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Abstract—Mild solution and exact controllability of semilinear 

singular distributed parameter system are discussed in Hilbert 

space, some results are obtained by functional analysis and 

generalized operator semigroup. First, we study the classical 

solution concerning the homogeneous linear singular 

distributed parameter system by generalized operator 

semigroup. Second, the existence and uniqueness for the mild 

solution of semilinear singular distributed parameter system is 

proved. Third, a new result concerning the exact controllability 

of linear singular distributed parameter system is obtained. At 

last, the exact controllability for the semilinear singular 

distributed parameter system is discussed. This research is 

theoretical important for studying the controllability of 

nonlinear singular distributed parameter systems. 

Keywords-mild solution; exact controllability; semilinear 

singular distributed parameter system; generalized operator 

semigroup. 

I.  INTRODUCTION 

One of the most important problem for the study of 

infinite dimensional system is exact controllability (see, for 

example [1-14] ). The exact controllability of infinite 

dimensional linear systems was introduced in [1]. The exact 

controllability concerning the infinite dimensional nonlinear 

systems were discussed in [2-10]. The exact controllability 

of the infinite dimensional linear singular systems were 

discussed in [11-14]. It is regrettably that the exact 

controllability of the infinite dimensional nonlinear singular 

systems was not discussed. The main purpose of this paper 

is to obtain the sufficient conditions concerning the exact 

controllability of the following nonlinear singular 

distributed parameter system: 
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where ( ) , ( )x t X u t U  , X  and U  are two Hilbert 

spaces, :E X X is a bounded linear operator, 

: ( )A D A X X  is a linear operator, :B U X  is 

a bounded linear operator, control function ( )u t belongs to 

2([0, ], )L T U , :[0, ]F T X U X   is a proper 

nonlinear function. In section 2, the classical solution of the 

following linear singular distributed parameter system 
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is discussed by generalized operator semigroup. In section 3, 

the existence and uniqueness concerning the mild solution 

of the following semilinear singular distributed parameter 

system  
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are proved, where : [0, ]F T X X  is a proper 

nonlinear function. In section 4, a new result concerning the 

exact controllability of the following linear singular 

distributed parameter system  
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is obtained. In section 5, the exact controllability for the 

semilinear singular distributed parameter system (1) is 

discussed, some sufficient conditions are obtained. 

In the following, ( )B X  denotes the set of all bounded 

linear operators on X ,  the norm and ,    the inner 

product in X , 

 22 1/2

0
([0, ]; ) : ,( ( ) )

t

L T U u u U u t    , 

 ([0, ]; ) :[0, ] , ( ) is continuousC T X x T X x t  , 
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*B the adjoint operator of B , ( ) range( )R B B . 

II. GENERALIZED OPERATOR SEMIGROUP 

In this section, first of all we introduce the generalized 

operator semigroup and generator, and then the classical 

solution of system (2) is discussed by generalized operator 

semigroup theory. 

Definition 1
[15]

  Suppose { ( ) : 0}S t t  is a one 

parameter family of bounded linear operators in Hilbert 

space X , and ( )E B X . If 

                 ( ) ( ) ( ), 0, 0S t s S t ES s t s    , 

then { ( ) : 0}S t t   is called a generalized operator 

semigroup induced by E ， or generalized operator 

semigroup for short. 

If the generalized operator semigroup ( )S t  satisfies  

0
lim || ( ) (0) || 0
t

S t S


  , 

then it is called uniformly continuous； 

If the generalized operator semigroup ( )S t  satisfies 

0
lim || ( ) (0) || 0,
t

S t x S x


  for arbitrary x X , 

then it is called strongly continuous on X . 

Property 1
[15]

  If the generalized operator 

semigroup ( )S t  is strongly continuous on X , then 

（i） there exist constants 1M and 0 such that 

|| ( ) || , 0tS t Me t  , 

i.e. ( )S t is exponentially bounded. 

（ii）for arbitrary x X and 0t  , 

0
lim || ( ) ( ) || 0
h

S t h x S t x


    

holds true. 

Definition 2  The generator A of generalized operator 

semigroup ( )S t is defined as  

0

( ) (0)
lim
h

ES h Ex ES Ex
Ax

h


  for every ( )x D A , 

where  

( )D A  { : (0) ,x X S Ex x   

0

( ) (0)
lim exists
h

ES h Ex ES Ex

h


} 

Definition 3  ( ) :[ , ]x t s T X is called a classical 

solution of system (2) on [0, ]T , if  

  (i) 0(0)x x . 

  (ii) ( )x t is strong continuous on [0, ]T . 

  (iii) ( )Ex t  is strongly continuously differentiable 

on[0, ]T  and satisfies 

( ( )) ( )
d

Ex t Ax t
dt

  for [0, ]t T . 

Theorem 1  If A  is a generator of the strongly 

continuously generalized operator semigroup ( )S t , and 

0 ( )x D A , then 0( ) ( )S t Ex D A  for 0t  , and 

0( ) ( )x t S t Ex  is a classical solution of system (2). 

Proof  Let 0h  .Then 

0( )ES t Ax 0
0

1
( ) lim ( ( ) (0) )

h
ES t ES h E ES E x

h
   

0
0

1
lim ( ( ) ( ) )
h

ES t h E ES t E x
h

    

                    0
0

1
lim ( ( ) (0) ) ( )
h

ES h E ES E S t Ex
h

   

0( )AS t Ex , 

i.e.  

0( )ES t Ax 0( )AS t Ex , 

and 

0 0(0) ( ) ( )S ES t Ex S t Ex , 

i.e. 0( ) ( )S t Ex D A . 

Otherwise, from the above we have that 

0
0

( )
( )

d ES t Ex
AS t Ex

dt



 , 

and 0( ) ( )x t S t Ex  is strong continuous on [0, ]T . 

In the following, we prove that 

0
0

( )
( )

d ES t Ex
AS t Ex

dt



 . 

In fact, for 0 t T  , let 0h   be sufficient small such 

that 0t h  . Since || ( ) || tS t h Me  , thus 

0 0
0

( ) ( )
( )

ES t Ex ES t h Ex
AS t Ex

h

 
  

0 0
0

( ) (0)
( )[ ]

ES h Ex ES Ex
ES t h Ax

h


                      

0 0( ) ( )ES t h Ax AS t Ex    

0 0
1 0

( ) (0)T ES h Ex ES Ex
M e Ax

h

 
   

0 0( ) ( )ES t h Ax ES t Ax   0( 0)h  . 

Hence  

0
0

( )
( )

d ES t Ex
AS t Ex

dt



 , 

i.e. 0( ) ( )x t S t Ex  is a classical solution of system (2). 
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Theorem 2  Let A  be a generator of the strongly 

continuously generalized operator semigroup ( )S t , there 

exist 0   such that  

 1( , ) : ,( ) existE A R E A          

when  , and  

1( )
M

E A
 

 


. 

If 0 ( )x D A , and the classical solution ( )x t  of system (2) 

satisfies that ( ) ( )x t D A , then ( )x t  is unique. 

Proof  It is only need to prove that the classical solution 

( ) 0x t  of the system  

( )
( ),0 ,

(0) 0.

dEx t
Ax t t T

dt

x


  


 

                              (5) 

In fact, suppose 0  , since ( )x t  is a classical solution of 

system (5), then  

( ) ( ) ( )Ex t Ex t Ax t x      , 

where x X  satisfies ( )( 0 )x o     . Thus  

( ) ( ) ( )Ex t E A x t x      

1
( ) ( )E A x t x


   . 

Pick   satisfying 0 1   and 1/  , then 

1/ ( , )E A   

and  

11
( )

(1 / ) 1

M E M E
E A E



   

  
 

. 

Therefore 
1 1 1( ) ( ) ( )x t E A Ex t        

1 1 1( )E A x     , 

and  
1 1 1( ) ( ) ( )Ax t A E A Ex t        

1 1 1( )A E A x     . 

Since 
1 1 1 1 1( ) ( ) 1A E A E E A           

01
1

M E
M


  


,  

where constant 0M  is independent with  , thus 

1 1

0 0( ) ( )Ax t M E x t M x       

1

0 ( ) (1)M E x t o    . 

Prolongate ( )x t , let ( ) 0x t   for arbitrary 0t  . Since 

( )x t  is a classical solution of system (5), we have 

0
( ) ( )

t

Ex t Ax s ds  , 

and from ( ) ( )x t D A , we obtain (0) ( ) ( )S Ex t x t . 

Therefore  

0
( ) (0) ( )

t

x t S Ax s ds  . 

Hence 

0
( ) (0) ( )

t

x t S Ax s ds   

1

0
0

(0) ( ) (1)
t

S M E x s ds o     

1

0
0

(0) ( ) (1)
t

S M E x s ds o





   

1

0
0

(0) ( ) (1)
t

S M E x s ds o   , 

i.e. ( ) 0x t  . 

III. SEMILINEAR SINGULAR DISTRIBUTED 

PARAMETER SYSTEM 

In this section, the existence and uniqueness concerning 

the mild solution of the semilinear singular distributed 

parameter system (3) are discussed by the generalized 

operator semigroup. 

Definition 4  The mild solution of the semilinear singular 

distributed parameter system (3) is the continuous solution 

on [0, ]T  of the following integral equation 

0
0

( ) ( ) ( ) ( , ( ))
t

x t S t Ex S t s F s x s ds   .          (6) 

Theorem 3  Suppose that there exists constant 0L   

such that 

1 2 1 2 1 2( , ) ( , ) , ,F t x F t x L x x x x X    .     (7) 

Then, for arbitrary 0x X , there exists an unique mild 

solution of the system (3) on [0, ]T . 

Proof  Let 0x X . Define P  on ([0, ]; )C T X  as 

following: 

0
0

( )( ) ( ) ( ) ( , ( ))
t

Px t S t x S t s F s x s ds   .         (8) 

According to (7), we can prove that P is a mapping from 

([0, ]; )C T X  to itself, and for arbitrary 

1 2, ([0, ]; )x x C T X , 

we have 

1 2( )( ) ( )( )Px t Px t  

1 2
0
[ ( ) ( , ( )) ( ) ( , ( ))]

t

S t s F s x s S t s F s x s ds     
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1 2
0

( , ( )) ( , ( ))
t

FM F s x s F s x s ds 

1 2
0

( ) ( )
t

FM L x s x s ds   

1 2( ) ( )F C
M Lt x x    ,                                          (9) 

where 
0
max ( )F

t T
M S t

 
 , 

C
 denotes the norm in space 

([0, ]; )C T X . Using (8) and (9) again and again, we can 

obtain 

1 2( )( ) ( )( )n nP x t P x t  

       1 2

( )
( ) ( )

!

n

F

C

M Lt
x x

n
    . 

Thus  

1 2( )( ) ( )( )n n

C
P x P x    

1 2

( )
( ) ( )

!

n

F

C

M Lt
x x

n
    . 

When n  is sufficiently large, we have 
( )

1
!

n

FM Lt

n
 . 

Therefore 
nP  is a contraction mapping, and there exists a 

uniquely fixed point 
*( )x   such that 

* *( )nP x x . Since  

* 1 * *( ) ( ) ,n nP Px P x Px   

thus 
*Px is also a fixed point of 

nP . Because the fixed 

point of 
nP is unique, we have

* *Px x . Therefore 
*x  

satisfy integral equation (6). Hence 
*( )x   is a uniquely mild 

solution of equation (3) on [0, ]T . 

IV. CONTROLLABILITY OF LINEAR SINGULAR 

DISTRIBUTED PARAMETER SYSTEM 

In this section, some results concerning the exact 

controllability of the linear singular distributed parameter 

system (4) are given. In the following, we suppose that for 

all 0x X  and 
2([0, ], )u L T X  the system (4) only 

has a uniquely mild solution given by the following formula,  

0
0

( ) ( ) ( ) ( ) , [0, ]
t

x t S t Ex S t s Bu s ds t T        (10) 

for all 0x X and 
2([0, ], )u L T U . 

Definition 5  System (4) is called exactly controllable if 

for all 0 1,x x X there exists a control 
2([0, ], )u L T U  

such that the corresponding solution of (10) satisfies 

1( )x T x . 

Consider the following bounded linear operator, 
2: ([0, ], ) ,BG L T U X   

0
( ) ( ) .

T

BG u S T s Bu s ds                                (11) 

Define operator  
* :B B BL G G X X  , 

where
* 2: ([0, ], )BG X L T U is given by  

* * *( )( ) ( )BG x s B S T s x  . 

Then 

* *

0
( ) ( ) .

T

BL x S T s BB S T s xds                  (12) 

Lemma 1
[11,13]

  System (4) is exactly controllable on 

[0, ]T  if and only if there exists 0   such that for all 

x X , one of the following conditions hold true: 

(i)  
2

,B X
L x x x  ; 

(ii)  
2 2* *

0
( )

T

UU
B S T s x ds x  . 

Theorem 4  System (4) is exactly controllable on [0, ]T  

if and only if BL  is invertible. Moreover, the control 

2([0, ], )u L T U  satisfying 1( )x T x  is given by the 

following formula, 
* * 1

1 0( ) ( ) ( ( ) )Bu t B S T t L x S T Ex   .             (13) 

Proof  Necessity. Suppose the system (4) is exactly 

controllable. According to Lemma 1, we have that  
2

,B X
L x x x  , x X .                               (14)  

This implies that BL  is one to one. In the following, we 

prove that BL is surjective, i.e., ( )BR L X . In fact, if 

( )BR L  is strictly contained in X , from Cauchy Schwarz’s 

inequality and (14), we have 

,B X
L x x x X  . 

This implies that ( )BR L  is closed. Using Hahn Banach’s 

Theorem, there exists 0 0 and 0x X x  such that  

0, 0, .BL x x x X     

Especially, let 0x x , from (14) we obtain  

2

0 0 00 ,B X
L x x x  . 

Thus 0 0x  . This is a contradiction. Hence BL  is a 

bijection. From the open mapping Theorem we have that 
1

BL
 is a bounded linear operator. 

Sufficiency. Suppose BL  is invertible, then given 

1x X , we can prove that there exists 

2([0, ], )u L T U  
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such that 1( )x T x . This control can be taken as the form 

of (13). In fact,  

0( ) ( )x T S T Ex  

* * 1

1 0
0

( ) ( ) ( ( ) )
T

BS T s BB S T s L x S T Ex ds     

1

0 1 0 1( ) ( ( ) )B BS T Ex L L x S T Ex x     

Corollary 1  If the system (4) is exactly controllable, then 

the operator defined as follows 
2: ([0, ], )BS X L T U  

* 1

B B BS x G L x  

or  
* * 1( )( ) ( )B BS x s B S T s L x            (15) 

is a right inverse of BG , i.e., B BG S I . 

V. CONTROLLABILITY OF NONLINEAR 

SINGULAR DISTRIBUTED PARAMETER SYSTEM 

In this section, some results concerning the exact 

controllability of the nonlinear singular distributed 

parameter system (1) are given in Hilbert space. In the 

following, we suppose that for all 0x X  and 

2([0, ], )u L T X  the system (1) only has a uniquely mild 

solution given by the following formula,  

0
0

( ) ( ) ( ) ( )
t

x t S t Ex S t s Bu s ds    

0
( ) ( , ( ), ( ))

t

S t s F s x s u s ds  .           (16) 

Definition 6  System (1) is called exactly controllable on 

[0, ]T  if for all 0 1,x x X , there exists control 

2([0, ], )u L T X such that the corresponding solution of 

(16) satisfies 1( )x T x . 

Define the operator  
2: ([0, ], )BFG L T X X  

as following 

0
( ) ( )

T

BFG u S T s Bu s ds   

0
( ) ( , ( ), ( ))

T

S T s F s x s u s ds   

               
0

( ) ( , ( ), ( ))
T

BG u S T s F s x s u s ds   , (17) 

where ( ) ( , )x t x t u is the solution of (16) corresponding 

to control u . Then it is obvious that the following result 

holds true. 

Theorem 5  System (1) is exactly controllable if and only 

if ( )BFR G X . 

Hence, in order to prove that system (1) is exactly 

controllable, we must prove that the condition of Theorem 5 

holds true. For this reason, we need to suppose that the 

linear singular distributed parameter system (1) is exactly 

controllable. In such case, according to Corollary 1, the 

operator BS  defined by equation (15) is the right inverse of 

BG . If let 
~

BF BF BG G S  , we can obtain the operator 

equation concerning the exactly controllable as follows: 
~

BF BF BG G S    

0
( ) ( , ( ), ( )( ))

T

BS T t F s x s S s ds    ,  (18) 

where ( )x   is the solution of equation (10) corresponding 

to control  
* * 1( ) ( )( ) ( ) , [0, ]B Bu t S t B S T s L t T     . 

Therefore, if we define operator :FK X X as 

0
( ) ( , ( ), ( )( ))

T

F BK S T s F s x s S s ds   ,  (19) 

then equation (18) can be written as  
~

( ) ,BF F FG K I K X         .       (20) 

In order to obtain the main theorem, first of all the 

following well known Lemma is given: 

Lemma 2
[8]

  Suppose X  is a Banach space and 

:K X X is a Lipchitz function with a Lipchitz constant 

1k  , ( )G x x Kx  . Then G  is an homemorphis 

whose inverse is a Lipchitz function with a Lipchitz 

constant 
1(1 )k  . 

Theorem 6  If system (4) is exactly controllable on 

[0, ]T  and operator FK  is a globally Lipchitz function 

with a Lipchitz constant 1k  , then nonlinear singular 

distributed parameter system (1) is exactly controllable on 

[0, ]T , and the control steering 1( )x T x  is  

* * 1 1

1 0( ) ( ) ( ) ( ( ) )B Fu t B S T t L I K x S T Ex     . 

Proof  In fact, according to Lemma 2, we have that 

( )FI K  is an homemorphis whose inverse is a Lipchitz 

function with a Lipchitz constant 
1(1 )k  . From (18) and 

(20),
~

( ) ( )BFBFR G R G X  holds true. Therefore  

system (1) is exactly controllable on [0, ]T from Theorem 5. 

Since 
* * 1 1

1 0( ) ( ) ( ) ( ( ) )B Fu t B S T t L I K x S T Ex     , 

according to (16), we obtain  

0( ) ( )x T S T Ex  
* *

0
[ ( ) ( )

T

S T s BB S T s      
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1 1

1 0( ) ( ( ) )]B FL I K x S T Ex ds    

        
1

1 0( ) ( ( ) )F FK I K x S T Ex    

    
1

0 1 0( ) ( ) ( ( ) )FS T Ex I K x S T Ex      

1

1 0( ) ( ( ) )F FI K K x S T Ex    

0 1 0 1( ) ( )S T Ex x S T Ex x    . 

Hence Theorem 6 holds true. 

Theorem 7  If system (4) is exactly controllable on 

[0, ]T , operator FK  is linear and 0FK  , then nonlinear 

singular distributed parameter system (1) is exactly 

controllable on [0, ]T , and the control steering 1( )x T x  

is  
* * 1 1

1 0( ) ( ) ( ) ( ( ) )B Fu t B S T t L I K x S T Ex     . 

Proof  It is obvious that 
~

( )BF FG I K  is one to one, 

and  

~

,BFG x x x X  .                              (21) 

This implies that 
~

( )BFR G is a closed set. In the following, 

we prove that 
~

BFG  is surjective, i.e., 
~

( )BFR G X . For 

the purpose of contradiction, suppose 
~

( )BFR G is strictly 

contained in X , from Hahn Banach’s Theorem there exists 

0x X and 0 0x   such that  

~

0 0, , 0, .BF FG x x x K x x x X       

In particular, let 0x x , then we obtain  

~

0 0 0 0 0 0, , , 0.BF FG x x x x K x x       

Thus 0 0x  . This is in contradiction with 0 0x  . 

Therefore, 
~

BFG  is a bijection and according to open 

mapping Theorem we obtain that 

1~
1( )BF FG I K


  is a 

bounded linear operator. The following proof is similar to 

Theorem 6. Hence Theorem 7 holds true. 
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