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Abstract—The motion/force tracking control of nonholonomic
mechanical systems with affine constraints is investigated in this
paper. By flexibly using the algebra processing technique, con-
straint forces are successfully canceled in the dynamic equations,
and then an integral feedback compensation strategy and an
adaptive scheme are applied to identify the dynamic uncertainty.
The proposed controller ensures that the state of the closed-loop
system asymptotically tracks the desired trajectory and the force
tracking error has a controllable bound.
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nomic constraints; affine constraints.

I. INTRODUCTION

Nonholonomic constraints arise in many mechanical sys-
tems when there is a rolling or sliding contact, such as wheeled
mobile robots, n-trailer systems, space robots, underwater
vehicles, multi-fingered robotic hands, and so on. Although
great progress[1−5] has been made for nonholonomic systems
during the last decades, controller design for these systems still
has a challenge to control engineers.

It is worth pointing out that most existing results[6−9]

of nonholonomic systems aimed at the classic nonholo-
nomic linear constraints. In fact, there is another large class
of constraints which are affine in velocities, called affine
constraints[10−11], such as a boat on a running river with
the varying stream, ball on rotating table with invariable
angular velocity, underactuated mechanical arm, etc. In [10],
T. Kai defined rheonomous affine constraints and explained
a geometric representation method for them, and derived a
necessary and sufficient condition for complete nonholonomic-
ity of the rheonomous affine constraints. But the problems of
controllability and stabilizability on the nonholonomic kine-
matic mechanical systems with affine constraints have not been
systematically analysed up to now.

The tracking problem for mechanical systems, as a much
more interesting issue in practice, is to make the entire state
of the closed-loop system track to a given desired trajectory.
It is also important to note that the literatures on the tracking
problem of the nonholonomic systems with affine constraints
are sparse at present. Hence, researching the tracking problem
for such nonholonomic mechanical systems is an innovatory
and significative work. In this paper, we establish the dy-
namical model of the nonholonomic control systems with
affine constraints. Based on the asymptotic tracking idea for
uncertain multi-input nonlinear systems, and the compensatory

strategy, an adaptive tracking controller is designed such that
the trajectory tracking error asymptotically tends to zero and
the force tracking error is bounded with a controllable bound.

II. SYSTEM DESCRIPTION AND CONTROL DESIGN

A. Dynamics Model

According to Euler-Lagrangian formulation, equations of
nonholonomic mechanical systems are described by

M(q)q̈ + V (q, q̇)q̇ + G(q) = f + B(q)τ, (1)

where q = [q1, · · · , qn]T is the generalized coordinates, and
q̇, q̈ ∈ Rn represent the generalized velocity vector, accelera-
tion vector, respectively; M(q) ∈ Rn×n is the inertia matrix;
V (q, q̇)q̇ ∈ Rn presents the vector of centripetal, Coriolis
forces; G(q) ∈ Rn represents the vector of gravitational
forces; τ denotes the r-vector of generalized control inputs;
B(q) ∈ Rn×r is a known input transformation matrix(r < n)
with full rank; f ∈ Rn denotes the vector of constraint forces.

Consider the situation where kinematic constraints are
imposed, which represented by analytical relations between
the generalized coordinates q and velocity vector q̇, it is can
be described by

JT (q)q̇ = A(q), (2)

where J(q) = [j1(q), · · · , jm(q)] ∈ Rn×m is full of constraint
matrix, A(q) = [a1(q), · · · , am(q)]T ∈ Rm is known.

B. Reduced Dynamics and State Transformation

It’s easy to find a fullrank matrix S ∈ Rn×(n−m) satisfying

JT (q)S(q) = 0. (3)

Noticing that S(q) is full of rank, there must exist a full-rank
matrix S1(q) ∈ R(n−m)×n satisfying S1(q)S(q) = I , where I
is an identity matrix. If defining ξ(t) = [q, −t]T , then (2) can
be expressed concisely as

[
JT (q) A(q)

]
ξ̇ = 0. (4)

For the sake of convenience, we define

E(q) =
[

S(q) η(q)
0 −1

]
∈ R(n+1)×(n−m+1),
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where η(q) ∈ Rn satisfies JT (q)η(q) = A(q). One can deduce
that E is a full of rank and satisfies

[
JT (q) A(q)

]
E(q) = 0. (5)

From (4) and (5), we know that there exists an (n−m + 1)-
dimensional vector z̄, such that

ξ̇ = E ˙̄z =
[

S(q) η(q)
0 −1

]
˙̄z, (6)

where ˙̄z = [żT , żn−m+1]T , z = [z1, . . . , zn−m]T .

In view of the relationship (6), one can obtain żn−m+1 = 1,
and the generalized velocity vectors can be written as

q̇ = S(q)ż + η(q). (7)

z corresponds to the internal state variable, and (q, z) is
sufficient to describe the constrained motion.

Substituting (7) into (1), the system (1) and (2) can be
described clearly as

M̄(q)z̈ + V̄ (q, q̇)ż + Ḡ(q, q̇) = J(q)λ + B(q)τ, (8)

where M̄(q) = M(q)S(q) and V̄ (q, q̇) = M(q)Ṡ(q) +
V (q, q̇)S(q), Ḡ(q, q̇) = M(q)η̇(q) + V (q, q̇)η(q) + G(q).

C. Error System Development

In practice, the complexity and unpredictability of the
structure of uncertainties usually appear in the dynamics of
the mechanical systems, we assume that M̄(q), V̄ (q, q̇) and
Ḡ(q, q̇) are expressed in the form

M̄(q) = M0(q) +∇M(q),
V̄ (q, q̇) = V0(q, q̇) +∇V (q, q̇),
Ḡ(q, q̇) = G0(q, q̇) +∇G(q, q̇),

where M0, V0, G0, as the nominal matrices, are assumed to be
known exactly, and ∇M , ∇V , ∇G represent the uncertainties
in system matrices. Dynamic model (8) can be rewritten as

M0(q)z̈ + V0(q, q̇)ż + G0(·) + Φu(·) = J(q)λ + B(q)τ, (9)

where Φu(·) = ∇M(q)z̈ +∇V (q, q̇)ż +∇G(q, q̇) ∈ Rn−m.

Pre-multiplying ST (q) on both sides of (9), and noting
JT (q)S(q) = 0, the following transformed system is received:

M1(q)z̈ + V1(q, q̇)ż + G1(q, q̇) + Φ̄1(q, q̇, ż, z̈) = B1(q)τ,

where M1(q) = ST (q)M0(q), V1(q, q̇) = ST (q)V0(q, q̇),
B1(q) = ST (q)B(q), G1(q, q̇) = ST (q)G0(q, q̇),
Φ̄1(q, q̇, ż, z̈) = ST (q)Φu(q, q̇, ż, z̈). According to Masahiro
Oya’ statement [8], there exists a coordinate transformation
q = Ψ(z) such that Φ1(z, ż, z̈) = Φ̄1(q, q̇, ż, z̈) |q=Ψ(z). Let
Φ1 replace Φ̄1 in above equation, the following is obtained:

M1(q)z̈ + V1(q, q̇)ż + G1(q, q̇) + Φ1(z, ż, z̈) = B1(q)τ. (10)

The control objective of this paper is specified as: A given
desired trajectory zd(t) satisfying that z

(i)
d (t), i = 0, · · · , 4

exist and are bounded, a desired constraint force fd(t) or a
desired multiplier λd(t), determine a adaptive control law for
system (1), such that: (i) All the states of the closed-loop
system are globally bounded. (ii) The position and velocity

tracking error z(t) − zd(t), ż(t) − żd(t) converge to zero as
t →∞, respectively.

The subsequent development is based on the assumption
that Φ1 is an C2 nonlinear vector function. In order to solve
the previous problem, we make the following assumptions:

Assumption 1[12] The matrix M1 is symmetric, positive
definite and satisfies

a‖x‖2 ≤ xT M1(x)x ≤ ā(‖x‖)‖x‖2,
where a is a known positive constant, ā(x) is a known positive
function.

Assumption 2 If q(t) ∈ L∞, then ∂M1(q)/∂q exists and
is bounded. Moreover, if q(t), q̇(t), q̈(t) ∈ L∞, then V1(q, q̇)
and ∂V1(q, q̇)/∂q exist and are all bounded.

Next, we develop the following error system which will be
used in the subsequent controller design and stability analysis

e1 = zd − z, (11)
eλ = λ− λd, (12)

where e1 ∈ Rn−m, eλ ∈ Rm. To achieve the desired control
objective, the following filtered tracking errors, denoted by
e2, ρ ∈ Rn−m, are defined as{

e2 = ė1 + α1e1,
ρ = ė2 + α2e2,

(13)

where α1 > 0, α2 > 0 are designed constants.

In view of (9), (11) and (13), pre-multiplying M0 on both
sides of the second formula of (13), the following expression
can be arrived at:

M0ρ = M0z̈d + V0żd + G0 + Φu −Bτ − J(q)λ + α1M0ė1

+ α2M0e2 − V0ė1. (14)

By the expression (14), a control torque input is designed as:

Bτ = M0z̈d + V0żd + G0 − J(q)λc + ST
1 µ, (15)

where the force term λc is defined as λc = λd − kλeλ, kλ is
a constant of force control feedback gain, and µ(t) ∈ Rn−m

denotes a subsequently designed control term. Substituting (15)
into (14), we can further get

M0ρ = Φu + J(q)(λc − λ)− ST
1 µ + α1M0ė1

+ α2M0e2 − V0ė1. (16)

After pre-multiplying ST (q), noting ST (q)J(q) = 0 and
S1(q)S(q) = I , the above equation becomes

M1ρ = Φ1 − µ + α1M1ė1 + α2M1e2 − V1ė1. (17)

To facilitate the design of µ(t), differentiating (17) yields:

M1ρ̇ = Φ̇1 − µ̇− Ṁ1ρ + Υ, (18)

where Υ = α1Ṁ1e2 + α1M1ρ − α1α2M1e2 − α2
1Ṁ1e1 −

α2
1M1e2 + α3

1M1e1 + α2Ṁ1e2 + α2M1ρ−α2
2M1e2− V̇1e2−

V1ρ + α2V1e2 + α1V̇1e1 + α1V1e2 − α2
1V1e1.

Based on the method of compensation for uncertain
dynamic[13], µ(t) is designed as follows:

µ(t) = (ks + 1)e2(t)− (ks + 1)e2(0) +
∫ t

0

((ks + 1)α2e2(s)
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+ Θ̂(s)sgn(e2(s)))ds (19)

with the adaptive update law

˙̂Θ(t) =
1
γ

sgn(eT
2 (t))ρ(t), (20)

where design parameters ks, γ ∈ R are positive control gains,
and Θ̂(t) ∈ R is the parameter estimation of Θ which will be
specified later. The second term in (19) is used to ensure that
µ(0) = 0. µ(t) does not depend on the unmeasurable filtered
tracking error term ρ, but its time derivative can be expressed
as a function of ρ. Taking the time derivative of µ(t), one has

µ̇(t) = (ks + 1)ė2(t) + (ks + 1)α2e2(t) + Θ̂(t)sgn(e2(t))
= (ks + 1)ρ(t) + Θ̂(t)sgn(e2(t)). (21)

Substituting (21) into (18) results in

M1ρ̇ = −(ks + 1)ρ− Θ̂(t)sgn(e2)− 1
2
Ṁ1ρ− e2 + Γ, (22)

where Γ(z, ż, t) = Φ̇1 + Υ− 1
2Ṁ1ρ + e2 ∈ Rn−m. Defining

Γd =
∂Φ1

∂zd
żd +

∂Φ1

∂żd
z̈d +

∂Φ1

∂z̈d
z
(3)
d .

Noting that Φ1 is an C2 vector function and z
(i)
d i = 0, · · · , 4

are all bounded, there must exist two unknown positive con-
stants B1 and B2, such that

‖Γd‖ ≤ B1, ‖Γ̇d‖ ≤ B2.

III. MAIN RESULTS

Theorem 1 Consider the nonholonomic mechanical system
described by (1) and (2), subjects to Assumptions 1 and 2.
Given a desired trajectory zd(t) which satisfies the constraint
equation (2), using the control laws (15), (19) and (20), the
following hold: (i) All the states of the closed-loop system are
globally bounded. (ii) Tracking error e1 and ė1 converge to
zero as t →∞.

Proof. Let D ∈ R3(n−m)+2 be a domain containing
y(t) = 0, where y(t) ∈ R3(n−m)+2 is defined as y(t) =
[xT (t), Θ̃(t),

√
P (t) ]T , x(t) ∈ R3(n−m) is defined as x(t) =

[eT
1 , eT

2 , ρT ]T , and Θ̃(t) = Θ− Θ̂(t) represents the parameter
estimation error. P (t) ∈ R is defined as

P (t) = Θ‖e2(0)‖ − e2(0)T Γd(0)−
∫ t

0

L(s)ds,

where the auxiliary function L(t) is defined as

L(t) = ρT
(
Γd(t)−Θsgn(e2)

)
.

Selecting Θ = B1 + 1
α2

B2 + 1, by taking the same manipula-
tions as Appendix A in [13], there is

∫ t

0

L(s)ds ≤ Θ‖e2(0)‖ − e2(0)T Γd(0).

Hence, P (t) ≥ 0.

Now, choose a candidate lyapunov function

V (y, t) = eT
1 e1 +

1
2
eT
2 e2 +

1
2
ρT M1ρ + P +

γ

2
Θ̃2. (23)

Taking the time derivative of V along solutions of (10), noting
the definition of ˙̂Θ and substituting (11), (13) and (22) into it,
we immediately get

V̇ ≤ −2α1‖e1‖2 − α2‖e2‖2 − (ks + 1)‖ρ‖2 + 2eT
1 e2 + ρT Γ̃.

Since Γ(t) is continuously differentiable, by mean valve the-
orem, one can acquire the upper bound of Γ̃ as follows [13]:

‖Γ̃‖ ≤ ϕ(‖x‖)‖x‖,
where ϕ : R+ → R+ is an appropriate K function. By using
the fact that 2eT

1 e2 ≤ ‖e1‖2 + ‖e2‖2, V̇ can be simplified as

V̇ ≤ −λ‖x‖2 − ks‖ρ‖2 + ϕ(‖x‖)‖ρ‖‖x‖, (24)

where λ = min{2α1−1, α2−1, 1}, and α1, α2 must be chosen
to satisfy α1 > 1

2 , α2 > 1.

Completing the squares for the third term in (24) gives

ϕ(‖x‖)‖ρ‖‖x‖ ≤ ks‖ρ‖2 +
ϕ2(‖x‖)‖x‖2

4ks
,

then the following expression can be obtained

V̇ ≤ −λ‖x‖2 +
ϕ2(‖x‖)‖x‖2

4ks
. (25)

Now, we define a compact set:

N1 =
{

y ∈ R3(n−m)+2|‖y‖ ≤ ϕ−1
(
2
√

λks

)}
.

The inequality (25) shows V (t) ≤ V (0) in N1, hence, all
the the signals e1, e2, ρ, Θ̃ on the right-hand side of function
(23) are bounded in N1. From the definition of e1, e2, ρ, Θ̃, we
know ė1 = e2 − α1e1, ė2 = ρ− α2e2, Θ̃ = Θ− Θ̂, therefore,
we can further get ė1, ė2, Θ̂ ∈ L∞ in N1. The assumption
that zd, żd, z̈d are bounded can be used to conclude that z, ż, z̈
∈ L∞ in N1. With M1, V1, G1 are all known and bounded in
N1. Thereby τ1, µ ∈ L∞ in N1 can be further obtained.

Then, let N2 ⊂ N1 denotes a set defined as follows:

N2 =
{

y(t) ⊂ N1

∣∣∣δ2(y)‖y‖2 < δ1 ·
(
ϕ−1(2

√
λks)

)2
}

,

where δ1 = 1
2 min{1, a}, δ2(y) = max{1, 1

2 ā(y)}, and the
definitions of a and ā(y) have been given in Assumption 1.
From expression (25), one obtains that there must exist an ap-
propriate positive semidefinite function U(y) = c‖x(t)‖2, such
that V̇ ≤ −U(y). With Invariance-like Theorem (Theorem 8.4
of [14]) in mind, one can further get U(y) = c‖x(t)‖2 →
0ast → ∞. Based on the definitions of x(t), one can finally
gain e1(t), e2(t), ρ(t) → 0 as t →∞, ∀y(0) ∈ N2. From (13),
we then know ė1(t), ė2(t) → 0 as t →∞, ∀y(0) ∈ N2.

On the other hand, from (17), it is evident that if ρ(t),
e2(t) and ė1(t) are all bounded, then µ(t) − Φ1 is bounded.
According to the boundedness of S1(q), ST

1 (µ(t) − Φ1) is
bounded. Substituting the control laws (15) and (19) into
reduced order dynamic model (9) yields

J(q)(λ− λc) = ST
1 (Φ1 − µ(t))−M0ë1 − V0ė1 = ω(·).

ω(·) be a bounded function vector. Therefore, the force track-
ing error (f−fd) is bounded and can be adjusted by changing
the feedback gain kλ. Thus, the theorem is proved completely.
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Fig. 1 The trajectories of e1(t) Fig. 2 The trajectories of ė1(t)
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Fig. 3 The trajectories of Θ̂(t), eλ(t) Fig. 4 The trajectories of τ(t)

IV. SIMULATION

Consider a boat with payload on a running river. The x-axis
and y-axis denote the transverse direction and the downstream
direction of the river, respectively. Here, we suppose the stream
of the river only depends on transverse position x in the
simulation. The affine constraints can be obtained as follows:

cos θẏ − sin θẋ = C(x) cos θ.

We assume that the traveling direction velocity and the angular
velocity of the boat can be controlled. The standard forms are
given as follows:

M(q) =

[
m + m0 0 0

0 m + m0 0
0 0 I + I0

]
,

V (q, q̇) = 0, G(q) = 0,
JT (q) = [cos q3, − sin q3, 0], A(q) = C(q2) cos q3,

where m is the mass of the boat and I is the inertia of the
boat, m0 denotes the unknown mass of the payload and I0

denotes the unknown inertia of the payload. For the sake of
simplicity, select m = 1, I = 1, C(q2) = q2.

For the given J(q), S(q) and η(q), the desired trajectory
qd = [sin t − cos t, sin t, π

4 ]T satisfies kinematic constraint
JT (qd)q̇d = A(qd) and diffeomorphism transform q̇d =
S(qd)żd + η(qd) with zd = [

√
2 sin t + 2, π

4 ]T . The control
objective is to determine an adaptive feedback control so that
the trajectory z follows zd, and λ is bounded.

In the simulation, suppose m0 = 0.1, I0 = 0.1, chose α1 =
1, α2 = 2, ks = 1, kλ = 2, γ = 10, and select z1(0) =
z2(0) = 0.5, ż1(0) = ż2(0) = 0.5, Θ̂(0) = 1. The results
of the simulation are shown in Figs 2∼5. Fig. 2 shows the
position tracking errors of z(t)− zd(t) converge to zero, Fig.
3 shows the velocity tracking errors of ż(t)− żd(t) converge
to zero, Fig. 4 shows both state Θ̂(t) and the tracking error of
eλ are bounded. It can be seen that the control inputs shown
in Fig. 5 are bounded.

V. CONCLUSIONS

In this paper, the motion and force tracking problem is
addressed for a class of uncertain nonholonomic mechanical
systems. The controller guarantees that the configuration state
of the system semi-global asymptotically tracks to the desired
trajectory and the force tracking error is bounded with a
controllable bound.
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