
Design and Implementation of a Cache-based
Granular Computing System

Xiaoxia Huang1 Lun Cheng2
1
Department of Computer, Shanghai Maritime University, Shanghai 200135, P. R. China

2
Department of Control Science and Engineering, Tongji University, Shanghai 200092, P. R. China

Abstract
This paper presents a multilayer cache-based attribute
granular computing system. It can be used to
implement algorithms based on attribute granular
computing. After defining an attribute granule, it brings
forward an operation and storage model. Six basic
mapping operations and three suitable storage patterns
are designed for all kinds of attribute granular
computing and storage. A cache-based storage
management with schedule algorithm can improve the
efficiency of data access and solve the problem which
is caused by the limited memory capacity. Finally a
hierarchy cache-based attribute granular computing
system is implemented.

Keywords: Granular computing, Cache, Data mining,
Attribute granule, Schedule algorithm

1. Introduction
Granular Computing (GrC) is a new conceptual and
computing paradigm for information processing.
Informally, any computing theory/ technology that
involve elements and granules (generalized subsets)
may be called granular computing (GrC) which was
named by T.Y.Lin in 1996 [1]. Now it may be regarded
as a label of theories, methodologies, techniques, and
tools that make use of granules in the process of
problem solving [2]. Various kinds of technologies
such as fuzzy sets, rough set, shadowed sets,
probabilistic sets, etc, have different contributions on
granular computing [2] -[10].

Design and implementation of a cache-based
attribute granular computing system is presented in this
paper. The basic storage and computing elements in the
system are attribute granules which are defined in this
paper first. Computing between attribute granules can
be viewed as one or more mapping operations we
summarized. Three corresponding storage patterns:
single-column pattern, multi-column pattern and
mixed-column pattern are suitable for the elements too.

The system with two-level cache structure assures the
high efficiency of the granules exchange and great
capacity of the granules storage. The system can be
used in the area such as data mining application as long
as the algorithms are designed based on attribute
granular computing model.

2. Theory of attribute granule

2.1. Definition of an attribute
granule

A granule may be interpreted as a local or a special
observation of a larger unit formed by numerous small
particles. A new concept we name it attribute granule is
presented in this paper.

Assume that information about objects in a finite
universe is given by an information table [11] below, in
which objects are described by their values on a finite
set of attributes.

})|{},|{,,,(AtaIAtaVLAtUM aa ∈∈= （1）

Where U is a finite nonempty set of objects, At is a
finite nonempty set of attributes, L is the describing

language of objects, aV is a nonempty set of values

for Ata∈ , aa VUI →: is an information

function that maps an object of U to exactly one

value in aV . Table 1 is an example of information

table, taken from an example from Quinlan [12].
Definition 1: An attribute granule

An attribute granule can be defined as a projection
column (or columns) according to a single attribute (or
several attributes) of an information table M

)(MA aπ= (2)

Where
A is an attribute granule, M refers an information

table, π is a projection operators , a might be a
single attribute or several attributes, aπ means attribute
projection according to attribute a （ Ata∈ ）, an
attribute granule },,{ 1 mxxA L= is a set of
values of attribute a of the objects.

Object Height Hair Eyes Class

O1 short blond blue ＋

O2 short blond brown －

O3 tall red blue ＋

O4 tall dark blue －

O5 tall dark blue －

O6 tall blond blue ＋

O7 tall dark brown －

O8 short blond brown －
Table 1: An information table.

1a 1b

Fig.1: An example of attribute granule.

Fig.1 is an example of two attribute granules of
Table 1. Fig.1a is an attribute granule with one attribute,
while Fig.1b is a granule with two attributes.

2.2. Operations of attribute
granules

Definition 2: Attribute granular computing

Computing between attribute granules is defined
as

),,(1 njnew AAOPA L= mj ,,1L= （3）

Where

nAA ,,1 L are n original attribute granules,

),,1(mjA jnew L= refers to one of the m new

attribute granules which is combined or divided by
objective or subjective method.

Computing between attribute granules can be
viewed as one or more mapping operations of the
granular elements. Every mapping operation converts
the old granule (or several granules) to one new
granule (or several granules) with same (or different)
scale. Six kinds of basic mapping operations are
summarized as follow (showed in Table 2), their
mapping processes are shown in Fig. 2.
ID Name Specification

1 Msse
Create a new single-column granule with

equal length from a single-column one

2 Msme
Create a new multi-column granule with

equal length from a single-column one

3 Mmse
Create a new single-column granule with

equal length from a multi-column one

4 Mmme
Create a new multi-column granule with

equal length from a multi-column one

5 Mssn
Create several new single-column granules

with unequal length from a single-column one

6 Mmmn
Create several new multi-column granules

with unequal length from a multi-column one
Table 2: Six basic mapping operations.

(1)Msse (2)Msme (3)Mmse

(4)Mmme (5)Mssn (6)Mmmn

Fig.2: Mapping operations of attribute granules.

2.3. Storage patterns
Three storage patterns suitable for the single-column
and multi-column attribute granules storage and

operation are presented. They are single-column,
multi-column and mixed-column pattern showed in Fig.
3.

^

^

^

S in g le - co lu m n p attern

M u lti-c o lu m n p atte rn

M ix-co lu m n p attern

Fig. 3: Three storage patterns.

Single-column pattern is used for single-column
attribute granules storage. Several single-column
attribute granules can be stored in a container at the
same time. Each granule is assigned a distinct ID
automatically when it is adding. Multi-column pattern
is used for multi-column attribute granules storage. The
width of it can be defined by user. Mixed-column
pattern combines the features of the above two patterns,
can be used for several single-column and
multi-column granules. A container of every kind of
pattern has several basic elements. All data of an
element store in a continuous space.

2.4. Cache-based schedule
algorithm

The cache-based storage management can improve the
efficiency of data access and solve the problem which
is caused by the limited memory capacity. It has two
cache levels which are main memory cache (as first
level) and local file cache (as second level) in this
system. A schedule algorithm we designed can
schedule the granules between these two cache levels
and database storage level.

 The algorithm includes two functions:
CacheManage and SwapData. CacheManage tests the
signal type and call SwapData to finish job. The
algorithm is shown as follow: where line 5 creates a
data accessing object, line 8 creates a cache page index
object and add it into a collection. Line 15 inserts data
of dataInfo object into the database, line 20 save data
into database. SwapData loads the data page into the

main memory, then returns the query data offset in the
buffer.

Algorithm: Cache-based schedule algorithm
// manage data among three levels storage, according to the

signal type.
Input: datainfo //contains the data buffer and relational

information
sig // the event type

Output: parameter // return the query data offset in the buffer
//1, 0 means operation succeed, -1 means operation failed.

CacheManager(dataInfo, sig)
1 pageIndex <- 0
2 switch sig
3 case : sig_init
4 startIndex <- 0
5 Accessor <- createDatabaseAccessor(dataInfo)
6 while 0 <> (sz <- getPage(

Accessor, dataInfo.sqlString, dataInfo.data))
7 pageIndex ++
8 SaveToFile(dataInfo)
9 addToCachePageCollection(new

 CachePage(pageIndex, startIndex, sz, getFileName))
10 startIndex <- startIndex + sz
11 ReleaseDatabaseAccessor(Accessor)
12 return 0
13 case: sig_write_new
14 Accessor <- createDatabaseAccessor(dataInfo)
15 executor_insert_batch(Accessor)
16 ReleaseDatabaseAccessor(Accessor)
17 return 0
18 case: sig_write_update
19 Accessor <- createDatabaseAccessor(dataInfo)
20 executor_update_batch(Accessor)
21 ReleaseDatabaseAccessor(Accessor)
22 return 0
23 case: sig_next
24 return SwapData(dataInfo.dataIndex + 1)
25 case: sig_pre
26 return SwapData(dataInfo.dataIndex + 1)
27 case: sig_random
28 return SwapData(dataInfo.dataIndex + 1)
29 default:
30 return -1
31 end switch

SwapData(dataIndex)
1 cachePage = cpc.getActivePage()
2 if IsActivePage(cachePage, dataIndex) = false then
3 cpc.setActivePage(dataIndex)
4 end if
5 return cpc.getActivePage().getCursor()

3. Design and implementation of the
System

3.1. System structure
We design a multilayer cache-based attribute granular
computing system with high efficiency storage manage

subsystem. It consists of four layers shown in Fig. 4:
user interface layer, the algorithm based on attribute
granule layer, the attribute granular model layer and the
cached-based storage management layer.

Algorithm Based on Attribute Granule

Data Mining, statistics, ……

User Interface

Attribute Granular Model

single and multi columns Three types of collections

six Mapping operations

Cache-based Storage Management
DataManage in

Memory DataManage in DatabaseDataManage in
FS

Fig.4: System structure.

The cache-based storage management layer
implements attribute granules storage management
based on cache schedule algorithm. It can schedule the
granules among the memory, file system and database
according to the input parameter and the data buffer
information. The attribute granular model layer
implements three attribute granular classes and six
common transform operations. All the attribute
granular classes supply the unify data access function
(next, pre, random access). Each operation can
transform one or more granular object to one or more
other granular object. The algorithm layer implements
algorithms based on attribute granule. The algorithms
include data mining algorithms, statistics algorithms,
data transform algorithms, etc. which using the
attribute granular classes and mapping operations. The
basic storage and computing elements in the system are
attribute granules. Two-level cache structure assures
the high efficiency of the granules exchange and great
capacity of the granules storage. The system can be
used to implement algorithms based on attribute
granular computing.

3.2. Cache-based storage
management

This layer consists of cache scheduler, memory
management module, file management module and
database management module. The input parameters of

this layer are the cache pages, their status information
and signal type. The cache scheduler implements
management of the granules according to the input
parameters by calling functions of these three
management modules. The detail information is shown

as follow in Fig.5.
Fig. 5: UML diagram of cache-based storage manage layer.

3.3. Implementation of attribute
granular model

This layer calls functions supplied by cache-based
storage manage layer to implement three attribute
granular classes and six mapping operations. The basic
elements are single-column and multi-column granules.
Three attribute granular classes supple the same
interface of creation, free and some other data access
functions. Three attribute granular object collections
implement the basic collection algorithms, such as add,
remove, clear and index. The detail of implementation
is shown in Fig.6

Six mapping operations and their function
interface are as follow:
(1) Msse:

int single_map_single_equ(single_column * single,
convert_func * func, single_column ** new_single);

Suitable computing example: NOT operation
of an attribute granule with Boolean type elements;

(2) Msme:
int single_map_multi_equ(single_column *
singlecol, convert_func * func, multi_columns **
new_multicol);

Suitable computing example: divide a
single-column granule by several attribute value;

Fig.6: UML diagram of attribute granular classes and its

collection.

(3) Mmse:
Int multi_map_single_equ (multi_columns *
multicol, convert_func * func, single_column **
new_singlecol);

Suitable computing example: Intersect and
Union operation of attribute granules with
Boolean type elements;

(4) Mmme:
int multi_map_multi_equ(multi_columns *
multicol, convert_func * func, multi_columns **
new_multicol);

Suitable computing example: Unitary
operation for multi-column attribute granule;

(5) Mssn:
int single_map_single_nequ(single_column *
singlecol, convert_func* func, int ncount,
single_column_collection ** new_singlecols);

Suitable computing example: Summary
statistics for single-column attribute granule;

(6) Mmmn:
int multi_map_multi_nequ(multi_columns

multicols, convert_func func, int ncount,
multi_columns_collection ** new_multicols);

Suitable computing example: Summary
statistics for multi-column attribute granule.

In the interfaces of these six basic operations
above: the “convert_func *func” is a function pointer,
the declare of the pointer is: typedef int (*convert_func)
(void * granule_from, int index_from, void **

granule2); the function is used to convert element(s) of
a granule into new element(s) of an another granule (or
granules), according to the mapping operation interface
which is selected by the customer.

3.4. Algorithm based on attribute
granule

The attribute granular computing can be used in many
areas, such as data mining, statistics, data transform
and so on. Algorithms need to be designed according to
the characteristic of basic attribute granules and
operations. For example, the k-means algorithm of the
data mining can be described as below: First, there is a
multi-column attribute granule Am; with Mmse
operation on Am a mid-result As which means
distance between each record and the center record is
created ; then adjust the center according to
requirement and continue use Mmse operation again
and again until requirement conformed; using Mmmn
operation to get the final result with dividing Am into
many multi-column granules according to the
mid-result As. Algorithms designed with attribute
granules have high computing efficiency, we will
discuss in the future.

4. Conclusions
A multilayer cache-based attribute granular computing
system with high efficiency storage manage subsystem
is designed and implemented in this paper. A definition
of an attribute granule is presented first. Six basic
mapping operations are designed for attribute granular
computing. Three storage patterns: single-column
pattern, multi-column pattern and mixed-column
pattern can storage basic granular elements.
Cache-based schedule algorithm is given. Finally the
system structure and the implementation of every level
are given. The system can be used to implement
algorithms based on attribute granular computing.
Further research will focus on modeling the data
mining algorithms based on attribute granular
computing.

Acknowledgment
This work is supported by Technology Project (Grant
No.05FZ22) and Technology Pivot Project (Grant
No.06ZZ42) by Shanghai Municipal Education
Commission.

References

[1] T.Y. Lin, Granular Computing II: Infrastructure
for AI-Engineering Examples, Intuitions and
Modeling. Proceeding of the 2006 IEEE
International Conference on Granular Computing,
Atlanta, USA, pp.2-7, 2006.

[2] Y.Y. Yao, Granular computing: basic issues and
possible solutions, Proceedings of the 5th Joint
Conference on Information Sciences, Vol. 1.
Atlantic City, NJ, USA: Association for Intelligent
Machinery, pp.186~189, 2000.

[3] Y.Y. Yao, Granular computing for data mining,
Proceedings of SPIE Conference on Data Mining,
Intrusion Detection, Information Assurance, and
Data Networks Security, pp.1-12, 2006.

[4] Y.Y. Yao, Wong SKM, Wang LS, A nonnumeric
approach to uncertain reasoning. International,
Journal of General Systems, 23(2):343-359, 1995.

[5] L. Polkowski and Skowron. A., Towards adaptive
calculus of granules, Proceedings of 1998 IEEE
International Conference on Fuzzy Systems,
pp.111-116, 1998.

[6] T.Y. Lin, Granular computing, announcement of
the BISC Special Interest Group on Granular
Computing, 1997.

[7] L.A. Zadeh, Towards a theory of fuzzy
information granulation and its centrality in human
reasoning and fuzzy logic, Fuzzy Sets and Systems,
19:111-127, 1997.

[8] Y.Y. Yao, Ning Z., Granular computing using
information table, In: Lin TY, Yao YY, Zadeh LA,
eds. Data Miming, Rough Sets and Granular
Computing, pp.102-124, 2000.

[9] L.A. Zadeh, Fuzzy logic=computing with words,
IEEE Transactions on Fuzzy Systems,
4(1):103-111, 1996.

[10] LA. Zadeh, Some reflections on soft computing,
granular computing and their roles in the
conception, design and utilization of
information/intelligent systems. Soft Computing,
2(1):23-25, 1998.

[11] Z. Pawlak, Rough Sets, Theoretical Aspects of
Reasoning about Data, Kluwer Academic
Publishers, Dordrecht, 1991.

[12] J.R. Quinlan, Learning efficient classification
procedures and their application to chess
endgames, Machine Learning: an Artificial
Intelligence Approach, pp. 463-482, 1983.

