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Abstract—Bode diagram based rational function 

approximation method for fractional integral and differential 

operators are analyzed in detail. For the approximation 

rational function orders is the lowest under satisfying 

approximation accuracy in the approximation frequency 

interval, two steps are proposed: 1) Choose reasonable initial 

and terminal frequency of rational function logarithmic 

amplitude-frequency characteristic. 2) Set approximation 

error of logarithmic amplitude-frequency characteristic by 

taking the error between asymptote and exact value into 

account. Computation examples demonstrate the validity of 

this method. 
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I. INTRODUCTION 

Fractional Order Calculus (FOC) was first proposed in 
1695[1]. However, due to a lack of knowledge of its physical 
significance and geometric meaning, FOC has laid dormant 
for a long time. It‘s not until recent decades, as with the 
development of computer science and its application, FOC 
has gained much attention in scientific and engineering 
community[2]. FOC has broad application in complex 
systems modeling, analysis and identification, signal 
processing and automatic control[2]and so on. FOC can 
resolve some problems that traditional integer order calculus 
could not do. Some previously undiscovered or  unexplained 
phenomenon can be discovered or explained by FOC. For 
example, the conventional automatic control system, its 
performance would be further improved by FOC modeling 
or FOC controller[4]. 

Fractional order integral or differential operator 
s/1  

( 10    and 01    are integral and differential 

respectively) is the most common fractional filter in 
automatic control system. It should be discretized by an 
approximate model in digital control systems. Rational 

function of Laplace operator s  is used to approximate 
s/1  

in continuous control systems. This paper is aimed at the 

rational function approximation for
s/1 .Existing 

methods[5-9] include continuous fractional expansion (CFE), 

Carlson, Matsuda,Oustloup(CRONE),etc. A common feature 
of these methods is that they do not take how to obtain the 
rational function of lowest order under specified conditions 
(approximation frequency range and approximation error) 
into account, namely how to achieve the best rational 
function approximation. This paper proposes an optimal 

rational function approximation method for 
s/1 .  

This paper is organized as follows: Section 2 deals with 
the proposal of rational function approximation based on 
Bode diagram for fractional integral operator. Section 3 
describes the method of setting approximation error 
bandwidth. Section 4 gives out the solving issue and 
improving  it. And section 5 is the conclusion part. 

II. BODE DIAGRAM BASED RATIONAL FUNCTION 

APPROXIMATION FOR FRACTIONAL INTEGRAL OPERATOR 

A. Mathematical model  

Fractional integral operator is 
s/1 ，where 10   . 

Assume it is in series with proportional coefficient 0k .The 

transfer function is   rsksG /00  . It can be approximated 

by )(sR , where )(sR is a rational function of s . And 
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Where K  is an undetermined proportion coefficient. 

ia and ib are undetermined constants. The frequency 

characteristic  is    .)/(00
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Thus the problem of )(sR approximating )(0 sG  in s  

domain is transferred to )( jR  approximating )( jG  in 

the frequency domain. )(sR  approximating to )(0 sG  by 

Bode diagram of logarithmic amplitude-frequency 
characteristics (LAFC) in the paper.  
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B. Amplitude frequency characteristics 

Fig.1 shows LAFCs of )(0 sG  and its approximation 

rational function )(sR , where LAFC is a line 0L . 

Lines 1L and 2L are parallel with 0L . The LAFC of )(sR  is 

composed of polyline inside 1L and 2L . The polyline is 

connected by horizontal lines and oblique lines with 

slope decdB /20  alternately. Maximum longitudinal 

distance between polyline and 0L  is maximum error 

(absolute value)  . The area inside 1L and 2L  is error band. 

The frequency corresponding to the intersection of the 

polyline with 1L or 2L  is called handover frequency. From 

left to right, handover frequencies are divided into two 
groups: one group corresponding to the initial of horizontal 

segment, called as ib , another is to the initial of oblique 

segment, denoted by ia . Two special handover frequencies 

corresponding to initial and terminal of polyline, are denoted 

by 1 and 2 respectively. ],[ ba  is approximation 

frequency range. ],[ 21  is called rational function build 

frequency range. ],[],[ 21 ba  . At two small ranges 

by the right of 1 and left of 2 ,LAFC of )(sR is within 

error band, its phase-frequency characteristic approximation 
error is larger than normal. In order to exclude these two 
small ranges from the approximate frequency range, the 
approximation frequency range should be less than the build 
frequency range. As shown in Fig.1.  

 

 Figure1. LAFCs of
sksG /)( 00  , )(sR , jb2 , 3j  

 

Figure2. LAFCs  of 
sksG /)( 00 

,
 )(sR , ja2 , 4j  

C. Calculation of the handover frequency  

After a and b have been set, handover frequencies is                            

aa 1 .In Fig.1, we have  

1010 lg20lg20lg20lg20 akak  

 

1010 lg20lg20lg20lg20 bkbk  

 
Subtract two equations, we get the solution 

)1(10

11 10 



 ab . 

Again,    2010 lg20lg20lg20lg20 akbk . 

Predigest it as  2)/lg(20 12 ba , Solution is 





10

12 10ba  .Similarly, we yield the recurrence formulas 

)1(1010 



 ii ab ， ,...3,2,1i                 (3)                               





10

1 10ii ba  ， ,...3,2,1i
                

 (4) 

Specifically, the adjacent handover frequency ratios  are 

10/ ii ab , when 5 , 5 ,respectively. 

D. Calculation of Polyline initial and terminal frequencies  

Polyline initial frequency is obtained by (4) 

when 0i ,




10

01 10ba  ,  

                              

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10

101 10



 ab                         (5)         

The polyline terminal frequency is based on comparing 

values of 1ia (or ib ) with b . The steps are as follows: 

1) In the case of ji 1 , obtained ja .If bja  ,then
                                       

                               

jb2                                  (6) 

2) In the case of ji  , obtained jb . If bjb  ,then 

12  ja                               (7) 

E. Generation of approximation rational function  

Approximation rational function can be obtained after 
calculating handover frequencies based on above algorithm. 

Each ia is corresponding to an inertial element, which is a 

factor in denominator of )(sR .Similarly, every ib  is to a 

first-order differential element in numerator of )(sR  except 

polyline initial and terminal frequency. 
Transfer function of first inertial element is denoted as  

                             1

1
1

/1
)(
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A
sG


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As   101 lg20lg20lg20 akA ， 
ck 0 ，

then 
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Similarly, ib and ia  are differential and inertial element 

alternately, their coefficients are reciprocal and can be 
reduced in series product. Finally, for Fig.1 we have 
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The general forms of above two expression are as follows: 
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III. SETTING APPROXIMATION ERROR BANDWIDTH  

For setting approximation frequency range ],[ ba  , we 

note that the wider approximation error bandwidth is, the less 
the number of polyline inflection point and handover 
frequency are, and the lower order of approximation function 
is. In order to reduce the orders and optimize rational 
approximation function, we should increase the 
approximation error bandwidth to the best of one's abilities 
within acceptable approximation error. Therefore, two 
problems should be considered:1)The error between the 
asymptote and exact value of LAFC.2) The relationship 
between pole frequency of LAFC approximation error curve 
and adjacent handover frequency. 

A. The error between the asymptote and exact value of 

LAFC 

LAFC of approximation rational function are represented 
by asymptote in Bode diagram. There is error between 
asymptote and accurate characteristics. The closer to the 
handover frequency, the greater the error is. Maximum error 
is on the handover frequency. For inertia element, the 

maximum error is dB3 . For first-order differential element, 

the maximum error is dB3 . The asymptote is always 

outside of the accurate characteristics. If error bandwidth in 
Bode diagram is set directly according to the LAFC 
maximum acceptable approximation error, then it will result 

in higher order of )(sR . And the actual approximation error 

is less than the setting value, which means the approximation 
precision has margin. Eliminating this margin can reduce the 

orders of )(sR . Therefore, error band should be widened 

appropriately. Related problems are discussed as follows. 

B. The relationship between approximation error curve 

pole frequency and the LAFC handover frequency   

The LAFC expression of fractional integral operator 
sk /0

  is  lg20lg20 0k . 

Assume )1/( jj sTA  is a transfer function of certain 

inertial element in the approximation rational function, its 

LAFC expression is 2)(1lg20lg20 jj TA  . The first 

expression subtracts second one. Let derivative of the 
difference for  is equal to zero, we obtain 

0])(1lg[lg 2 

jT
d

d




 . 

Solution of this equation is namely a pole frequency of 

approximation error curve , denote by 
* . Then 
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where 
j is a handover frequency.  

C.  Setting approximation error bandwidth  

Assume the maximum acceptable error of amplitude is . 

Convert  to the error of LAFC in Bode diagram              

 lg200   .The error bandwidth (single side) should be 

taken   0  .where   is the difference between 

approximation function LAFC asymptote and LAFC of 

fractional integral operator at j , 0 is the difference of 

approximation function LAFC exact value and fractional 

integral operator LAFC at
* .   is a correction value 

related to 
*  and j . There are three cases as follows. 

(1) 5.0 , as shown in (12) j *
, the error 

between the asymptote and the exact value of the 

approximation function LAFC at j  equals to dB3 .That is                       

dB30    . 

(2) 5.0 ,as (12), j *
, the error between of the 

exact value of the approximation function LAFC and 

fractional integral operator LAFC is 0  at 
*  and is 1  at 

j  . Moreover, dB31   and 10   . So we obtain                  

dB30    .         

(3) 5.0 ,as (12), j *
.Similarly get                  

dB30    .                

The farther   value deviates from 0.5, the smaller   

is. There is no analytical methods to determine   value , 

but it can be selected by the experience or testing .For 

instance, when 4.0  or 6.0 , 
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dB8.2 .When 2.0  or 8.0 , take 

dB2 , and so on. 

IV. IMPROVEMENT 

Let
5.0

0 /1)( ssG  . Find )(sR  to get the maximum 

approximation error of the LAFC (exact value) 

dB20  in the frequency range 

]10,1[],[ 4ba  )/( srad .we have 
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Here since before decreasing 1a  selecting 32 a  is 

based on bb 2  but not bb 2 , so that the decrease of 

1a  cannot change 2 and orders of )(sR . Contrarily if it is 

based on bb 2  (is in critical case) then decrease of 1a  

will bring change of 2  and increase of orders of )(sR . 

Commonly if selecting 2  is based on equation of formula 

bja   (or bjb  ) then decrease of 1a  will bring 

increase of )(sR  orders . Otherwise it is based on 

inequation  then it is possible that the orders of )(sR  do not 

increase.                                                                                                                 
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Figure4. Approximation error curve of LAFC 

The approximation of fractional differential operator, 
sk )/1( 0 ,can utilize above optimal rational function 

approximation method of fractional integral operator. Here 

reverse numerator and denominator of 
sk )/1( 0 ,we get 

sk /0 . Find the approximation rational function )(sR  of 

this 
sk /0 .Furthermore, we reverse numerator and 

denominator of this )(sR and change sign of order in 

MATLAB for drawing Bode diagram.  

V. CONCLUSIONS 

We have addressed fractional integral operator optimal 
rational function approximation method based on Bode 
diagram. The so-called optimal means: Under the condition 
of the approximate frequency range and the maximum 
acceptable amplitude approximation error (and 
corresponding to maximum phase error), the orders of the 
rational function is the lowest. The previous method can also 
be applied to fractional differential operator approximation. 
Calculation examples show availability of above works. 
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