particles in the water will be taken into consideration. 
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