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Abstract— Trees are a powerful structure for representing 

hierarchical relations in a natural way. Comparison of trees 

is a recurrent task in various computer science related fields. 

The widely used Robinson-Foulds distance for comparing 

leaf labeled trees is overly sensitive to very small changes in 

the tree. The measure of bipartition dissimilarity refines 

Robinson-Foulds metric by comparing the quality of the tree 

bipartitions instead of their quantity. Sensitivity analysis is 

used in this paper which shows that bipartition dissimilarity 

has smaller sensitivity to small modifications in the tree. 
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I. INTRODUCTION 

Representing data for which hierarchical relations can 
be defined in a tree-like structure is ubiquitous in many 
areas, such as text document analysis [1], natural language 
processing [2, 3], image representation and analysis [4], 
protein structure prediction [5], to name but a few. 

In all such areas, it is important to be able to compare 
trees. Different methods have been posed in order to 
perform this comparison. Some of them are proposed to 
work with fully labeled trees. The method presented in this 
paper is to work with partially labeled trees, i.e., the trees 
labeled only at the leaves. Leaf labeled trees arise in the 
areas such as classification, biology, etc.   

One way for tree comparison is to define a dissimilarity 
measure to determine how distant two trees are from each 
other. A number of dissimilarity measures for leaf labeled 
trees have been defined in the literature [6-12]. The 
Robinson-Foulds distance [6] is by far the most widely 
used dissimilarity measure which enumerates all edges in 
the trees and counts how many of the induced bipartitions 
differ between the two input trees. The quartet distance [7] 
is based on comparing all quartets (subsets of leaves of 
size four) in the trees and counts how many of the induced 
quartets differ between the two input trees. The path 
difference metric [8] is based on the comparison of the 
vectors of lengths of paths connecting pairs of taxa and 
quantifies the rate at which pairs of taxa that are close 
together in one tree lie at opposite ends in another tree.  

The Robinson-Foulds distance is overly sensitive to 
some small changes in the tree. For example, just moving 
one leaf at the end of a caterpillar tree to the other end will 
result in a tree that has maximum distance to the original 
one; but the two trees are identical if the single leaf is 
removed. (A caterpillar tree is a binary tree for which the 

induced subtree on the internal vertices forms a path graph) 
To this end, Bogdanowicz [9] and independently Lin et al. 
[10] suggested to use a matching between the bipartitions 
of the two trees and introduced a generalized version of the 
Robinson-Foulds distance. See also [11, 12] for rooted 
trees. 

Boc et al. [13] introduced the bipartition dissimilarity 
measure for inferring and validating horizontal gene 
transfer events and got a more accurate and faster 
algorithm than the algorithms based on least squares 
criterion, Robinson-Foulds distance, or quartet distance. 
The bipartition dissimilarity measure takes into account 
not only the identity of bipartitions as in the case of 
Robinson-Foulds distance, but also more subtle similarities 
between the bipartitions, and thus can be regarded as a 
refinement of the Robinson-Foulds distance. 

In this paper, we study the sensitivity of bipartition 
dissimilarity measure under several commonly used tree 
rearrangement operations. By showing how the measure 
under consideration responds to a single tree 
rearrangement operation, and providing details about the 
robustness of this measure, sensitivity analysis is a useful 
tool in measure designing as well as measure evaluating.  

The outline of the paper is as follows. In Section 2, 
after presenting basic terminology, we review the 
bipartition dissimilarity measure, and describe the five tree 
rearrangement operations. In Section 3 we study the 
sensitivity of bipartition dissimilarity measure, and 
compare it with that of the Robinson-Foulds distance. We 
demonstrate that the bipartition dissimilarity measure has a 
small sensitivity to displacement of an insignificant 
number of labeled leaves, and thus has better robustness 
than the Robinson-Foulds distance. We conclude this 
paper in Section 4. 

II.  PRELIMINARIES  

Let ( , )G V E be an undirected graph with set of 

vertices V and set of edges E . A tree is a connected 

acyclic graph. A leaf labeled tree is a tree whose leaves 
correspond to the taxa about which data was collected, 
while each nonleaf vertex is unlabeled and have degree at 
least 3. If every nonleaf vertex has degree equal to 3, the 

tree is said to be binary. Let nT  denote the set of binary 

leaf labeled trees on n  taxa. 

Cutting an edge ( , )a b  from the tree T disconnects 

the tree, creates two smaller trees, and induces a 
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bipartition ,A B  of the set L  of n  taxa. We denote this 

bipartition by an unordered pair |A B . If 

min{| |,| |} 1A B   , then |A B  is trivial, otherwise it 

is nontrivial. It is well known that the tree T can be 
reconstructed from the set of the bipartitions it induces [14, 
Section 3.1]. 

In each 
nT T , there are n  pedant and 3n  

internal edges. Let ( )T  denote the set of bipartitions of 

T , so | ( ) | 2 3T n    and T has n  trivial bipartitions.  

The symmetric difference of sets X and Y , denoted 

X Y , is the set ( ) ( )X Y Y X   .     

Definition 1. The Robinson-Foulds distance [6] 

between two trees  1 2, nT T T   is defined as  

 
1 2 1 2

1
( , ) | ( ) ( ) |

2
RFd T T T T      (1) 

Each bipartition |A B  of the tree 1T  associates with a 

binary vector eV  of length n : For any leaf i , set 

[ ] 1eV i   if i A , otherwise set [ ] 0eV i  . Denote by 

1BT  and 2BT  the sets of binary vectors associated with 

the internal bipartitions of the trees 1T and 2T , respectively. 

The bipartition dissimilarity measure bd  between 

1T and 2T  [13] is computed as follows: 
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where Hd  is the Hamming distance between the two 

vectors a  and b ,  and a  and b are the complements of 

a  and b , respectively. 

We now introduce the five types of commonly used 
rearrangement operations on leaf labeled trees.  

Each internal edge of a tree T  associates four subtrees 
which are attached to it. Nearest Neighbour Interchange 
(NNI) means swapping two subtrees that are incident to 
the same internal edge, as illustrated in Fig. 1. 

 
 
 

 
 
 
 
 

 
 
 
 
 

Figure 1. Trees 2T  and 3T  are obtained from 1T  by a single NNI 

operation. Circles are subtrees over sets of leaves  , ,A B C  and D .  

 
 

 
 
 
 
 
 
 
 

Figure 2. A Subtree Prune and Regraft (SPR). The edge ( , )u v is   

deleted and the component containing u  is connected to the component 

containing v  via the new edge ( , )u w , where w  is a new vertex 

obtained by subdividing the component containing v . The resulting 

degree-two vertex v  is suppressed.    

 
 
 
 

 
 
 

Figure 3. A Tree Bisection and Reconnection (TBR). The edge ( , )u v is   

deleted and  an edge from each component is subdivided. The resulting 
two new vertices are connected with a new edge. The resulting degree-

two vertices u and v  are suppressed.    

 
A Subtree Prune and Regraft (SPR) operation is 

defined as follows. Delete an edge 
( , )e u v

 of the tree 

T , get a new vertex w  by subdividing an edge in the 

component of  \T e  that does not contain  u , add  a new 

edge between u and w , and finally suppress all resulting 
degree-two vertices. The operation is illustrated in Fig. 2. 

A Leaf Prune and Regraft (LPR) operation is a special 

case of SPR in which the edge 
( , )e u v

is a pedant edge 

(i.e., one of the vertices  u and v  is a labeled leaf.) 
A Tree Bisection and Reconnection (TBR) operation is 

similar to SPR and defined as follows. Delete an edge 

( , )e u v
 fromT , subdivide an edge in each component 

of \T e , connect the two new vertices with an edge, and 
finally suppress all resulting degree-two vertices. If a 

component of \T e  consists of a single vertex, then the 
added edge is attached to this vertex. The operation is 
illustrated in Fig. 3. 

A Leaf Label Interchange (LLI) operation just 
exchanges the labels of two leaves and does not change the 

topology of the tree T . 
For more details of the tree rearrangement operations 

defined above, please see [10, 14, 15]. 

III. SENSITIVITY ANALYSIS 

We now investigate the sensitivity of bipartition 
dissimilarity measure introduced in [13] under the five tree 
rearrangement operations defined in the last section.  

For each binary vector 1a BT  associated with a 

bipartition of the tree 1T , the best match 2( )M a BT  is 

the binary vector that minimizes the dissimilarity value 

between a  and any binary vector in 2BT , i.e., 
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2
( ) arg { ( , ), ( , )}b BT H HM a Min d a b d a b . We call 

2
{ ( , ), ( , )}b BT H HMin d a b d a b  the dissimilarity value 

of a to the tree 2T . 

The diameter ( )d X  of a measure d  on a set X  is 

defined to be the maximum value between two elements of 

X . 
Lemma 1. [6] The diameter of the Robinson-Foulds 

distance on 
nT , ( )

RFd n T  ,  is 3n . 

 Lemma 2. The diameter of the bipartition 

dissimilarity measure on nT , ( )bd n T  ,  is 
2( )n . 

Proof. Let 1T  and 2T be any two trees in nT . Each 

binary vector in 1BT  ( 2BT ) has a dissimilarity value at 

most / 2n  to 2T ( 1T ), and there are 3n  binary vectors 

in 1BT  ( 2BT ), hence we get 
2( ) / 2bd n n T . On the 

other hand, Reference [10] constructed two trees 1T  and 

2T , as shown in Fig. 4. Note that each leaf of 1T  labeled in 

the interval [5 / 8 1,7 / 8 1]n n   has a dissimilarity 

value at least / 8n  to 2T , and each leaf of 2T  labeled in 

the interval [ / 8,3 / 8]n n  has a dissimilarity value at least 

/ 8n  to 1T . It follows that the bipartition dissimilarity 

value between 1T  and 2T is 
2( )n .                                 □                                 

 
 
 
 
 
 
 
 
 
Figure 4. An example for two trees with bipartition dissimilarity value 

2( )bd n . 

 

Let ( , )N T   be the neighborhood of T  with respect 

to the operation  , i.e., the set of trees that can be 

obtained by applying   once to T . The gradient of   

with respect to a measure d  on nT , ( , , )nd TG , is 

1 2 1 2 2 1max{ ( , ) | , , ( , )}nd T T T T T N T  T  . 

Theorem 1. [10] The gradients of the five tree 
rearrangement operations with respect to the Robinson-

Foulds distance on nT  are as follows: 

(1) ( , , ) =1;RF nNNI d TG   

(2) ( , , ) = -3;RF nSPR d nTG  

(3) ( , , ) = -3;RF nLPR d nTG  

(4) ( , , ) = -3;RF nTBR d nTG  

(5) ( , , ) = -3.RF nLLI d nTG  

Sensitivity of a measure under an operation is defined 
to be the ratio of the gradient of the operation with respect 
to this measure to the diameter of it. Hence we concentrate 
our attention to the gradients of the five tree rearrangement 
operations with respect to bipartition dissimilarity measure 

on 
nT . 

Theorem 2. ( , , ) = ( ).nNNI bd nG T   

Proof. Let 
2T be in the neighborhood of 1T  with 

respect to NNI operation. Clearly, 
1BT  and 

2BT  share 

4n  binary vectors, and only one binary vector is 

different in  
1BT  and 

2BT . Since each binary vector in 

1BT  (
2BT ) has a dissimilarity value at most / 2n  to 

2T ( 1T ), it follows that 1 2( , ) / 2bd T T n . On the other 

hand, it is easy to construct an example with 

1 2( , ) / 2bd T T n : Simply set 

| | | | | | | | / 4A B C D n     in Fig. 1.                            □ 

Theorem 3. 
2( , , ) = ( ).nSPR bd nG T   

Proof. Fig. 4 shows an example where one SPR 

operation leads to 
2

1 2( , ) ( )bd T T n .                                 □ 

Theorem 4. 
2( , , ) = ( ).nTBR bd nG T   

Proof. The theorem follows from Theorem 3 since SPR 
is a special case of TBR.                                                     □ 

Theorem 5. ( , , ) = ( ).nLPR bd nG T   

Proof. The lower bound is obtained by applying one 
LPR operation to a caterpillar tree, where one leaf at one 
end of the tree is moved to the other end. For the upper 

bound, let 2T be in the neighborhood of 1T  with respect to 

LPR operation. Clearly, each LPR affects only two internal 

edges of 1T . Therefore, there is an internal edge 1e  that is 

in 1T  but not in 2T ,  and an internal edge 2e  that is in 2T  

but not in 1T . Each bipartition of 1T  ( 2T ) induced by an 

internal edge other than 1e  ( 2e ) has a dissimilarity value 

at most 1, and the bipartition induced by 1e  or 2e  has a 

dissimilarity value at most / 2n . Hence the upper bound 

is obtained.                                                                          □ 

Theorem 6. ( , , ) = ( ).nLLI bd nG T   

Proof. The lower bound is obtained by applying one 
LPR operation to a caterpillar tree, where the two leaf 
labels at the opposite ends of the tree are interchanged. For 

the upper bound, let 2T be in the neighborhood of 1T  with 

respect to LLI operation. Clearly, one LLI affects only two 

leaves of 1T . Each bipartition of 1T  or 2T  has a 

dissimilarity value at most 2. Hence the upper bound is 
obtained.                                                                              □ 

The analysis above indicates that the bipartition 
dissimilarity measure has better sensitivity than the 
Robinson-Foulds distance with respect to LPR and LLI 
operations, and has the same asymptotic sensitivity with 
respect to the other operations. The results show that 
bipartition dissimilarity measure has smaller sensitivity to 
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small modifications in the tree, and thus is more robust 
than the Robinson-Foulds distance. 

IV. CONCLUSIONS 

The Robison-Foulds distance is the most widely used 
measure for comparing leaf labeled trees, but lacks 
robustness in the face of very small changes. The 
bipartition dissimilarity measure introduced by Boc et al. 
[13] dissimilarity refines Robinson-Foulds distance by 
comparing the quality of the tree bipartitions instead of 
their quantity. We presented some results in this paper on 
sensitivity analysis of bipartition dissimilarity measure. By 
showing that bipartition dissimilarity measure reacts more 
moderately to a single tree rearrangement operation than 
Robison-Foulds distance, these results reduce the 
uncertainty of bipartition dissimilarity and offer deeper 
insights into behavior of this measure. A possible direction 
of research is to study the sensitivity of other 
generalizations of Robinson-Foulds distance, e.g., the 
measures introduced in [11, 12] for rooted trees. It would 
also be interesting to design other measures for comparing 
leaf labeled trees. 
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