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Abstract—The study of algebraic extension of a countable 

family of controlled nonlinear dynamic processes having 

differential realization in the class of ordinary quasi-linear 

differential equations (with software-positional control and 

without) in a separable Hilbert space was conducted. 

Keywords-nonlinear processes “inputoutput”, nonlinear 

differential realization, nonstationary (A,B,B#)2-model. 

Further (X,||||X), (Y,||||Y), (Z,||||Z)  real separable Hilbert 

spaces (pre-Hilbert [1, p. 64] define norms ||||X, ||||Y, ||||Z), 

U:=XYZ  Hilbert space with the norm 

||(x,y,z)||U:=(||x
2||X + ||y

2||Y +||z
2||Z )

1/2
, L(Y,X)  Banach space 

with the operator norm ||||L(Y,X) of all linear continuous 

operators from the space Y to X (similar (L(X,X), ||||L(X,X)) 

and (L(Z,X), ||||L(Z,X))), T := [t0, t1]  segment of the real line 

R with the Lebesque measure μ and   σ-algebra of all μ-

measurable subsets of the interval T. If below (B, ||||)  

some Banach space, then as usual through L2(T,μ,B) we will 

denote Banach quotient space of classes μ-equivalence of all 

integrable maps f: TB of Bochner [1, p. 132] with the 

norm (T||f()||
2
μ(d))

1/2
. In addition everywhere further 

AC(T,X)  linear set of all absolutely continuous on T 

functions (with respect to μ measure) with values in the 

space X, moreover Π:= AC(T,X)L2(T,μ,Y)L2(T,μ,Z). 

Now we will distinguish for consideration controlled 

differential models of the form 

dx(t)/dt = Ax(t) + Bu(t) + B
#
u

#
(x(t)),                   (1) 

where (x,u,u
#
(x))Π, x  Carathéodory solution (C-solution), 

u and u
#
(x)  software and positional control, 

(A,B,B
#
)L2(T,μ,L(X,X))L2(T,μ,L(Y,X))L2(T,μ,L(Z,X)); in 

purposes of terminological convenience triple of vector-

functions (x,u,u
#
(x)) we will also call C-solution of equation 

(1) and triple of operator-functions (A,B,B
#
), adhering the 

terminology from [2, 3] we will call (A,B,B
#
)2-model of 

differential system (1). 

The task of elementary (singleton) extension of 

differential realization of the beam of dynamic processes: 

for a given(possibly nonlinear) law xu
#
(x): 

AC(T,X)L2(T,μ,Z) and fixed families N, N
* 

of processes 

“inputoutput” such that N, N
*
{(x,u,q)Π: (x,u,q)= 

(x,u,u
#
(x))}, 1  Card N  0א (aleph-zero), Card N

* 
= 1, N

* 
 

N, where N, N
* 

have differential realizations (1) to 

determine analytical conditions under which NN
*
  family 

of C-solutions of some equation (1). 

We endow the space H2:= L2(T,μ,X)L2(T,μ,Y)L2(T,μ,Z) 

with the topology of the norm 

(T ||(g(),w(),q())
2||U μ(d))

1/2
, (g,w,q)H2; 

H2  Hilbert space [1, p. 39]; we differ the element 

(x,u,u
#
(x))Π in the notations as class of equivalence (i.e. 

element H2) from the specific representative (vector-

function) (x(),u(),u
#
(x())) from this class. 

We will denote through GЕ arbitrary (but fixed and 

numbered) algebraic basis in E:=Span N and let 

{(x
*
,u

*
,u

#
(x

*
))} := N

*
, while (x

*
,u

*
,u

#
(x

*
))E. It is obvious 

that at any point tT expansion in the Hilbert space of U 

vector (x
*
(t),u

*
(t),u

#
(x

*
(t))) is possible on the projection in 

Span {(x(t),u(t),u
#
(x(t)))i: (x,u,u

#
(x))i  GE, i=1, 2, …}, 

which is denoted by (x
*
(t),u

*
_(t),u

#
(x

*
(t))) and addition 

(x
*
(t),u

*
(t), u

#
(x

*
(t))):=(x

*
(t),u

*
(t),u

#
(x

*
(t))) - 

(x
*
(t),u

*
(t),u

#
(x

*
(t))). 

Lemma 1. Vector-functions 

t(x
*
(t),u

*
_(t),u

#
(x

*
(t))): TU, 

t(x
*
(t),u

*
(t),u

#
(x

*
(t))): TU 

μ-measurable. 

(By the separability of U weak and strong 

measurabilities coincide [1, p. 130]).  

Lemma 2. Representation 

(x
*
,u

*
,u

#
(x

*
))=(x

*
_,u

*
_,u

#
_(x

*
))+(x

*
,u

*
,u

#
(x

*
)) doesn’t 

depend on the choice of algebraic basis GE , while 

(x
*
_,u

*
_,u

#
_(x

*
)), (x

*
,u

*
,u

#
(x

*
))H2.  

We denote through E and 
*
 circuits in the space H2 

respectively to linear manifolds Span{(x,u,u
#
(x)): F, 

(x,u,u
#
(x))E} and Span{(x

*
,u

*
,u

#
(x

*
)): F}, where 

FL(Т,μ,R)  family of equivalence classes (mod μ) of all 

characteristic functions induced by elements of σ-algebra 

. 

Lemma 3. Subspaces E, 
*
 are orthogonal, i.e. E  


*
.  

Remark 1. Everywhere further for two closed subspaces 

from the space H2, such that their intersection is {0}  H2, 

and the vector sum is closed in H2 we agree to denote the 
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sign of their vector addition through , in particular, 

Theorem 14.С [4, p. 28] and Lemma 3 make note E  
*
 

correctly. 

We ask the question: what are the analytical conditions 

imposed on the sets of controlled dynamic processes N and 

{(x
*
,u

*
,u

#
(x

*
))}, “extended” family of processes N  

{(x
*
,u

*
,u

#
(x

*
))} has a differential realization (1)? On one of 

the ways of geometric solution of this problem is 

construction of characteristic feature (see below Theorem 1) 

defining equality 

     Е + 
* 
= Е 

*
,                              (2) 

where 
*
  closure in the space H2 of linear manifold 

Span{(x
*
,u

*
,u

#
(x

*
)): F}, while a particular form of 

equation (2), namely, of the type 

Е  
*
= Е   

*
,                             (3) 

positively responds to the aforesaid issue about the 

realization of the expanded beam N{(x
*
,u

*
,u

#
(x

*
))} in the 

context of approach to geometric solution of the task of 

expansion of differential realization based on the Theorem 

14.C [4, p. 28] and theorem (3) [3] below Theorem 2 detects 

one characteristic property of equality (3).  

Further T0:={tT: (x
*
(t),u

*
(t),u

#
(x

*
(t))) = 0}, 

*
,

*
  

Lebesque replenishments of measures 

S ||(x
*
(),u

*
(),u

#
(x

*
()))

2||U μ(d), S, 

S ||(x
*
(),u

*
(),u

#
(x

*
()))

2||U μ(d), S. 

Theorem 1. Е + 
* 
= Е  

*
 only if 

L2(T,
*
,R) = L2(T,

*
,R), 

where   characteristic function of the set T\T0. 

Proof of Theorem 1 we reduce to the establishment of 

Lemmas 4 and 5. 

Lemma 4. Е + 
*
 Е  

*
. 

Proof. Let 
*
, then according to Lemma 4 [3] will 

be 

 = (x
*
,u

*
,u

#
(x

*
)) = 

= (x
*
_,u

*
_,u

#
_(x

*
)) + (x

*
,u

*
,u

#
(x

*
)), 

where L2(T,
*
,R). Further, since for each function 

L2(T,
*
,R) we have 


2
(t) ||(x

*
(t),u

*
(t),u

#
(x

*
(t)))

2||U  
2
(t) 

||(x
*
(t),u

*
(t),u

#
(x

*
(t)))

2||U , 

then the following embedding of functional spaces is true 

L2(T,
*
,R)  L2(T,

*
,R), 

where (x
*
,u

*
,u

#
(x

*
))

*
 (based on the analytical 

structure of the subspace 
*
, given in Lemma 4 [3]. Thus, 

by the arbitrariness of the choice of the element 
*
, the 

lemma will be proved as soon as we discover: 

(x
*
_,u

*
_,u

#
_(x

*
))E. 

For this it is sufficient to show (Corollary [1, p. 109]) 

that <(x
*
_,u

*
_,u

#
_(x

*
)), >H2 =0, where <,>H2  scalar 

product in H2, for all H2, such that <, >H2 = 0, for 

any Span{(x,u,u
#
(x)): F, (x,u,u

#
(x))E}, which is 

equivalent to install: 

(t)  Span{(x(t),u(t),u
#
(x(t)))i: (x,u,u

#
(x))iGE, i=1, 2, …} 

μ-almost everywhere in T, here   relation of orthogonality 

in the structure of space U.  

We expand vector-function () in each point tT in 

the sum of 

_(t) + (t):= (t), 

where _(t)Span{(x(t),u(t),u
#
(x(t)))i: (x,u,u

#
(x))iGE, i=1, 

2, …} and (t)  is orthogonal to Span {(x(t),u(t),u
#
(x(t)))i: 

(x,u,u
#
(x))iGE, i=1, 2, …}. Then if _0, there exists 

such set S
*
, μ(S

*
)>0, that _(t)  0, tS

*
, while in 

the basis GЕ there is such vector (x,u,u
#
(x))i, that is 

(x(t),u(t),u
#
(x(t)))i  0 μ-almost everywhere in S

*
; otherwise 

for μ-almost all tS
* 
equalities will be “realized” 

Span{(x(t),u(t),u
#
(x(t)))i: (x,u,u

#
(x))iGE,  i=1, 2, …} = 

{0}, 

and therefore _ = 0 should be performed in this position. 

Now we denote through S
*
+ and S

*
_ subsets (partition) S

*
 

equal 

S
*
+={tS

*
: <_(t),(x(t),u(t),u

#
(x(t)))i>U  0}, 

S
*
_={tS

*
: <_(t),(x(t),u(t),u

#
(x(t)))i>U < 0}. 

It is obvious that at least one of the sets S
*
+ or S

*
_ has a 

nonzero measure. Let S
*
+ acts as such set. Then 

+(x,u,u
#
(x))iSpan{(x,u,u

#
(x)): F, (x,u, u

#
(x))E} and 

<_, +(x,u,u
#
(x))i>H2>0, where +  characteristic 

function of a set S
*

+. It is clear that we obtain 

<,+(x,u,u
#
(x))i>H2 > 0 whereby we arrive at a 

contradiction with the conditions defined above the 

construction of the functional .  

The above proof provides a useful clarification: 

Corollary 1. L2(T,
*
,R)  L2(T,

*
,R).  

Lemma 5. Е + 
* 
 Е  

*
  L2(T,

*
,R) = 

L2(T,
*
,R). 

Proof. (). Let   L2(T,
*
,R) and  := 

(x
*
,u

*
,u

#
(x

*
)), where (Lemma 4 [3]) Е  

*
, 

means (assumption ) Е + 
*
. Then by Е  

*
 

vector  has an expansion of (unique) form  =  + 

(x
*
,u

*
,u

#
(x

*
)), where  = 0 E, at this effect Е 

+ 
* 
representation is true: 

 = +
*
(x

*
,u

*
,u

#
(x

*
)) = 

= +
*
(x

*
_,u

*
_,u

#
_(x

*
))+

*
(x

*
,u

*
,u

#
(x

*
)), 

where E, 
*
L2(T,

*
,R). Since (reasonings are similar 

to the proof of Lemma 4 [3]) the inclusions take place 


*
(x

*
_,u

*
_,u

#
_(x

*
))E, 

*
(x

*
,u

*
,u

#
(x

*
))

*
, then = 

+
*
(x

*
_,u

*
_,u

#
_(x

*
)) и (x

*
,u

*
,u

#
(x

*
)) = 


*
(x

*
,u

*
,u

#
(x

*
)). Thus, taking into account the presence 

of a linear isometry between L2(T,
*
,R) and 

*
 (Lemma 4 

[3]) will be = 
*
, where in the end by the arbitrariness 

of the choice of function , we obtain L2(T,
*
,R)  

L2(T,
*
,R) or taking into account Corollary 1 L2(T,

*
,R) 

=  L2(T,
*
,R). 

(). Let Е  
*
. Then  = +(x

*
,u

*
,u

#
(x

*
)), 

where Е, L2(T,
*
, R). Since (assumption ) 

 L2(T,
*
,R), then we have a bunch of equalities 
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 + (x
*
,u

*
,u

#
(x

*
)) =  + (x

*
,u

*
,u

#
(x

*
)) + 

+ (x
*
_,u

*
_,u

#
_(x

*
)) - (x

*
_,u

*
_,u

#
_(x

*
)) = 

=  - (x
*
_,u

*
_,u

#
_(x

*
)) + (x

*
,u

*
,u

#
(x

*
)), 

therefore, Е + 
* 

taking into account ( - 

(x
*
_,u

*
_,u

#
_(x

*
)))Е, (x

*
,u

*
, u

#
(x

*
))

*
.  

Now we present a variant of characteristic conditions of 

equality (3). 

Theorem 2. If we implement T0 =  (mod μ) offer is 

valid:  

Е  
* 
= Е  

*
  L2(T,

*
,R) = L2(T,

*
,R). 

Proof. That is Е + 
* 

= Е  
*
  L2(T,

*
,R) = 

L2(T,
*
,R)  a direct statement of Theorem 1. On the other 

hand, confirmation of equality Е  
*
 = {0}  H2 follows 

from the assumption {tT: (x
*
(t),u

*
(t),u

#
(x

*
(t))) = 0} =  

(mod μ) and Corollary of Mazur’s Theorem [1, p. 109].  

Theorem 1 (given the finding of Lemma 5) and Theorem 

2 attracting Theorem 14.C [4, p. 28] and Theorem 3 [3] do a 

fair conclusion: 

Corollary 2. The following three properties are 

equivalent:  

L2(T,
*
,R)   L2(T,

*
,R)  

 L2(T,
*
,R) =  L2(T,

*
,R)  

 Е  
*
= Е + 

*
, 

and if T0 =  (mod μ), then any signified property turns the 

beam N{(x
*
,u

*
,u

#
(x

*
))} into the set of dynamic processes 

with the differential realization (1).  

Remark 2. Corollary 2 allows to call Theorem 2 as 

“direct theorem” about elementary algebraic extension of 

differential realization while hypothesis: T0 =  (mod μ), 

N{(x
*
,u

*
,u

#
(x

*
))} has a realization (1)  L2(T,

*
,R)  

L2(T,
*
,R) in general case isn’t confirmed that the following 

example illustrates. 

Example 1. Let X = Y = R, T = [-1, 1], u
#
() = 0 and 

N={t(e
t
,0,0): tT}, 

{(x
*
,u

*
,u

#
(x

*
))}={t(e

t
+t

2
/2,t,0): tT}; 

it is obvious that T0 =  (mod μ) and the beam N 

{(x
*
,u

*
,u

#
(x

*
))} has a realization (1); we note that T0 . 

Then L2(T,
*
,R) = L2(T,μ,R) and L2(T,

*
,R), 

*
 = 

2
μ(d), 

because (x
*
(t),u

*
(t), u

#
(x

*
(t))) = (0,t,0). It is clear that 1/t 

 L2(T,
*
,R), 1/tL2(T,μ,R), where L2(T,

*
,R)L2(T, 


*
,R); hence by Lemma 5 we also conclude that Е 


*
Е +

*
. 

Next statement shows that the construction similar to 

Example 1 can’t be realized in the functional class 

AC(T,X){0}{0}  Π, i.e. for free trajectories (C-solutions) 

it can be said that for N  AC(T,X){0}{0} Corollary 3 in 

a known sense is opposite to Corollary 2 (see above Remark 

2). 

Corollary 3. If N AC(T,X){0}{0}, Card N <  and 

N {(x
*
,0,0)}  set of trajectories with the realization (1) 

with u = 0, u
#
 = 0, then the following relations are true: 

T0 = , 

L2(T,
*
,R) = L2(T,

*
,R), 

Е  
* 
= Е  

*
. 

Proof. It is easy to see that T0 = , because otherwise 

there exists a period of time t*T, which x
*
(t*)=ix(i)(t*), 

where all constants i, except the finite number are zero, x(i) 

 the first component of the triple (х,0,0)iGE. 

Consequently, the trajectory x
*
() has a representation 

ix(i)() by the uniqueness of solution, extending at time t* 

through the point х
*
(t*), for the differential system (1) with 

(A,0,0)2-model, corresponding to a set of dynamic processes 

N  {(x
*
,0,0)}; that is contrary to its earlier condition 

(x
*
,0,0)E. 

Further, because of the continuity of the trajectory x
*
() 

and the compactness of the interval T, there exist such real 

constants c1, c2 > 0, that equalities are true  

inf {||x
*
(t)||X: tT} = c1,   sup {||x

*
(t)||X: tT} = c2, 

similarly (including T0 = , Card N < ), for some c3, c4> 0 

will be 

inf {||x
*
(t)||X: tT} = c3,   sup {||x

*
(t)||X: tT} = c4. 

Consequently, the classes of real-valued functions 

summable with square on T on measures 
*
= 

||x
*
()

2||X μ(d) and 
*
=||x

*
()

2||X μ(d), or in other words 

L2(T,
*
,R) = L2(T,

*
,R), and hence (see Theorem 2) Е  


* 
= Е  

*
.  

If we look at Theorem 2 under foreshortening of 

unmanaged trajectories of a differential system (1), we can 

see that the analyst of output condition L2(T,
*
,R) = 

L2(T,
*
,R) in the proof of Corollary 3 enables us to 

strengthen this theorem to the characteristic feature of 

elementary algebraic extension of differential realization of 

a finite beam of unmanaged implementation processes N  

AC(T,X){0}{0}. 

Theorem 3. In the family of free K-solutions the 

problem of singleton expansion of differential realization of 

the finite beam of trajectories is solvable if and only if T0 = 

. 
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