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Abstract—This paper studies the global exponential stability
for a Takagi-Sugeno (T-S) fuzzy system with bounded uncertain
delays. Most existing T-S method represent global nonlinear sys-
tems by connecting local linear systems with linguistic description.
However, many complex systems cannot be represented by linear
systems. In this paper, a class of local nonlinear systems having
nice dynamic properties is employed to represent some global
complex systems. Moreover, the delays are any uncertain bounded
continuous functions. Sufficient conditions for global exponential
stability of these delayed global complex systems are derived.
Criteria for design of nonlinear fuzzy controllers to feedback
control the stability of global nonlinear fuzzy systems are given.
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I. I NTRODUCTION

Since Tanaka and Sugeno [1] proposed Takagi-Sugeno (T-
S) fuzzy model in 1985, a great number of results have been
reported for T-S systems [2], [3], [4], [5]. The T-S model gives
an effective method to combine some simple local systems
with their linguistic description to represent complex nonlinear
dynamic systems. Stability of T-S model fuzzy systems is quite
important for practical applications. It has been widely studied
by many authors, see, for examples, [6], [7], [8].

Time delays in dynamic systems has been studied for many
years. T-S model of fuzzy systems with delays was first
introduced in [9]. It is well known that delays can affect
dynamics of some nonlinear systems, a stable system may
become unstable by introducing some delays [10]. In recent
years, some authors have paid their attention to control of
nonlinear systems with delays by using T-S fuzzy models.
There exist two kinds of delays, one is continuous, see, for
examples [11], [12], [13], [14]. The other is discrete, see, for
examples, [15], [16]. In control engineering, delays are difficult
to be known exactly, so stability for systems with uncertain
delays are quite interesting [17]. In this paper, the delays are
assumed to be any uncertain bounded continuous functions.
Stability conditions will be derived, some of them will be
represented by simple algebraic inequalities and are easy to
check.

As we know, in most reported stability results of T-S model,
simple linear systems are used to form global nonlinear fuzzy
systems [18], [19], [20]. However, there are many complex
nonlinear fuzzy systems cannot be connected by using local
linear systems. In this paper, unlike using local linear systems

in previous study, a class of nonlinear systems with delays
having nice dynamical properties [21] will be used as local
systems to form some global complex nonlinear fuzzy systems
by T-S method. Since global exponential stability (GES) is
more interesting than global asymptotic stability, Our stability
conditions will guarantee the global exponential stability of the
global complex nonlinear fuzzy delayed systems.

This paper is organized as follows. In Section II, some
preliminaries for delayed fuzzy control systems will be given.
In Section III, conditions for global exponential stability of
fuzzy systems with delays will be proposed and proved. In
Section IV, simulations will be given. This paper will be
concluded in Section V.

II. PRELIMINARIES

Consider a T-S fuzzy time-delay model which is composed
of r plant rules. For eachs = 1, · · · , r, the sth plant rule can
be represented as follows:

Plant Rule s: IF α1(t) is M1s AND · · · AND αp(t) is Mps

THEN

ẋ(t) = −x(t) + Wsg(x(t)) + Jsg
(
x(t− τs(t))

)
(1)

for t ≥ 0, wherex(t) = (x1(t), · · · , xn(t))T is the state vector,
r is the number of IF-THEN rules,α1(t), · · · , αp(t) are the
premise variables and eachMis(i = 1, · · · , p) is the fuzzy
set corresponding toαi(t) and plant rules. u(t) is the control
input vector,τs(t) is the time delay which satisfies0 ≤ τs(t) ≤
τ .

For any x ∈ Rn, g(x) = (g
(
x1

)
, · · · , g(

xn)
)T

, and the
function g is defined as follows:

g(s) =
|s + 1| − |s− 1|

2
, s ∈ R.

The function g is continuous but non-differentiable. So the
local system is nonlinear which is the main feature of this
paper different from others.

The system of (1) can be described as follows:

ẋi(t) = −xi(t)

+
n∑

j=1

[
W s

ijg
(
xj(t)

)
+ Js

ijg
(
xj(t− τs(t))

)]
(2)
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for t ≥ 0 and i = 1, · · · , n. WhereWs =
(
W s

ij

)
n×n

, Js =(
Js

ij

)
n×n

is the constant matrix.
Let Mis(αi(t)) be the membership function of the fuzzy

setMis at the positionαi(t) and denote

ws(α(t)) =
p∏

i=1

Mis(αi(t)),

hs(α(t)) =
ws(α(t))∑r
i=1 wi(α(t))

≥ 0

r∑
s=1

hs(α(t)) = 1.

Then the overall delayed fuzzy control system is inferred as

ẋ(t) =
r∑

s=1

hs(α(t))
[
− x(t) + Wsg(x(t))

+Jsg
(
x(t− τs(t))

)]
(3)

for t ≥ 0.
For each solution, the initial value is assumed to be

x(t) = φ(t), t ∈ [−τ, 0]

where φ(t) = (φ1(t), · · · , φn(t))T is a vector continuous
function. We define

‖φ‖ = sup
−τ≤θ≤0

√
φ2

1(θ) + · · ·+ φ2
n(θ).

In this paper, for a matrixS, we will useS > 0 andS < 0
to denote thatS is a symmetric positive matrix or a symmetric
negative matrix, respcetively.

D+ is used to denote theupper righthand Dini derivative
in this paper. For any continuous functiong : R → R, the
upper righthand Dini derivativeof g(t) is defined as

D+g(t) = lim
θ→0+

sup
g(t + θ)− g(t)

θ
.

It is easy to see that ifg(t) is locally Lipschitz then|D+g(t)| <
+∞.

III. STABILITY ANALYSIS OF FUZZY DELAYED SYSTEMS

Consider the fuzzy system (3), we can see that it is a global
nonlinear fuzzy system and its nonlinear local delayed systems
are represented as follows

ẋ(t) = −x(t) + Wsg(x(t)) + Jsg(x(t− τs(t))) (4)

for t ≥ 0.
In [17], we can see that the fuzzy system (3) is globally

exponentially stable, if there exist constantsε > 0 andΠ ≥ 1
such that

‖x(t)‖ ≤ Π‖φ‖e−εt

for all t ≥ 0.
In the following Theorem, we will derive some global

exponential stability conditions which will be presented in
some simple algebraic inequalities.

Theorem 1:If

−1 + W s
ii +

n∑

j=1

[
|W s

ij |(1− δij) + |Js
ij |

]
< 0

for all i = 1, · · · , n ands = 1, · · · , r, where

δij =
{

1, i = j
0, i 6= j,

then, the free fuzzy system (3) is globally exponentially stable.
proof For any delaysτs(t)(s = 1, · · · , r), since0 ≤ τs(t) ≤

τ , the free fuzzy system of (3) can be rewritten as

ẋi(t) = −xi(t) +
r∑

s=1

hs(α(t))
[ n∑

j=1

(
W s

ijg(xj(t))

+Js
ijg(xj(t− τs(t)))

)]
. (5)

Then, it follows that

D+|xi(t)| ≤ −|xi(t)|+
r∑

s=1

hs(α(t))
[
W s

ii|g(xi(t))|

+
n∑

j=1

(|W s
ij |(1− δij)|g(xj(t))|

+|Js
ij ||g(xj(t− τs(t)))|

)]
(6)

for all t ≥ 0.
Since

−1 + W s
ii +

n∑

j=1

[
|W s

ij |(1− δij) + |Js
ij |

]
< 0,

then there must exist aε > 0 such that

ε− 1 + W s
ii +

n∑

j=1

[
|W s

ij |(1− δij) + eετ |Js
ij |

]
< 0.

Denote

ηis = −
[
ε− 1 + W s

ii +
n∑

j=1

[
|W s

ij |(1− δij) + eετ |Js
ij |

]]

and let
σ = min

1≤i≤n,1≤s≤r
(ηis) .

Obviously,σ > 0. Definezi(t) = |xi(t)|eεt, (i = 1, · · · , n) for
all t ≥ −τ . Then, it follows from (6) that

D+zi(t) ≤ (ε− 1)|xi(t)|eεt +
r∑

s=1

hs(α(t))
[
W s

ii|g(xi(t))|

+
n∑

j=1

(|W s
ij |(1− δij)|g(xj(t))|

+|Js
ij ||g(xj(t− τs(t)))|

)]
eεt

for all t ≥ 0.
From the definition of functiong, we can see that

|g(xi(t))| ≤ |xi(t)|, (i = 1, · · · , n).

72



So,

D+zi(t) ≤ (ε− 1)|xi(t)|eεt +
r∑

s=1

hs(α(t))
[
W s

ii|xi(t)|

+
n∑

j=1

(|W s
ij |(1− δij)|xj(t)|

+|Js
ij ||xj(t− τs(t))|

)]
eεt

≤ (ε− 1)zi(t) +
r∑

s=1

hs(α(t))
[
W s

iizi(t)

+
n∑

j=1

(|W s
ij |(1− δij)zj(t)

+eετ |Js
ij |zj(t− τs(t))

)]

≤
r∑

s=1

hs(α(t))
[(− 1 + W s

ii + ε
)
zi(t)

+
n∑

j=1

(|W s
ij |(1− δij)zj(t)

+eετ |Js
ij |zj(t− τs(t))

)]
(7)

for all t ≥ 0.
For any constanta > 1, it is easy to see that

zi(t) = |φi(t)|eεt ≤‖ φ ‖< a ‖ φ ‖
for all t ∈ [−τ, 0]. We will prove thatzi(t) < a ‖ φ ‖ (i =
1, · · · , n) for all t ≥ 0. Otherwise, then there must exist some
i and a timet1 > 0 such that

zi(t1) = a ‖ φ ‖
and

zj(t)





< a ‖ φ ‖, j = i, for t ∈ [−τ, t1)

≤ a ‖ φ ‖, j 6= i, for t ∈ [−τ, t1].

Then, we haveD+zi(t1) ≥ 0. But on the other hand, it follows
from (7) that

D+zi(t1) ≤
r∑

s=1

hs(α(t1))

[(
− 1 + W s

ii + ε
)
a ‖ φ ‖

+a ‖ φ ‖
n∑

j=1

(
|W s

ij |(1− δij) + eετ |Js
ij |

)]

= −a ‖ φ ‖
r∑

s=1

hs(α(t1)) · ηis

≤ −σa ‖ φ ‖
< 0.

This is a contradiction and it proves thatzi(t) < a ‖ φ ‖ (i =
1, · · · , n) for all t ≥ 0.

Letting a → 1, we havezi(t) ≤‖ φ ‖ for all t ≥ 0. Then,
it follows that

|xi(t)| ≤‖ φ ‖ e−εt

for all t ≥ 0.
The proof is complete.
The above theorem provide some conditions to guarantee

the exponential stability of the free fuzzy systems of (3) subject
to any uncertain continuous bounded delays.

IV. SIMULATIONS

In this section, we will give an example to illustrate the
above theory.

Consider the following nonlinear system with delay




ẋ1(t) = −x1(t)− g
(
x1(t)

) · (1 + sin2 x2(t)
)

+g
(
x1(t− τ(t))

)
+ g

(
x2(t− τ(t))

) · sin2 x2(t)
ẋ2(t) = −x2(t)− g

(
x2(t)

)

+
(
g
(
x1(t)

)− g
(
x2(t)

)) · cos2 x2(t)
+g

(
x1(t− τ(t))

) · cos2 x2(t)
+g

(
x2(t− τ(t))

) · sin2 x2(t)
(8)

for all t ≥ 0.
Define some matrices

W1 =
( −2 0

0 −1

)
, J1 =

(
1 1
0 1

)

W2 =
( −1 0

1 −2

)
, J2 =

(
1 0
1 0

)

and some functions

M11(x2(t)) = sin2 x2(t), M22(x2(t)) = cos2 x2(t).

We can interpretM11(x2(t)) andM22(x2(t)) as membership
functions of some fuzzy setsM11 and M22, respectively.
Using these fuzzy sets, the above nonlinear system (8) can
be presented by the following TS fuzzy model

Plant Rule 1: IF x2(t) is M11 THEN

ẋ(t) = −x(t) + W1g
(
x(t)

)
+ J1g

(
x(t− τ(t))

)
. (9)

Plant Rule 2: IF x2(t) is M22 THEN

ẋ(t) = −x(t) + W2g
(
x(t)

)
+ J2g

(
x(t− τ(t))

)
. (10)

Using the Theorem 1, it is easy to check that the non-
linear system (8) is globally exponentially stable. The delay
τ(t) could be any bounded continuous function, say,sin2(t),
cos2(t), 1/(1 + |t|) (not differentiable), etc.

Fig. 1 shows the global exponential stability of the nonlinear
system (8) withτ(t) = 1.

Fig. 2 and Fig. 3 show the global exponential stability of
the local systems (9) and (10) withτ(t) = 1.

V. CONCLUSIONS

In this paper, the global exponential stability analysis for
a class of fuzzy systems with uncertain time delays has been
studied. Some global exponential stability conditions for free
delayed fuzzy systems have been proposed. Then an example
has been used to illustrate the results. We believe that all of
the results obtained in this paper can be extended to the fuzzy
systems with multiple time delays or with time-varying delay.
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Fig. 1. Global exponential stability of (8) withτ(t) = 1.
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Fig. 2. Global exponential stability of (9) withτ(t) = 1.

VI. A CKNOWLEDGMENT

This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant 61103041, 11071178,
the Fundamental Research Funds for the Central Universities,
under Grant ZYGX2013Z005, ZYGX2012J070, the National
High-tech R&D Program under Grant SQ2011GX02D03708.

REFERENCES

[1] T. Takagi and M. Sugeno, Fuzzy identification of systems and its appli-
cations to modeling and control,IEEE Trans. Syst., Man, Cybern., vol.
15, no. 1, pp. 116-132, 1985.

[2] F. H. Hsiao, C. W. Chen, Y. W. Liang, S. D. Xu and W. L. Chiang , T-S
fuzzy controllers for nonlinear Interconnected systems with multiple time
delays,IEEE Trans. Circuits And Systems-I, vol. 52, no. 9, pp. 1883-1893,
2005.

[3] F. Liu, M. Wu, Y. He and R. Yokoyama, New delay-dependent stability
criteria for TCS fuzzy systems with time-varying delay,Fuzzy Sets and
Systems, vol. 161, pp. 2033-2042, 2010.

[4] X. Su, P. Shi, L. Wu and Y. Song, A Novel Approach to Filter Design
for TCS Fuzzy Discrete-Time Systems With Time-Varying Delay,IEEE
Trans. Fuzzy Systems, vol. 20, no. 6, pp. 1114-1129, 2012.

[5] J. Yu, Z. Yi, and L. Zhang, Periodicity of a class of nonlinear fuzzy
systems with delays,Chaos, Solitons and Fractals, vol. 40, pp. 1343-
1351, 2009.

[6] K. Tanaka, Stability and stabilizability of fuzzy neural linear control
systems,IEEE Trans. Fuzzy Systems, vol. 3, pp. 438-447, 1995.

[7] M. A. L. Thathachar and P. Viswanath, On the stability of fuzzy systems,
IEEE Trans. Fuzzy Systems, vol. 5, pp. 145-151, 1997.

[8] F. Cuesta, F. Gordillo, J. Aracil and A. Ollero, Stability analysis of
nonlinear multivariable Takagi-Sugeno fuzzy control systems,IEEE Trans.
Fuzzy Systems, vol. 7, pp. 508-520, 1999.

[9] Y. Y. Cao and P. M. Frank, Analysis and synthesis of nonlinear time-delay
systems via fuzzy control approach,IEEE Trans. Fuzzy Systems, vol. 8,
no. 2, pp. 200-211, 2000.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

C
om

po
ne

nt
s 

of
 x

x1
x2

Fig. 3. Global exponential stability of (10) withτ(t) = 1.

[10] P. Baldi, A. F. Atiya, How delays affect neural dynamics and learning,
IEEE Trans. Neural Networks, vol. 5, no. 4, pp. 612-621, 1994.

[11] F. H. Hsiao, W. L. Chiang and C. W. Chen, Application of fuzzyH∞
control via T-S fuzzy models for nonlinear time-delay systems,Int. J. Art.
Intell. Tools, vol. 12, no. 2, pp. 117-137, 2003.

[12] E. Fridman and U. Shaked, Parameter dependent stability and stability
and stabilization of uncertain time-delay systems,IEEE Trans. Autom .
Control, vol. 48, no. 5, pp. 861-866, May 2003.

[13] X. P. Guan and C. L. Chen, Delay-dependent guaranteed cost control
for T-S fuzzy systems with time delays,IEEE Trans. Fuzzy Systems, vol.
12, no. 2, pp. 236-249, 2004.

[14] I. Said, E. H. Tissir, Delay Dependent Robust Stability of T-S Fuzzy
Systems with Additive Time Varying Delays,Applied Mathematical
Sciences, Vol. 6, no. 1, pp. 1-12, 2012.

[15] S. S. Chen ,Y. C. Chang, S. F. Su, S. L. Chung and T. T. Lee, Robust
static output-feedback stabilization for nonlinear discrete-time systems
with time delay via fuzzy control approach,IEEE Trans. Fuzzy Systems,
vol. 13, no. 2, pp. 263-272, 2005.

[16] S. Y. Xu and J. Lam, RobustH∞ control for uncertain discrete-time-
delay fuzzy systems via output feedback controllers,IEEE Trans. Fuzzy
Systems, vol. 13, no. 1, pp. 82-93, 2005.

[17] Z. Yi and P. A. Heng, Stability of fuzzy control systems with bounded
uncertain delays,IEEE Trans. Fuzzy Systems, vol. 10, no. 1, pp. 92-97,
2002.

[18] C. L. Chen, G. Feng and X. P. Guan, Delay-dependent stability analysis
and controller synthesis for discrete-time T-S fuzzy systems with time
delays,IEEE Trans. Fuzzy Systems, vol. 13, no. 5, pp. 630-643, 2005.

[19] Y. Zhao, H. Gao, J. Lam and B. Du, Stability and Stabilization of
Delayed TCS Fuzzy Systems: A Delay Partitioning Approach,IEEE
Trans. Fuzzy Systems, vol. 17, no. 4, pp. 750-762, 2009.

[20] X. P. Guan and C. L. Chen, Delay-dependent guaranteed cost control
for T-S fuzzy systems with time delays,IEEE Trans. Fuzzy Systems, vol.
12, no. 2, pp. 236-249, 2004.

[21] Z. Yi and K. K. Tan, Convergence analysis of recurrent neural networks,
Kluwer Academic Publishers, Boston, 2004.

74




