About Extension of Differential Realization of the Countable Beam of Nonlinear Processes Input-Output in a Hilbert Space

Rusanov V.A., Lakeyev A.V.
Institute for System Dynamics and Control Theory,
Siberian Branch of RAS
Irkutsk, Russia
e-mail: v.rusanov@mail.ru, lakeyev@icc.ru

Irkutsk State Transport University Irkutsk, Russia e-mail: linkeyurij@gmail.com

Linke Yu.È.

Abstract—The study of algebraic extension of a countable family of controlled nonlinear dynamic processes having differential realization in the class of ordinary quasi-linear differential equations (with software-positional control and without) in a separable Hilbert space was conducted.

Keywords-nonlinear processes "input-output", nonlinear differential realization, nonstationary $(A,B,B^{\#})_2$ -model.

Further $(X, ||\cdot||_X)$, $(Y, ||\cdot||_Y)$, $(Z, ||\cdot||_Z)$ – real separable Hilbert spaces (pre-Hilbert [1, p. 64] define norms $\|\cdot\|_X$, $\|\cdot\|_Y$, $\|\cdot\|_Z$), $U:=X\times Y\times Z$ – Hilbert space with the $\|(x,y,z)\|_{U}:=(\|x\|_{X}^{2}+\|y\|_{Y}^{2}+\|z\|_{Z}^{2})^{1/2}, L(Y,X)$ – Banach space with the operator norm $\|\cdot\|_{L(Y,X)}$ of all linear continuous operators from the space Y to X (similar $(L(X,X), \|\cdot\|_{L(X,X)})$ and $(L(Z,X), \|\cdot\|_{L(Z,X)})$, $T := [t_0, t_1]$ – segment of the real line R with the Lebesque measure μ and \wp_{μ} – σ -algebra of all μ measurable subsets of the interval T. If below $(B, \|\cdot\|)$ – some Banach space, then as usual through $L_2(T,\mu,B)$ we will denote Banach quotient space of classes µ-equivalence of all integrable maps $f: T \rightarrow B$ of Bochner [1, p. 132] with the norm $(\int_T ||f(\tau)||^2 \mu(d\tau))^{1/2}$. In addition everywhere further AC(T,X) – linear set of all absolutely continuous on T functions (with respect to μ measure) with values in the space *X*, moreover $\Pi := AC(T,X) \times L_2(T,\mu,Y) \times L_2(T,\mu,Z)$.

Now we will distinguish for consideration controlled differential models of the form

 $dx(t)/dt = Ax(t) + Bu(t) + B^{\#}u^{\#}(x(t)),$ (1) where $(x,u,u^{\#}(x)) \in \Pi$, x – Carath éodory solution (C-solution), u and $u^{\#}(x)$ – software and positional control, $(A,B,B^{\#}) \in L_2(T,\mu,L(X,X)) \times L_2(T,\mu,L(Y,X)) \times L_2(T,\mu,L(Z,X));$ in purposes of terminological convenience triple of vector-functions $(x,u,u^{\#}(x))$ we will also call C-solution of equation (1) and triple of operator-functions $(A,B,B^{\#})$, adhering the terminology from [2, 3] we will call $(A,B,B^{\#})_2$ -model of differential system (1).

The task of elementary (singleton) extension of differential realization of the beam of dynamic processes: for a given(possibly nonlinear) law $x \mapsto u^{\#}(x)$: $AC(T,X) \to L_2(T,\mu,Z)$ and fixed families N, N^* of processes "input–output" such that N, $N^* \subset \{(x,u,q) \in \Pi: (x,u,q) = (x,u,u^{\#}(x))\}$, $1 \le \text{Card } N \le \aleph_0$ (aleph-zero), Card $N^* = 1$, $N^* \not\subset$

N, where N, N^* have differential realizations (1) to determine analytical conditions under which $N \cup N^*$ – family of C-solutions of some equation (1).

We endow the space $H_2:= L_2(T,\mu,X)\times L_2(T,\mu,Y)\times L_2(T,\mu,Z)$ with the topology of the norm

$$(\int_T ||(g(\tau), w(\tau), q(\tau))||_U^2 \mu(d\tau))^{1/2}, (g, w, q) \in H_2;$$

 H_2 – Hilbert space [1, p. 39]; we differ the element $(x,u,u^{\#}(x))\in\Pi$ in the notations as class of equivalence (i.e. element H_2) from the specific representative (vector-function) $(x(\cdot),u(\cdot),u^{\#}(x(\cdot)))$ from this class.

We will denote through G_E arbitrary (but fixed and numbered) algebraic basis in E:=Span N and let $\{(x^*,u^*,u^\#(x^*))\}$:= N^* , while $(x^*,u^*,u^\#(x^*))\not\in E$. It is obvious that at any point $t\in T$ expansion in the Hilbert space of U vector $(x^*(t),u^*(t),u^\#(x^*(t)))$ is possible on the projection in Span $\{(x(t),u(t),u^\#(x(t)))_i: (x,u,u^\#(x))_i\in G_E,\ i=1,\ 2,\ \ldots\}$, which is denoted by $(x^*_{_}(t),u^*_{_}(t),u^\#_{_}(x^*(t)))$ and addition $(x^*_{\bot}(t),u^*_{\bot}(t),u^\#_{_}(x^*(t)))$:= $(x^*(t),u^*(t),u^\#(x^*(t)))$ - $(x^*_{_}(t),u^*_{_}(t),u^\#_{_}(x^*(t)))$.

Lemma 1. Vector-functions

$$t \mapsto (x^*_{-}(t), u^*_{-}(t), u^{\#}_{-}(x^*(t))): T \to U,$$

 $t \mapsto (x^*_{-}(t), u^*_{-}(t), u^{\#}_{-}(x^*(t))): T \to U$

 μ -measurable.

(By the separability of U weak and strong measurabilities coincide [1, p. 130]). \square

Lemma 2. Representation

 $(x^*,u^*,u^*(x^*))=(x^*_-,u^*_-,u^*_-(x^*))+(x^*_\perp,u^*_\perp,u^*_\perp(x^*))$ doesn't depend on the choice of algebraic basis G_E , while $(x^*_-,u^*_-,u^*_-(x^*)), (x^*_\perp,u^*_\perp,u^*_\perp(x^*)) \in H_2$. \square

We denote through Ω_E and Ω^*_{\perp} circuits in the space H_2 respectively to linear manifolds $\operatorname{Span}\{\chi\cdot(x,u,u^{\#}(x)): \chi\in F, (x,u,u^{\#}(x))\in E\}$ and $\operatorname{Span}\{\chi\cdot(x^*_{\perp},u^*_{\perp},u^{\#}_{\perp}(x^*)): \chi\in F\}$, where $F\subset L(T,\mu,R)$ – family of equivalence classes (mod μ) of all characteristic functions induced by elements of σ -algebra

Lemma 3. Subspaces Ω_E , Ω^*_{\perp} are orthogonal, i.e. $\Omega_E \perp \Omega^*_{\perp}$. \square

Remark 1. Everywhere further for two closed subspaces from the space H_2 , such that their intersection is $\{0\} \subset H_2$, and the vector sum is closed in H_2 we agree to denote the

sign of their vector addition through \oplus , in particular, Theorem 14.C [4, p. 28] and Lemma 3 make note $\Omega_E \oplus \Omega^*_{\perp}$ correctly.

We ask the question: what are the analytical conditions imposed on the sets of controlled dynamic processes N and $\{(x^*, u^*, u^{\#}(x^*))\}$, "extended" family of processes $N \cup \{(x^*, u^*, u^{\#}(x^*))\}$ has a differential realization (1)? On one of the ways of geometric solution of this problem is construction of characteristic feature (see below Theorem 1) defining equality

$$\Omega_E + \Omega^* = \Omega_E \oplus \Omega^*_{\perp}, \qquad (2)$$

where Ω^* – closure in the space H_2 of linear manifold $\text{Span}\{\chi\cdot(x^*,u^*,u^\#(x^*)): \chi\in F\}$, while a particular form of equation (2), namely, of the type

$$\Omega_E \oplus \Omega^* = \Omega_E \oplus \Omega^*_{\perp}, \tag{3}$$

positively responds to the aforesaid issue about the realization of the expanded beam $N \cup \{(x^*, u^*, u^{\#}(x^*))\}$ in the context of approach to geometric solution of the task of expansion of differential realization based on the Theorem 14.C [4, p. 28] and theorem (3) [3] below Theorem 2 detects one characteristic property of equality (3).

Further $T_0:=\{t \in T: (x_{\perp}^*(t), u_{\perp}^*(t), u_{\perp}^*(x^*(t))) = 0\}, v_{\perp}^*, v_{\perp}^* - \text{Lebesque replenishments of measures}$

$$\int_{S} \|(x_{\perp}^{*}(\tau), u_{\perp}^{*}(\tau), u_{\perp}^{*}(\tau^{*}(\tau)))\|_{U}^{2} \mu(d\tau), S \in \mathcal{D}_{\mu},$$

$$\int_{S} \|(x^{*}(\tau), u^{*}(\tau), u^{\#}(x^{*}(\tau)))\|_{U}^{2} \mu(d\tau), S \in \mathcal{D}_{\mu}.$$

Theorem 1.
$$\Omega_E + \Omega^* = \Omega_E \oplus \Omega^*_{\perp} only if$$

 $L_2(T, v^*_{\perp}, R) = \chi_{\perp} \cdot L_2(T, v^*, R),$

where χ_{\perp} – characteristic function of the set $T \setminus T_0$.

Proof of Theorem 1 we reduce to the establishment of Lemmas 4 and 5.

Lemma 4.
$$\Omega_E + \Omega^* \subset \Omega_E \oplus \Omega^*_{\perp}$$
.

Proof. Let $\omega' \in \Omega^*$, then according to Lemma 4 [3] will be

$$\omega' = \lambda' \cdot (x^*, u^*, u^{\#}(x^*)) =$$

$$= \lambda' \cdot (x^*_{-}, u^*_{-}, u^{\#}_{-}(x^*)) + \lambda' \cdot (x^*_{\perp}, u^*_{\perp}, u^{\#}_{\perp}(x^*)),$$

where $\lambda' \in L_2(T, \nu^*, R)$. Further, since for each function $\lambda \in L_2(T, \nu^*, R)$ we have

$$\lambda^{2}(t) \| (x^{*}(t), u^{*}(t), u^{\#}(x^{*}(t))) \|_{U}^{2} \ge \lambda^{2}(t)$$
$$\| (x^{*}_{\perp}(t), u^{*}_{\perp}(t), u^{\#}_{\perp}(x^{*}(t))) \|_{U}^{2},$$

then the following embedding of functional spaces is true

$$L_2(T,v^*,R) \subset L_2(T,v^*_{\perp},R),$$

where $\lambda' \cdot (x_{\perp}^*, u_{\perp}^*, u_{\perp}^*(x^*)) \in \Omega_{\perp}^*$ (based on the analytical structure of the subspace Ω_{\perp}^* , given in Lemma 4 [3]. Thus, by the arbitrariness of the choice of the element $\omega' \in \Omega^*$, the lemma will be proved as soon as we discover:

$$\lambda' \cdot (x^*_{-}, u^*_{-}, u^*_{-}(x^*)) \in \Omega_E.$$

For this it is sufficient to show (Corollary [1, p. 109]) that $\langle \lambda' \cdot (x^*_, u^*_, u^\#_(x^*))$, $\omega'' \rangle_{H2} = 0$, where $\langle \cdot, \cdot \rangle_{H2} - \text{scalar}$ product in H_2 , for all $\omega'' \in H_2$, such that $\langle \omega'', \omega \rangle_{H2} = 0$, for any $\omega \in \text{Span}\{\chi \cdot (x,u,u^\#(x)): \chi \in F, (x,u,u^\#(x)) \in E\}$, which is equivalent to install:

 $ω''(t) \perp \text{Span}\{(x(t),u(t),u^{\#}(x(t)))_i: (x,u,u^{\#}(x))_i \in G_E, i=1,2,...\}$ μ-almost everywhere in T, here \bot – relation of orthogonality in the structure of space U.

We expand vector-function $\omega''(\cdot)$ in each point $t \in T$ in the sum of

$$\omega''_{\perp}(t) + \omega''_{\perp}(t) := \omega''(t),$$

where $\omega''_{-}(t) \in \operatorname{Span}\{(x(t),u(t),u^{\#}(x(t)))_{i}:(x,u,u^{\#}(x))_{i} \in G_{E}, i=1, 2, \ldots\}$ and $\omega''_{\perp}(t)$ — is orthogonal to Span $\{(x(t),u(t),u^{\#}(x(t)))_{i}:(x,u,u^{\#}(x))_{i} \in G_{E}, i=1, 2, \ldots\}$. Then if $\omega''_{-}\neq 0$, there exists such set $S^{*} \in \wp_{\mu}$, $\mu(S^{*}) > 0$, that $\omega''_{-}(t) \neq 0$, $\forall t \in S^{*}$, while in the basis G_{E} there is such vector $(x,u,u^{\#}(x))_{i}$, that is $(x(t),u(t),u^{\#}(x(t)))_{i}\neq 0$ μ -almost everywhere in S^{*} ; otherwise for μ -almost all $t \in S^{*}$ equalities will be "realized"

Span{
$$(x(t),u(t),u^{\#}(x(t)))_i$$
: $(x,u,u^{\#}(x))_i \in G_E$, $i=1, 2, ...$ } = {0},

and therefore $\omega''_{-} = 0$ should be performed in this position.

Now we denote through S_+^* and S_-^* subsets (partition) S_-^* equal

$$S^*_{+} = \{t \in S^*: <\omega''_{-}(t), (x(t), u(t), u^{\#}(x(t)))_{i}>_{U} \ge 0\}, S^*_{-} = \{t \in S^*: <\omega''_{-}(t), (x(t), u(t), u^{\#}(x(t)))_{i}>_{U} < 0\}.$$

It is obvious that at least one of the sets S^*_+ or S^*_- has a nonzero measure. Let S^*_+ acts as such set. Then $\chi_+\cdot(x,u,u^\#(x))_i\in \operatorname{Span}\{\chi\cdot(x,u,u^\#(x)):\chi\in F,(x,u,u^\#(x))\in E\}$ and $<\omega''_-$, $\chi_+\cdot(x,u,u^\#(x))_i>_{H2}>0$, where χ_+ – characteristic function of a set S^*_+ . It is clear that we obtain $<\omega'',\chi_+\cdot(x,u,u^\#(x))_i>_{H2}>0$ whereby we arrive at a contradiction with the conditions defined above the construction of the functional ω'' . \square

The above proof provides a useful clarification:

Corollary 1. $L_2(T, \nu^*, R) \subset L_2(T, \nu^*_{\perp}, R)$. \square

Lemma 5. $\Omega_E + \Omega^* \supset \Omega_E \oplus \Omega^*_{\perp} \Leftrightarrow L_2(T, \nu^*_{\perp}, R) = \chi_{\perp} \cdot L_2(T, \nu^*, R).$

Proof. (\Rightarrow). Let $\lambda_{\omega} \in L_2(T, v_{\perp}^*, R)$ and $\omega := \lambda_{\omega} \cdot (x_{\perp}^*, u_{\perp}^*, u_{\perp}^{\#}(x^*))$, where (Lemma 4 [3]) $\omega \in \Omega_E \oplus \Omega_{\perp}^*$, means (assumption \Rightarrow) $\omega \in \Omega_E + \Omega^*$. Then by $\omega \in \Omega_E \oplus \Omega_{\perp}^*$ vector ω has an expansion of (unique) form $\omega = \omega' + \lambda_{\omega} \cdot (x_{\perp}^*, u_{\perp}^*, u_{\perp}^*, u_{\perp}^*(x^*))$, where $\omega' = 0 \in \Omega_E$, at this effect $\omega \in \Omega_E + \Omega^*$ representation is true:

$$\omega = \omega'' + \lambda^* \cdot (x^*, u^*, u^{\#}(x^*)) =$$

$$= \omega'' + \lambda^* \cdot (x^*_{-}, u^*_{-}, u^{\#}_{-}(x^*)) + \lambda^* \cdot (x^*_{-}, u^*_{-}, u^{\#}_{-}(x^*)),$$

where $\omega'' \in \Omega_E$, $\lambda^* \in L_2(T, v^*, R)$. Since (reasonings are similar to the proof of Lemma 4 [3]) the inclusions take place $\lambda^* \cdot (x^*_, u^*_, u^\#_(x^*)) \in \Omega_E$, $\lambda^* \cdot (x^*_, u^*_, u^\#_(x^*)) \in \Omega^*_$, then $\omega' = \omega'' + \lambda^* \cdot (x^*_, u^*_, u^\#_(x^*))$ is $\lambda_\omega \cdot (x^*_, u^*_, u^\#_(x^*)) = \lambda^* \cdot (x^*_, u^*_, u^\#_(x^*))$. Thus, taking into account the presence of a linear isometry between $L_2(T, v^*_, R)$ and $\Omega^*_(Lemma 4 [3])$ will be $\lambda_\omega = \chi_\perp \cdot \lambda^*$, where in the end by the arbitrariness of the choice of function λ_ω , we obtain $L_2(T, v^*_, R) \subset \chi_\perp \cdot L_2(T, v^*_, R)$ or taking into account Corollary 1 $L_2(T, v^*_, R) = \chi_\perp \cdot L_2(T, v^*_, R)$.

(⇐). Let $ω∈Ω_E ⊕ Ω^*_\bot$. Then $ω = ω' + λ_ω · (x^*_\bot, u^*_\bot, u^\#_\bot(x^*))$, where $ω'∈Ω_E$, $λ_ω∈L_2(T, v^*_\bot, R)$. Since (assumption ⇐) $λ_ω∈χ_\bot L_2(T, v^*, R)$, then we have a bunch of equalities

$$\begin{split} \omega' + \lambda_{\omega} \cdot & (x^*_{\perp}, u^*_{\perp}, u^{\#}_{\perp}(x^*)) = \omega' + \lambda_{\omega} \cdot (x^*_{\perp}, u^*_{\perp}, u^{\#}_{\perp}(x^*)) + \\ & + \lambda_{\omega} \cdot (x^*_{-}, u^*_{-}, u^{\#}_{\perp}(x^*)) - \lambda_{\omega} \cdot (x^*_{-}, u^*_{-}, u^{\#}_{\perp}(x^*)) = \\ & = \omega' - \lambda_{\omega} \cdot (x^*_{-}, u^*_{-}, u^{\#}_{\perp}(x^*)) + \lambda_{\omega} \cdot (x^*_{-}, u^*_{-}, u^{\#}(x^*)), \end{split}$$
 therefore, $\omega \in \Omega_E + \Omega^*$ taking into account $(\omega' - 1)^{-1} \cdot (x^*_{-}, u^*_{-}, u^{\#}_{-}(x^*_{-}, u^*_{-}, u^{\#}_{-}, u^{\#}_{-}(x^*_{-}, u^*_{-}, u^{\#}_{-}(x^*_{-}, u^*_{-}, u^{\#}_{-}, u^{\#}_{-}(x^*_{-}, u^*_{-}, u^{\#}_{-}, u^{\#}_{-}, u^{\#}_{-}(x^*_{-}, u^*_{-}, u^{\#}_{-}, u^{\#}_{-}, u^{\#}_{-}, u^{\#}_{-}(x^*_{-}, u^*_{-}, u^{\#}_{-}, u^{\#}_$

Now we present a variant of characteristic conditions of equality (3).

 $\lambda_{\omega} \cdot (x^* , u^* , u^* (x^*)) \in \Omega_E, \lambda_{\omega} \cdot (x^* , u^* , u^* (x^*)) \in \Omega^*. \square$

Theorem 2. If we implement $T_0 = \emptyset \pmod{\mu}$ offer is valid:

$$\Omega_E \oplus \Omega^* = \Omega_E \oplus \Omega^*_{\perp} \Leftrightarrow L_2(T, \nu^*_{\perp}, R) = L_2(T, \nu^*, R).$$

Proof. That is $\Omega_E + \Omega^* = \Omega_E \oplus \Omega^*_{\perp} \Leftrightarrow L_2(T, \nu^*_{\perp}, R) = L_2(T, \nu^*_{\perp}, R) - a$ direct statement of Theorem 1. On the other hand, confirmation of equality $\Omega_E \cap \Omega^* = \{0\} \subset H_2$ follows from the assumption $\{t \in T: (x^*_{\perp}(t), u^*_{\perp}(t), u^*_{\perp}(x^*(t))) = 0\} = \emptyset$ (mod μ) and Corollary of Mazur's Theorem [1, p. 109]. \square

Theorem 1 (given the finding of Lemma 5) and Theorem 2 attracting Theorem 14.C [4, p. 28] and Theorem 3 [3] do a fair conclusion:

Corollary 2. The following three properties are equivalent:

$$L_{2}(T, \nu_{\perp}^{*}, R) \subset \chi_{\perp} L_{2}(T, \nu_{\perp}^{*}, R) \Leftrightarrow \\ \Leftrightarrow L_{2}(T, \nu_{\perp}^{*}, R) = \chi_{\perp} L_{2}(T, \nu_{\perp}^{*}, R) \Leftrightarrow \\ \Leftrightarrow \Omega_{E} \oplus \Omega_{\perp}^{*} = \Omega_{E} + \Omega_{\perp}^{*},$$

and if $T_0 = \emptyset \pmod{\mu}$, then any signified property turns the beam $N \cup \{(x^*, u^*, u^{\#}(x^*))\}$ into the set of dynamic processes with the differential realization (1). \square

Remark 2. Corollary 2 allows to call Theorem 2 as "direct theorem" about elementary algebraic extension of differential realization while hypothesis: $T_0 = \emptyset \pmod{\mu}$, $N \cup \{(x^*, u^*, u^{\#}(x^*))\}$ has a realization $(1) \Rightarrow L_2(T, v^*_{\perp}, R) \subset L_2(T, v^*, R)$ in general case isn't confirmed that the following example illustrates.

Example 1. Let
$$X = Y = R$$
, $T = [-1, 1]$, $u^{\#}(\cdot) = 0$ and $N = \{t \mapsto (e^{t}, 0, 0) : t \in T\}$, $\{(x^{*}, u^{*}, u^{\#}(x^{*}))\} = \{t \mapsto (e^{t} + t^{2}/2, t, 0) : t \in T\}$;

it is obvious that $T_0 = \emptyset \pmod{\mu}$ and the beam $N \cup \{(x^*,u^*,u^{\#}(x^*))\}$ has a realization (1); we note that $T_0 \neq \emptyset$. Then $L_2(T,v^*,R) = L_2(T,\mu,R)$ and $L_2(T,v^*_{\perp},R)$, $v^*_{\perp} = \int \tau^2 \mu(d\tau)$, because $(x^*_{\perp}(t),u^*_{\perp}(t),u^{\#}_{\perp}(x^*(t))) = (0,t,0)$. It is clear that $1/t \in L_2(T,v^*_{\perp},R)$, $1/t \notin L_2(T,\mu,R)$, where $L_2(T,v^*_{\perp},R) \not\subset L_2(T,v^*_{\perp},R)$; hence by Lemma 5 we also conclude that $\Omega_E \oplus \Omega^*_{\perp} \not\subset \Omega_E + \Omega^*$.

Next statement shows that the construction similar to Example 1 can't be realized in the functional class $AC(T,X)\times\{0\}\times\{0\}\subset\Pi$, i.e. for free trajectories (*C*-solutions) it can be said that for $N\subset AC(T,X)\times\{0\}\times\{0\}$ Corollary 3 in a known sense is opposite to Corollary 2 (see above Remark 2)

Corollary 3. If $N \subset AC(T,X) \times \{0\} \times \{0\}$, Card $N < \infty$ and $N \cup \{(x^*,0,0)\}$ – set of trajectories with the realization (1) with u = 0, $u^\# = 0$, then the following relations are true:

$$T_0 = \varnothing,$$

$$L_2(T, v^*_{\perp}, R) = L_2(T, v^*, R),$$

$$\Omega_E \oplus \Omega^* = \Omega_E \oplus \Omega^*_{\perp}$$
.

Proof. It is easy to see that $T_0 = \emptyset$, because otherwise there exists a period of time $t_* \in T$, which $x^*(t_*) = \Sigma \alpha_i x_{(i)}(t_*)$, where all constants α_i , except the finite number are zero, $x_{(i)}$ — the first component of the triple $(x,0,0)_i \in G_E$. Consequently, the trajectory $x^*(\cdot)$ has a representation $\Sigma \alpha_i x_{(i)}(\cdot)$ by the uniqueness of solution, extending at time t_* through the point $x^*(t_*)$, for the differential system (1) with $(A,0,0)_2$ -model, corresponding to a set of dynamic processes $N \cup \{(x^*,0,0)\}$; that is contrary to its earlier condition $(x^*,0,0) \notin E$.

Further, because of the continuity of the trajectory $x^*(\cdot)$ and the compactness of the interval T, there exist such real constants c_1 , $c_2 > 0$, that equalities are true

inf $\{||x^*(t)||_X: t \in T\} = c_1$, sup $\{||x^*(t)||_X: t \in T\} = c_2$, similarly (including $T_0 = \emptyset$, Card $N < \infty$), for some c_3 , $c_4 > 0$ will be

$$\inf \{ \|x_{\perp}^*(t)\|_X : t \in T \} = c_3, \quad \sup \{ \|x_{\perp}^*(t)\|_X : t \in T \} = c_4.$$

Consequently, the classes of real-valued functions summable with square on T on measures $v_{\perp}^* = \int ||x^*(\tau)||_X^2 \, \mu(d\tau)$ and $v_{\perp}^* = \int ||x_{\perp}^*(\tau)||_X^2 \, \mu(d\tau)$, or in other words $L_2(T,v_{\perp}^*,R) = L_2(T,v_{\perp}^*,R)$, and hence (see Theorem 2) $\Omega_E \oplus \Omega^* = \Omega_E \oplus \Omega^*_{\perp}$. \square

If we look at Theorem 2 under foreshortening of unmanaged trajectories of a differential system (1), we can see that the analyst of output condition $L_2(T, v^*, R) = L_2(T, v^*_{\perp}, R)$ in the proof of Corollary 3 enables us to strengthen this theorem to the characteristic feature of elementary algebraic extension of differential realization of a finite beam of unmanaged implementation processes $N \subset AC(T,X) \times \{0\} \times \{0\}$.

Theorem 3. In the family of free K-solutions the problem of singleton expansion of differential realization of the finite beam of trajectories is solvable if and only if $T_0 = \emptyset$.

This work was supported by the Program "Leading Scientific Schools" (project no. NSh-5007.2014.09).

- K. Yosida, Functional Analysis. Springer-Verlag Berlin Heidelberg New York, 1980.
- [2] V. A. Rusanov, L. V.Antonova, and A. V. Daneev, "Inverse problem of nonlinear systems analysis: A behavioral approach," Advances in Differential Equations and Control Processes, vol. 10, No 2, 2012, pp.69–88.
- [3] V. A. Rusanov, A. V. Lakeev, and Yu.É Linke, "Existence of a Differential Realization of a Dynamical System in a Banach Space in the Constructions of Extensions to M_p-Operators," Differential Equations, vol. 49, No. 3, 2013, pp.346–358.
- [4] J. L. Massera and J. J. Schaffer. Linear Differential Equations and Function Spaces. Academic Press, New York London, 1966.