About Extension of Differential Realization of the Countable Beam of Nonlinear Processes Input-Output in a Hilbert Space

Rusanov V.A., Lakeyev A.V.
Institute for System Dynamics and Control Theory, Siberian Branch of RAS
Irkutsk, Russia
e-mail: v.rusanov@mail.ru, lakeyev@icc.ru

Linke Yu.È.
Irkutsk State Transport University
Irkutsk, Russia
e-mail: linkeyurij@gmail.com

Abstract

The study of algebraic extension of a countable family of controlled nonlinear dynamic processes having differential realization in the class of ordinary quasi-linear differential equations (with software-positional control and without) in a separable Hilbert space was conducted.

Keywords-nonlinear processes "input-output", nonlinear differential realization, nonstationary $\left(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{B}^{*}\right)_{2}$-model.

Further $\left(X,\|\cdot\| \|_{X}\right),\left(Y,\|\cdot\| \|_{Y}\right),\left(Z,\|\cdot\| \|_{Z}\right)$ - real separable Hilbert spaces (pre-Hilbert [1, p. 64] define norms $\|\cdot\|_{X},\|\cdot\|_{Y},\|\cdot\|_{Z}$), $U:=X \times Y \times Z$ - Hilbert space with the norm $\|(\mathrm{x}, \mathrm{y}, \mathrm{z})\|_{U}:=\left(\|\mathrm{x}\|_{X}^{2}+\|\mathrm{y}\|_{Y}^{2}+\|\mathrm{z}\|_{Z}^{2}\right)^{1 / 2}, L(Y, X)-$ Banach space with the operator norm $\|\cdot\|_{L(Y, X)}$ of all linear continuous operators from the space Y to X (similar $\left(L(X, X),\|\cdot\|_{L(X, X)}\right)$ and $\left.\left(L(Z, X),\|\cdot\|_{L Z, X)}\right)\right), T:=\left[t_{0}, t_{1}\right]$ - segment of the real line R with the Lebesque measure μ and $\wp_{\mu}-\sigma$-algebra of all μ measurable subsets of the interval T. If below $(B,\|\cdot\|)$ some Banach space, then as usual through $\mathrm{L}_{2}(T, \mu, B)$ we will denote Banach quotient space of classes μ-equivalence of all integrable maps $f: T \rightarrow B$ of Bochner [1, p. 132] with the norm $\left(\int_{T}\|f(\tau)\|^{2} \mu(d \tau)\right)^{1 / 2}$. In addition everywhere further $A C(T, X)$ - linear set of all absolutely continuous on T functions (with respect to μ measure) with values in the space X, moreover $\Pi:=A C(T, X) \times \mathrm{L}_{2}(T, \mu, Y) \times \mathrm{L}_{2}(T, \mu, Z)$.

Now we will distinguish for consideration controlled differential models of the form

$$
\begin{equation*}
d x(t) / d t=A x(t)+B u(t)+B^{\#} u^{\#}(x(t)), \tag{1}
\end{equation*}
$$

where $\left(x, u, u^{\#}(x)\right) \in \Pi, x-$ Carathéodory solution (C-solution), u and $u^{\#}(x)$ - software and positional control, $\left(A, B, B^{\#}\right) \in \mathrm{L}_{2}(T, \mu, L(X, X)) \times \mathrm{L}_{2}(T, \mu, L(Y, X)) \times \mathrm{L}_{2}(T, \mu, L(Z, X))$; in purposes of terminological convenience triple of vectorfunctions ($x, u, u^{\#}(x)$) we will also call C-solution of equation (1) and triple of operator-functions (A, B, B^{*}), adhering the terminology from [2,3] we will call $\left(A, B, B^{*}\right)_{2}$-model of differential system (1).

The task of elementary (singleton) extension of differential realization of the beam of dynamic processes: for a given(possibly nonlinear) law $x \mapsto u^{\#}(x)$: $A C(T, X) \rightarrow \mathrm{L}_{2}(T, \mu, Z)$ and fixed families N, N^{*} of processes "input-output" such that $N, N^{*} \subset\{(x, u, q) \in \Pi: \quad(x, u, q)=$ $\left.\left(x, u, u^{\#}(x)\right)\right\}, 1 \leq \operatorname{Card} N \leq \mathrm{x}_{0}$ (aleph-zero), Card $N^{*}=1, N^{*} \not \subset$
N, where N, N^{*} have differential realizations (1) to determine analytical conditions under which $N \cup N^{*}$ - family of C-solutions of some equation (1).

We endow the space $H_{2}:=\mathrm{L}_{2}(T, \mu, X) \times \mathrm{L}_{2}(T, \mu, Y) \times \mathrm{L}_{2}(T, \mu, Z)$ with the topology of the norm

$$
\left(\int_{T}\|(g(\tau), w(\tau), q(\tau))\|_{U}^{2} \mu(d \tau)\right)^{1 / 2},(g, w, q) \in H_{2} ;
$$

H_{2} - Hilbert space [1, p. 39]; we differ the element $\left(x, u, u^{\#}(x)\right) \in \Pi$ in the notations as class of equivalence (i.e. element H_{2}) from the specific representative (vectorfunction) $\left(x(\cdot), u(\cdot), u^{\#}(x(\cdot))\right)$ from this class.

We will denote through G_{E} arbitrary (but fixed and numbered) algebraic basis in $E:=\operatorname{Span} N$ and let $\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}:=N^{*}$, while $\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right) \notin E$. It is obvious that at any point $t \in T$ expansion in the Hilbert space of U vector $\left(x^{*}(t), u^{*}(t), u^{\#}\left(x^{*}(t)\right)\right)$ is possible on the projection in Span $\left\{\left(x(t), u(t), u^{\#}(x(t))\right)_{i}:\left(x, u, u^{\#}(x)\right)_{i} \in G_{E}, i=1,2, \ldots\right\}$, which is denoted by $\left(x^{*}-(t), u_{-}^{*}(t), u_{-}^{\#}-\left(x^{*}(t)\right)\right)$ and addition $\left(x_{\perp}^{*}(t), u_{\perp}^{*}(t), \quad u^{\#} \perp\left(x^{*}(t)\right)\right):=\left(x^{* *}(t), u^{*}(t), u^{\#}\left(x^{*}(t)\right)\right)$
$\left(x^{*} _(t), u^{*} _(t), u^{\#}-\left(x^{*}(t)\right)\right)$.
Lemma 1. Vector-functions

$$
\begin{aligned}
& t \mapsto\left(x^{* *}-(t), u^{*}-(t), u^{*}-\left(x^{*}(t)\right)\right): T \rightarrow U, \\
& t \mapsto\left(x_{\perp}^{*}(t), u_{\perp}^{*}(t), u_{\perp}^{*}\left(x^{*}(t)\right)\right): T \rightarrow U
\end{aligned}
$$

μ-measurable.
(By the separability of U weak and strong measurabilities coincide [1, p. 130]).

Lemma 2. Representation

$\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)=\left(x^{*}, u^{*}{ }_{-}, u^{\#} _\left(x^{*}\right)\right)+\left(x^{*}, u^{*}{ }_{\perp}, u^{\#} \perp\left(x^{*}\right)\right)$ doesn't
depend on the choice of algebraic basis G_{E}, while
$\left(x^{*} _, u^{*}{ }_{_}, u^{\#}{ }_{-}\left(x^{*}\right)\right),\left(x_{\perp}^{*} \perp, u^{*}{ }_{\perp}, u^{\#} \perp\left(x^{*}\right)\right) \in H_{2}$.
We denote through Ω_{E} and $\Omega^{*}{ }_{\perp}$ circuits in the space H_{2} respectively to linear manifolds $\operatorname{Span}\left\{\chi \cdot\left(x, u, u^{\#}(x)\right): \chi \in F\right.$, $\left.\left(x, u, u^{\#}(x)\right) \in E\right\}$ and $\operatorname{Span}\left\{\chi \cdot\left(x^{*}{ }_{\perp}, u^{*} \perp, u^{\#} \perp\left(x^{*}\right)\right): \chi \in F\right\}$, where $F \subset \mathrm{~L}(T, \mu, R)$ - family of equivalence classes $(\bmod \mu)$ of all characteristic functions induced by elements of σ-algebra \wp_{μ}.

Lemma 3. Subspaces $\Omega_{E}, \Omega^{*}{ }_{\perp}$ are orthogonal, i.e. $\Omega_{E} \perp$ $\Omega^{*}{ }^{*} . \square$

Remark 1. Everywhere further for two closed subspaces from the space H_{2}, such that their intersection is $\{0\} \subset H_{2}$, and the vector sum is closed in H_{2} we agree to denote the
sign of their vector addition through \oplus, in particular, Theorem 14.C [4, p. 28] and Lemma 3 make note $\Omega_{E} \oplus \Omega^{*}{ }_{\perp}$ correctly.

We ask the question: what are the analytical conditions imposed on the sets of controlled dynamic processes N and $\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}$, "extended" family of processes $N \cup$ $\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}$ has a differential realization (1)? On one of the ways of geometric solution of this problem is construction of characteristic feature (see below Theorem 1) defining equality

$$
\begin{equation*}
\Omega_{E}+\Omega^{*}=\Omega_{E} \oplus \Omega_{\perp}^{*}, \tag{2}
\end{equation*}
$$

where Ω^{*} - closure in the space H_{2} of linear manifold $\operatorname{Span}\left\{\chi \cdot\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right): \chi \in F\right\}$, while a particular form of equation (2), namely, of the type

$$
\begin{equation*}
\Omega_{E} \oplus \Omega^{*}=\Omega_{E} \oplus \Omega_{\perp}^{*}, \tag{3}
\end{equation*}
$$

positively responds to the aforesaid issue about the realization of the expanded beam $N \cup\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}$ in the context of approach to geometric solution of the task of expansion of differential realization based on the Theorem 14.C [4, p. 28] and theorem (3) [3] below Theorem 2 detects one characteristic property of equality (3).

Further $T_{0}:=\left\{t \in T:\left(x^{*} \perp(t), u^{*} \perp(t), u_{\perp}^{\#}\left(x^{*}(t)\right)\right)=0\right\}, v^{*}, v^{*}-$ Lebesque replenishments of measures

$$
\begin{gathered}
\int_{S}\left\|\left(x^{*}{ }_{\perp}(\tau), u^{*} \perp(\tau), u^{\#} \perp\left(x^{*}(\tau)\right)\right)\right\|_{U}^{2} \mu(d \tau), S \in \wp_{\mu}, \\
\int_{S}\left\|\left(x^{*}(\tau), u^{*}(\tau), u^{\#}\left(x^{*}(\tau)\right)\right)\right\|_{U}^{2} \mu(d \tau), S \in \wp_{\mu} .
\end{gathered}
$$

Theorem 1. $\Omega_{E}+\Omega^{*}=\Omega_{E} \oplus \Omega^{*}{ }_{\perp}$ only if

$$
\mathrm{L}_{2}\left(T, v^{*}, R\right)=\chi_{\perp} \cdot \mathrm{L}_{2}\left(T, v^{*}, R\right),
$$

where χ_{\perp} - characteristic function of the set $T T_{0}$.
Proof of Theorem 1 we reduce to the establishment of Lemmas 4 and 5.

Lemma 4. $\Omega_{E}+\Omega^{*} \subset \Omega_{E} \oplus \Omega^{*}{ }_{\perp}$.
Proof. Let $\omega^{\prime} \in \Omega^{*}$, then according to Lemma 4 [3] will be

$$
\begin{gathered}
\omega^{\prime}=\lambda^{\prime} \cdot\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)= \\
=\lambda^{\prime} \cdot\left(x_{\left.\underset{*}{*}, u_{-}^{*}, u^{\#}\left(x^{*}\right)\right)+\lambda^{\prime} \cdot\left(x_{\perp}^{*}, u^{*}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right),} .\right.
\end{gathered}
$$

where $\lambda^{\prime} \in \mathrm{L}_{2}\left(T, v^{*}, R\right)$. Further, since for each function $\lambda \in \mathrm{L}_{2}\left(T, \nu^{*}, R\right)$ we have

$$
\begin{gathered}
\lambda^{2}(t)\left\|\left(x^{*}(t), u^{*}(t), u^{\#}\left(x^{*}(t)\right)\right)\right\|_{U}^{2} \geq \lambda^{2}(t) \\
\left\|\left(x^{*} \perp(t), u^{*}{ }_{\perp}(t), u^{\#}{ }_{\perp}\left(x^{*}(t)\right)\right)\right\|_{U}^{2},
\end{gathered}
$$

then the following embedding of functional spaces is true

$$
\mathrm{L}_{2}\left(T, v^{*}, R\right) \subset \mathrm{L}_{2}\left(T, v^{*}{ }_{\perp}, R\right),
$$

where $\lambda^{\prime} \cdot\left(x^{*}{ }_{\perp}, u^{*}{ }_{\perp}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right) \in \Omega^{*} \perp$ (based on the analytical structure of the subspace $\Omega^{*}{ }_{\perp}$, given in Lemma 4 [3]. Thus, by the arbitrariness of the choice of the element $\omega^{\prime} \in \Omega^{*}$, the lemma will be proved as soon as we discover:

$$
\lambda^{\prime} \cdot\left(x_{-}^{*}, u^{*}, u^{\#} \quad\left(x^{*}\right)\right) \in \Omega_{E} .
$$

For this it is sufficient to show (Corollary [1, p. 109]) that $\left\langle\lambda^{\prime} \cdot\left(x^{*}{ }_{-}, u^{*}, u^{\#}\left(x^{*}\right)\right), \omega^{\prime \prime}\right\rangle_{H 2}=0$, where $\langle\cdot, \cdot\rangle_{H 2}-$ scalar product in H_{2}, for all $\omega^{\prime \prime} \in H_{2}$, such that $\left\langle\omega^{\prime \prime}, \omega\right\rangle_{H 2}=0$, for any $\omega \in \operatorname{Span}\left\{\chi \cdot\left(x, u, u^{\#}(x)\right): \chi \in F,\left(x, u, u^{\#}(x)\right) \in E\right\}$, which is equivalent to install:
$\omega^{\prime \prime}(t) \perp \operatorname{Span}\left\{\left(x(t), u(t), u^{\#}(x(t))\right)_{i}:\left(x, u, u^{\#}(x)\right)_{i} \in G_{E}, i=1,2, \ldots\right\}$ μ-almost everywhere in T, here \perp - relation of orthogonality in the structure of space U.

We expand vector-function $\omega^{\prime \prime}(\cdot)$ in each point $t \in T$ in the sum of

$$
\omega^{\prime \prime} _(t)+\omega_{\perp}^{\prime \prime}(t):=\omega^{\prime \prime}(t),
$$

where $\omega^{\prime \prime} _(t) \in \operatorname{Span}\left\{\left(x(t), u(t), u^{\#}(x(t))\right)_{i}:\left(x, u, u^{\#}(x)\right)_{i} \in G_{E}, i=1\right.$, $2, \ldots\}$ and $\omega^{\prime \prime}{ }_{\perp}(t)$ - is orthogonal to Span $\left\{\left(x(t), u(t), u^{\#}(x(t))\right)_{i}\right.$: $\left.\left(x, u, u^{\#}(x)\right)_{i} \in G_{E}, i=1,2, \ldots\right\}$. Then if $\omega^{\prime \prime} \neq 0$, there exists such set $S^{*} \in \wp_{\mu}, \mu\left(S^{*}\right)>0$, that $\omega^{\prime \prime} _(t) \neq 0, \forall t \in S^{*}$, while in the basis G_{E} there is such vector $\left(x, u, u^{\#}(x)\right)_{i}$, that is $\left(x(t), u(t), u^{\#}(x(t))\right)_{i} \neq 0 \mu$-almost everywhere in S^{*}; otherwise for μ-almost all $t \in S^{*}$ equalities will be "realized"
$\operatorname{Span}\left\{\left(x(t), u(t), u^{\#}(x(t))\right)_{i}:\left(x, u, u^{\#}(x)\right)_{i} \in G_{E}, i=1,2, \ldots\right\}=$ $\{0\}$,
and therefore $\omega^{\prime \prime}{ }_{-}=0$ should be performed in this position.
Now we denote through S_{+}^{*} and S^{*} _ subsets (partition) S^{*} equal

$$
\begin{aligned}
& S_{+}^{*}=\left\{t \in S^{*}:\left\langle\omega^{\prime \prime} _(t),\left(x(t), u(t), u^{\#}(x(t))\right)_{i}\right\rangle_{U} \geq 0\right\}, \\
& S_{-}^{*}=\left\{t \in S^{*}:\left\langle\omega^{\prime \prime} _(t),\left(x(t), u(t), u^{\#}(x(t))\right)_{i}>_{U}<0\right\} .\right.
\end{aligned}
$$

It is obvious that at least one of the sets S_{+}^{*} or S^{*} _ has a nonzero measure. Let $S^{*}{ }_{+}$acts as such set. Then $\chi_{+} \cdot\left(x, u, u^{\#}(x)\right)_{i} \in \operatorname{Span}\left\{\chi \cdot\left(x, u, u^{\#}(x)\right): \chi \in F,\left(x, u, u^{\#}(x)\right) \in E\right\}$ and $\left.<\omega^{\prime \prime}, \quad \chi_{+} \cdot\left(x, u, u^{\#}(x)\right)_{i}\right\rangle_{H_{2}}>0, \quad$ where $\quad \chi_{+}-$characteristic function of a set S_{+}^{*}. It is clear that we obtain $\left\langle\omega^{\prime \prime}, \chi_{+} \cdot\left(x, u, u^{\#}(x)\right)_{i}\right\rangle_{H 2}>0$ whereby we arrive at a contradiction with the conditions defined above the construction of the functional $\omega^{\prime \prime}$.

The above proof provides a useful clarification:
Corollary 1. $\mathrm{L}_{2}\left(T, v^{*}, R\right) \subset \mathrm{L}_{2}\left(T, \nu^{*}{ }_{\perp}, R\right)$.
Lemma 5. $\Omega_{E}+\Omega^{*} \supset \Omega_{E} \oplus \Omega_{\perp}^{*} \Leftrightarrow \mathrm{~L}_{2}\left(T, \nu^{*}{ }_{\perp}, R\right)=$ $\chi_{\perp} \cdot \mathrm{L}_{2}\left(T, v^{*}, R\right)$.

Proof. $\quad \Rightarrow$). Let $\lambda_{\omega} \in \mathrm{L}_{2}\left(T, \nu^{*}{ }_{\perp}, R\right)$ and $\omega:=$ $\lambda_{\omega} \cdot\left(x^{*}{ }_{\perp}, u^{*}{ }_{\perp}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right)$, where (Lemma 4 [3]) $\omega \in \Omega_{E} \oplus \Omega^{*}{ }_{\perp}$, means (assumption \Rightarrow) $\omega \in \Omega_{E}+\Omega^{*}$. Then by $\omega \in \Omega_{E} \oplus \Omega^{*}$ vector ω has an expansion of (unique) form $\omega=\omega^{\prime}+$ $\lambda_{\omega} \cdot\left(x^{*}{ }_{\perp}, u^{*}{ }_{\perp}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right)$, where $\omega^{\prime}=0 \in \Omega_{E}$, at this effect $\omega \in \Omega_{E}$ $+\Omega^{*}$ representation is true:

$$
\begin{gathered}
\omega=\omega^{\prime \prime}+\lambda^{*} \cdot\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)= \\
=\omega^{\prime \prime}+\lambda^{*} \cdot\left(x_{-}^{*}, u_{-}^{*}, u^{\# \#}\left(x^{*}\right)\right)+\lambda^{*} \cdot\left(x_{\perp}^{*}, u_{\perp}^{*}, u_{\perp}^{\#}\left(x^{*}\right)\right),
\end{gathered}
$$

where $\omega^{\prime \prime} \in \Omega_{E}, \lambda^{*} \in \mathrm{~L}_{2}\left(T, v^{*}, R\right)$. Since (reasonings are similar to the proof of Lemma 4 [3]) the inclusions take place $\lambda^{*} \cdot\left(x_{-}^{*}, u^{*}, u^{\#}{ }_{-}\left(x^{*}\right)\right) \in \Omega_{E}, \lambda^{*} \cdot\left(x_{\perp}^{*}, u^{*}{ }_{\perp}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right) \in \Omega_{\perp}^{*}$, then $\omega^{\prime}=$ $\omega^{\prime \prime}+\lambda^{*} \cdot\left(x^{*}{ }_{-}, u^{*}, u^{\#}\left(x^{*}\right)\right) \quad$ и $\quad \lambda_{\omega} \cdot\left(x^{*}, u^{*}{ }_{\perp}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right) \quad=$ $\lambda^{*} \cdot\left(x^{*}{ }_{\perp}, u^{*}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right)$. Thus, taking into account the presence of a linear isometry between $\mathrm{L}_{2}\left(T, \nu^{*}, R\right)$ and $\Omega_{\perp}{ }_{\perp}($ Lemma 4 [3]) will be $\lambda_{\omega}=\chi_{\perp} \cdot \lambda^{*}$, where in the end by the arbitrariness of the choice of function λ_{ω}, we obtain $\mathrm{L}_{2}\left(T, \nu^{*}, R\right) \subset$ $\chi_{\perp} \cdot \mathrm{L}_{2}\left(T, \nu^{*}, R\right)$ or taking into account Corollary $1 \mathrm{~L}_{2}\left(T, \nu^{*}{ }_{\perp}, R\right)$ $=\chi_{\perp} \cdot \mathrm{L}_{2}\left(T, v^{*}, R\right)$.
(\Leftarrow). Let $\omega \in \Omega_{E} \oplus \Omega^{*}{ }_{\perp}$. Then $\omega=\omega^{\prime}+\lambda_{\omega} \cdot\left(x^{*}, u^{*}, u^{\#}{ }_{\perp}\left(x^{*}\right)\right)$, where $\omega^{\prime} \in \Omega_{E}, \lambda_{\omega} \in \mathrm{L}_{2}\left(T, \nu^{*} \perp, R\right)$. Since (assumption \Leftarrow) $\lambda_{\omega} \in \chi_{\perp} \mathrm{L}_{2}\left(T, v^{*}, R\right)$, then we have a bunch of equalities

```
\(\omega^{\prime}+\lambda_{\omega} \cdot\left(x_{\perp}^{*}, u_{\perp}^{*}, u_{\perp}^{\#}\left(x^{*}\right)\right)=\omega^{\prime}+\lambda_{\omega} \cdot\left(x_{\star}^{*}, u_{\perp}^{*}, u_{\perp}^{\#}\left(x^{*}\right)\right)+\)
    \(+\lambda_{\omega} \cdot\left(x_{-}^{*}, u_{-}^{*}, u_{-}^{\#}\left(x^{*}\right)\right)-\lambda_{\omega} \cdot\left(x_{-}^{*}, u_{-}^{*}, u^{\#}\left(x^{*}\right)\right)=\)
    \(=\omega^{\prime}-\lambda_{\omega} \cdot\left(x_{-}^{*}, u_{-}^{*}, u_{-}^{\#}\left(x^{*}\right)\right)+\lambda_{\omega} \cdot\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\),
```

therefore, $\omega \in \Omega_{E}+\Omega^{*}$ taking into account $\left(\omega^{\prime}-\right.$ $\left.\lambda_{\omega} \cdot\left(x^{*}, u^{*}, u^{\#} \quad\left(x^{*}\right)\right)\right) \in \Omega_{E}, \lambda_{\omega} \cdot\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right) \in \Omega^{*}$.

Now we present a variant of characteristic conditions of equality (3).

Theorem 2. If we implement $T_{0}=\varnothing(\bmod \mu)$ offer is valid:

$$
\Omega_{E} \oplus \Omega^{*}=\Omega_{E} \oplus \Omega_{\perp}^{*} \Leftrightarrow \mathrm{~L}_{2}\left(T, v^{*}{ }_{\perp}, R\right)=\mathrm{L}_{2}\left(T, v^{*}, R\right) .
$$

Proof. That is $\Omega_{E}+\Omega^{*}=\Omega_{E} \oplus \Omega_{\perp}^{*} \Leftrightarrow \mathrm{~L}_{2}\left(T, v^{*}, R\right)=$ $\mathrm{L}_{2}\left(T, \nu^{*}, R\right)$ - a direct statement of Theorem 1. On the other hand, confirmation of equality $\Omega_{E} \cap \Omega^{*}=\{0\} \subset H_{2}$ follows from the assumption $\left\{t \in T:\left(x^{*} \perp(t), u^{*} \perp(t), u^{\#} \perp\left(x^{*}(t)\right)\right)=0\right\}=\varnothing$ $(\bmod \mu)$ and Corollary of Mazur's Theorem [1, p. 109].

Theorem 1 (given the finding of Lemma 5) and Theorem 2 attracting Theorem 14.C [4, p. 28] and Theorem 3 [3] do a fair conclusion:

Corollary 2. The following three properties are equivalent:

$$
\begin{gathered}
\mathrm{L}_{2}\left(T, v^{*}{ }_{\perp}, R\right) \subset \chi_{\perp} \mathrm{L}_{2}\left(T, v^{*}, R\right) \Leftrightarrow \\
\Leftrightarrow \mathrm{L}_{2}\left(T, v^{*}{ }_{\perp}, R\right)=\chi_{\perp} \mathrm{L}_{2}\left(T, v^{*}, R\right) \Leftrightarrow \\
\Leftrightarrow \Omega_{E} \oplus \Omega_{\perp}^{*}=\Omega_{E}+\Omega^{*},
\end{gathered}
$$

and if $T_{0}=\varnothing(\bmod \mu)$, then any signified property turns the beam $N \cup\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}$ into the set of dynamic processes with the differential realization (1).

Remark 2. Corollary 2 allows to call Theorem 2 as "direct theorem" about elementary algebraic extension of differential realization while hypothesis: $T_{0}=\varnothing(\bmod \mu)$, $N \cup\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}$ has a realization (1) $\Rightarrow \mathrm{L}_{2}\left(T, v^{*}, R\right) \subset$ $\mathrm{L}_{2}\left(T, v^{*}, R\right)$ in general case isn't confirmed that the following example illustrates.

Example 1. Let $X=Y=R, T=[-1,1], u^{\#}(\cdot)=0$ and

$$
\begin{gathered}
N=\left\{t \mapsto\left(\mathrm{e}^{t}, 0,0\right): t \in T\right\}, \\
\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}=\left\{t \mapsto\left(\mathrm{e}^{t}+t^{2} / 2, t, 0\right): t \in T\right\} ;
\end{gathered}
$$

it is obvious that $T_{0}=\varnothing(\bmod \mu)$ and the beam N $\cup\left\{\left(x^{*}, u^{*}, u^{\#}\left(x^{*}\right)\right)\right\}$ has a realization (1); we note that $T_{0} \neq \varnothing$. Then $\mathrm{L}_{2}\left(T, v^{*}, R\right)=\mathrm{L}_{2}(T, \mu, R)$ and $\mathrm{L}_{2}\left(T, v^{*}, R\right), v^{*}=\int \tau^{2} \mu(d \tau)$, because $\left(x^{*}{ }_{\perp}(t), u^{*}{ }_{\perp}(t), u^{\#}{ }_{\perp}\left(x^{*}(t)\right)\right)=(0, t, 0)$. It is clear that $1 / t$ $\in \mathrm{L}_{2}\left(T, \nu^{*}{ }_{\perp}, R\right), \quad 1 / t \notin \mathrm{~L}_{2}(T, \mu, R)$, where $\mathrm{L}_{2}\left(T, v^{*}{ }_{\perp}, R\right) \not \subset \mathrm{L}_{2}(T$, v^{*}, R); hence by Lemma 5 we also conclude that Ω_{E} $\oplus \Omega^{*} \not \subset \subset \Omega_{E}+\Omega^{*}$.

Next statement shows that the construction similar to Example 1 can't be realized in the functional class $A C(T, X) \times\{0\} \times\{0\} \subset \Pi$, i.e. for free trajectories (C-solutions) it can be said that for $N \subset A C(T, X) \times\{0\} \times\{0\}$ Corollary 3 in a known sense is opposite to Corollary 2 (see above Remark 2).

Corollary 3. If $N \subset A C(T, X) \times\{0\} \times\{0\}$, Card $N<\infty$ and $N \cup\left\{\left(x^{*}, 0,0\right)\right\}$ - set of trajectories with the realization (1) with $u=0, u^{\#}=0$, then the following relations are true:

$$
\begin{gathered}
T_{0}=\varnothing \\
\mathrm{L}_{2}\left(T, v^{*}{ }_{\perp}, R\right)=\mathrm{L}_{2}\left(T, v^{*}, R\right),
\end{gathered}
$$

$$
\Omega_{E} \oplus \Omega^{*}=\Omega_{E} \oplus \Omega_{\perp}^{*} .
$$

Proof. It is easy to see that $T_{0}=\varnothing$, because otherwise there exists a period of time $t_{*} \in T$, which $x^{*}\left(t_{*}\right)=\sum \alpha_{i} x_{(i)}\left(t_{*}\right)$, where all constants α_{i}, except the finite number are zero, $x_{(i)}$ - the first component of the triple $(x, 0,0)_{i} \in G_{E}$. Consequently, the trajectory $x^{*}(\cdot)$ has a representation $\Sigma \alpha_{i} x_{(i)}(\cdot)$ by the uniqueness of solution, extending at time t_{*} through the point $x^{*}\left(t_{*}\right)$, for the differential system (1) with ($A, 0,0)_{2}$-model, corresponding to a set of dynamic processes $N \cup\left\{\left(x^{*}, 0,0\right)\right\}$; that is contrary to its earlier condition $\left(x^{*}, 0,0\right) \notin E$.

Further, because of the continuity of the trajectory $x^{*}(\cdot)$ and the compactness of the interval T, there exist such real constants $c_{1}, c_{2}>0$, that equalities are true

$$
\inf \left\{\left\|x^{*}(t)\right\|_{X}: t \in T\right\}=c_{1}, \quad \sup \left\{\left\|x^{*}(t)\right\|_{X}: t \in T\right\}=c_{2}
$$

similarly (including $T_{0}=\varnothing$, $\operatorname{Card} N<\infty$), for some $c_{3}, c_{4}>0$ will be
$\inf \left\{\left\|x^{*}(t)\right\|_{X}: t \in T\right\}=c_{3}, \quad \sup \left\{\left\|x_{\perp}^{*}(t)\right\|_{X}: t \in T\right\}=c_{4}$.
Consequently, the classes of real-valued functions summable with square on T on measures $v^{*}=$ $\int\left\|x^{*}(\tau)\right\|_{X}^{2} \mu(d \tau)$ and $v^{*}{ }_{\perp}=\int\left\|x_{\perp}^{*}(\tau)\right\|_{X}^{2} \mu(d \tau)$, or in other words $\mathrm{L}_{2}\left(T, \nu^{*}, R\right)=\mathrm{L}_{2}\left(T, v^{*}{ }_{\perp}, R\right)$, and hence (see Theorem 2) $\Omega_{E} \oplus$ $\Omega^{*}=\Omega_{E} \oplus \Omega^{*}{ }_{\perp}$.

If we look at Theorem 2 under foreshortening of unmanaged trajectories of a differential system (1), we can see that the analyst of output condition $\mathrm{L}_{2}\left(T, v^{*}, R\right)=$ $\mathrm{L}_{2}\left(T, \nu^{*}{ }_{\perp}, R\right)$ in the proof of Corollary 3 enables us to strengthen this theorem to the characteristic feature of elementary algebraic extension of differential realization of a finite beam of unmanaged implementation processes $N \subset$ $A C(T, X) \times\{0\} \times\{0\}$.

Theorem 3. In the family of free K-solutions the problem of singleton expansion of differential realization of the finite beam of trajectories is solvable if and only if $T_{0}=$ \varnothing.

This work was supported by the Program "Leading Scientific Schools" (project no. NSh-5007.2014.09).
[1] K. Yosida, Functional Analysis. Springer-Verlag Berlin Heidelberg New York, 1980.
[2] V. A. Rusanov, L. V.Antonova, and A. V. Daneev, "Inverse problem of nonlinear systems analysis: A behavioral approach," Advances in Differential Equations and Control Processes, vol. 10, No 2, 2012, pp.69-88.
[3] V. A. Rusanov, A. V. Lakeev, and Yu.É Linke, "Existence of a Differential Realization of a Dynamical System in a Banach Space in the Constructions of Extensions to M_{p}-Operators," Differential Equations, vol. 49, No. 3, 2013, pp.346-358.
[4] J. L. Massera and J. J. Schaffer. Linear Differential Equations and Function Spaces. Academic Press, New York London, 1966.

