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Abstract 
In view of the disadvantages of the traditional 
time-varying algorithm about nonstationary random 
vibration signal of a spacecraft with close spaced 
modal frequency. A process neural network (PNN) 
based on the empirical mode decomposition (EMD) 
method is put forward. First, the EMD method is 
utilized to decompose the signal into several intrinsic 
mode functions (IMFs). Then for each IMF, The 
PNN is established and time-varying auto-spectral 
density is obtained. Finally, the time-varying 
auto-spectral density of the signal can be 
reconstituted by linear superposing. The example 
results show the effectiveness of this new method in 
time-frequency analysis. 
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1. Introduce 
The traditional analytical method of power spectrum 
about random vibration signal is usually supposed 
that the signal is stable. However the vibration of 
spacecraft during the flight is nonstationary. To deal 
with this vibration, we usually use time-frequency 
analytical methods, Such as short-time Fourier 
transform, Wigner-Ville distribution, wavelet 
analysis etc[1]. These methods give a exact 
description of the time-varying character to 
nonstationary signals at some degree and make up 
the deficiency of traditional methods, but some limits 
are also exposed, such as fake signal and fake 
frequency. The method of Hilbert-Huang transform 
(HHT) brought forward by Norden E. Huang has 
made a breakthrough in dealing with nonstationary 
signals[2]. The core of the method is that it can 
decompose the complex datum into some intrinsic 
mode functions (IMFs) self-adaptively. And each 
IMF has definite physical content by empirical mode 
decomposition (EMD). Compared with small-wave 
method, this is a self-adaptive time-frequency 
analytical method which needs no knowledge 
stored .The basis function of the EMD only depend 

on the signal and the decomposition has definite 
physical content. Although HHT has been brought 
forward for a short time, the theory and the 
application have been caught much attention and 
have been researched widely[3].     

The nonstationary signal sampled by spacecrafts 
during the flight has the character of close frequency, 
low-signal-to-noise and complex-waves. If the signal 
is decomposed directly by EMD, the standard IMF 
(at a time corresponding to only one frequency) can 
not be obtained，and a multi-component IMF signal 
should be obtained. If the Hilbert spectrum has been 
analyzed with the nonstandard IMF directly, the 
time-frequency distribution obtained is fault. The 
article[4] has made some analysis to the question 
mentioned above and has given some corresponding 
criterions, but those criterions have some limit during 
the application. To resolve the question mentioned 
above, PNN is used to make time-varying analysis to 
the nonstandard IMF of the real vibration signal 
during the spacecraft flight. So an exact time-varying 
auto-spectral density should be obtained by the 
method and the distinguish rate of frequency is very 
high. 

2. Empirical Mode Decomposition 
The EMD is a method of decomposing a signal in the 
time domain. The decomposition is based on the 
direct extraction of the signal energy associated with 
various intrinsic modes in different time scales. The 
EMD method is developed from the simple 
assumption that any signal consists of different 
simple intrinsic modes of oscillations. Each linear or 
nonlinear mode will have the same number of 
extrema and zero-crossings. There is only one 
extremum between successive zero-crossings. Each 
mode should be independent of the others. In this 
way, each signal could be decomposed into a number 
of IMFs, each must satisfy the following 
definition[5]: (1) the number of zero-crossings and 
the number of extrema in whole sampled datum must 
either be  equal or differ at most by one;(2) at any 
point of the datum, the mean value of the envelope 



defined by the local maxima and the envelope 
defined by the local minima is zero. An IMF 
represents a simple oscillatory mode as a counter part 
of the simple harmonic function, but it allows the 
modulation of amplitude and frequency. Therefore it 
is much more generic than other signal processing 
methods. 

With the definition of IMF, any signal can be 
simply decomposed by its local maxima and minima. 
Once the extrema of the signal are identified, all the 
local maxima can be connected by a cubic spline line 
as the upper envelope. For local minima, repeating 
the procedure, the lower envelope can be obtained. 
The mean of the upper and lower envelopes is 
designated as )(1 tm , and the difference between the 
original data )(tx and )(1 tm is the first 
component, )(1 th , i.e., 

)()()( 11 thtmtx =−  .       (1) 
Ideally, )(1 th  should be an IMF since the 

construction of )(1 th  described above has satisfied 
all the requirements of IMF. If )(1 th  does not meet 
the definition of a true IMF, the sifting process has to 
repeat many times until a true IMF is obtained. In the 
following sifting process, )(1 th  is treated as the 
data to be processed. Then  

)()()( 11111 thtmth =− ,         (2) 
where )(11 tm is the mean of upper and lower cubic 
spines and fits the maxima and minima of the signal 

)(1 th , )(11 th is the subsequent trial IMF. The 
sifting process can repeat k )3,2,1( L=k times 
until )(1 th k is a true IMF, that is  

)()()( 11)1(1 thtmth kkk =−− .       (3) 
Then the first IMF component of the signal can be 
designated as  

)()( 11 thtc k= .            (4) 
)(1 tc should contain the finest scale or the shortest 

period component of the signal. We can separate 
)(1 tc  from the rest of the data by  

  )()()( 11 trtctx =−  .        (5) 
Since the residue still contains long period 
components, it should be treated as the new data and 
subject to the same sifting process as described above. 
This procedure can repeat for all the subsequent 

)(trj )1,,2,1( −= nj L  and the result is  
)()()( 221 trtctr =−  

)()()( 332 trtctr =−  

MM  

)()()(1 trtctr nnn =−−  .      (6) 
The sifting process can stop by any of the following 

predetermined criteria: either when the component 
nc or the residue nr  becomes so small and less than 

the predetermined value of substantial consequence, 
or when the residue nr  becomes a monotonic 
function and no another IMF can be extracted from it. 
By summing up equation (5) and (6) , we finally 
represent the original signal in the following equation 
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which is decomposed into n -empirical modes, and 
a residue nr , which can be either a monotonic 
function or single cycle. To apply the EMD, a mean 
or zero reference is not required; EMD only needs 
the locations of the local extrema.The sifting process 
generates the zero reference for each component, 
except for the residue. The components of the EMD 
are usually physically meaningful, because the 
characteristic scales are defined by the physical data 
themselves. 

Unlike the frequency filtering methods that 
cause deformation of the signal filtered if it is either 
nonlinear or nonstationary, a time-space filter can be 
devised for signal reconstruction using the IMFs. The 
EMD filter can preserve the full nonlinearity and 
nonstationary in the physical space since a nonlinear 
and nonstationary signal generates harmonics of all 
ranges. For example, the output of a low-pass filter 
used for a signal having n IMF components can 
expressed simply as  
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The output of a high-pass filter can be expressed as  
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and the output of a band-pass filter can be expressed 
as  
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Where b and k are the number of the selected 
intermediate modes. A band-cut filter may be 
designed simply by omitting the selected components 
in the reconstruction progress. Hence the EMD 
method is a self-adaptive method of dealing with 
signals. It is fit to nonstationary process. However 
the decomposition has applied cubic spline 
interpolation, some serious distortion appears at the 
end of signal. If the distortion is too serious, the latter 
decomposition will lose research value. That is 
named end effect, which has been discussed in some 
articles[6]. It is impossible to decompose according 



to the IMF definition strictly during the actual 
process, thus the IMFs obtained are not ideal intrinsic 
mode functions. To solve the question, a criterion is 
needed to judge the rationality. Now the applied 
widely criterion is the standard difference of the 
former and latter )(th , i.e. 
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sd usually take the value from 0.2 to 0.3. In 
equation (11), the subscript i  denotes the thi  order 
IMF component, k denote times of repetition, 
T denote total time of dispersed signal sequence. 

Having obtained the IMF components, we have 
no difficulties in applying the Hilbert transform to 
calculate a meaningful instantaneous frequency for 
each component. Hence, the original data can be 
expressed as 
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where )(tai  is a time-dependent expansion 
coefficient and the argument of the 
exponential )(tiω is the instantaneous frequency of 
each component as a function of time respectively, 
and the residue nr  is omitted. Comparing the 
equation with Fourier transform, the IMF represents 
a more general expansion with variable amplitudes 
and instantaneous frequencies. The EMD improves 
greatly not only the efficiency, but also makes it able 
to accommodate nonlinear and nonstationary signals. 

3. Process Neural Network  

3.1. Network structure 
To some complex signals with closely spaced 
frequencies, there are some errors between IMF 
components obtained by decomposition and true 
components at a certain, because the value of 
sd depend on experience greatly. Thus It is difficult 
to decompose it as independent IMF component by 
EMD. Usually The first order IMF is a signal of wide 
band frequency and mono-component. The obtained 
time-frequency distribution is different from the fact 
if the IMF is analyzed by Hilbert spectrum. The 
method of Short Time Fourier Transform is 
incapable to the matter if it considers time precision. 
Though wavelet transform can make decomposition 
by selection of appropriate scale, much trashy 
harmonic produced synchronously. In order to 
debase the difference above, PNN is used to make 

time-varying parameter analysis to IMF in this paper. 
Aimed at the problems of the time-varying 
information processing and the dynamic system 
modeling, a kind of model with time-varying inputs 
and outputs function was built. In the PNN with 
time-varying inputs and outputs function, the time 
accumulation operator of process neuron is adopted 
as the integral to time or other algebra operations, its 
space-time aggregation mechanism and incitation can 
synchronously reflect the space aggregation and 
stage time accumulation effect of exterior 
time-varying input signals to the output results, so as 
to complete the complex mapping relationship 
between the inputs and outputs of non-linear 
system[7]. 
 It is supposed that the structure of PNN is arranged 
in layers with p - 1M - 2M -1. Namely, There are 
p  neurons in input-layer, which are used to input 
p  time-varying signals; The first hidden layer is 

used to input projection of discrete time series under 
the primary function )(tbL ; The first hidden layer is 
made of 1M time-varying process neurons, which 
are adopted as the integral to time or other algebra 
operations; The second hidden layer is made of 2M  
non- time-varying common neurons, which are used 
to improve the mapping ability of network to 
complex relation between inputs and outputs. The 
fourth layer is output-layer and is used to complete 
output of the system. The structure of PNN is shown 
as Fig.1. 
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Fig.1:Structure of four layer PPN 

In Fig.1, if the input space of PNN is [0 T]; the 
discrete time series )}(),1({ pnxnx −− L  
denote the input function. )}({ twij  is the connection 
weighting value from input-layer node i  to hidden 
layer node j  ; 1

jθ  is the energizing threshold of 
the first hidden layer node j ; f  is energizing 
function. So the output of the first hidden layer node 
j  can be obtained commonly as follows: 
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Depend on the output of the first hidden layer, the 
output of the second hidden layer can be stated as 
follows: 
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}{ jkv  is the connection weighting value from the 
first hidden layer node j  to the second  hidden 
layer node k  ; 2

kθ  is the energizing threshold of 
the second hidden layer node k ; g  is energizing 
function.  

So depend on the output of the second hidden 
layer, the output of the network can be stated as 
follows: 
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}{ ku  is the connection weighting value from the 
second hidden layer node k to output-layer node; 

3θ  is the energizing threshold of the out-layer 
node; h  is energizing function.  

If all the threshold value is zero and energizing 
functions are linear, Equation (15) can be simplified 
as follows: 
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If the input space of PNN is [0 T] and 
)(,),(),( 21 tbtbtb RL  are a group standard 

orthogonal basis functions; weighting value )(τijw  
is functions about time, for the convenience of 
calculation; Weighting functions are expanded in the 
form of basis functions in the same group: 
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r
ijw  is the connection weighting from input node i  

to the first hidden layer node j  relative to )(τrb . 
Replacing the )(τijw  in equation(16) using the 
relationship from equation(17) yields 
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Then, )(tai  is designated as  
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and )(ty  can be written in the useful form 
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 If the expected output of network is )(td  and the 

error is )(tε , then 

)()()()()()(
1

ttxtattytd i

n

i
i εε +−=+= ∑

=

. (21) 

Equation (21) can be stated as n order time-varying 
AR  model.  

Mapping the input signal to the time-varying 
basis functions and trained by the PNN, the 
time-varying parameter of AR  model is feasible to 
be calculated by the connection weighting value 
obtained after network reaching stabilization. A 
time-varying power spectrum of the signal can be 
obtained according to the transfer function of  AR  
model and the inputted white noise[8], which can be 
stated as follows: 
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In the equation, )(2 tpσ  is the average power of the 
energizing white noise( )(tW ) of the time-varying 
AR  model. In addition, )(tW  is the error-output 

)(tε  of the PNN.  It is no difficult to estimate the  
)(2 tpσ  by PNN. 

3.2. Order identification 
When AR  model is used to approach a random 
signal, the order of the model should be selected 
appropriately. Generally, the order of the AR  
model is not known at the beginning. If the order is 
selected too low, the power spectral will be too 
smooth, which will lower the distinguish rate of 
frequency; If the order is selected too high, there will 
produce fake frequency. The AIC criterion, showed 
by Akaike, is now generally used in stationary 
random signal, which can be stated as follows: 

kNkAIC k 2log)( 2 += σ .      (23) 
Where N  is the number of the data sample, kσ  is 
the predicted error of the model. For models assumed 
under different order, the order corresponded to the 
minimum of the AIC is the appropriate order. For the 
nostationary random signal, KonzinF[9] analyzed the 
sufficient condition and researched the application of 
the AIC criterion in identifying the order of the 
nostationary random signal model. He found that 
these problems and parameter estimations were 
uniform in progressive normal state. So in this paper, 
the AIC criterion was chosen to identify the order of 
the time-varying model. 

3.3. Training algorithm 



The input of PNN and the connection weighting can 
both be the functions of time. A converge operator of 
time is added to process neuron, so the training of 
PNN is very different from the other common neural 
networks. The calculation of PNN is more 
complicated. Meanwhile, because the form of 
network connection weighting and the parameter 
contained are random, the connection weighting 
function is very hard to be confirmed by the training, 
during which the learning sampling basis used has no 
common form of functions.  

A group of proper basis functions is brought in 
input space. Input functions are transformed into 
limited series according to the basis function by 
given precision. Meanwhile, network weighting 
functions are expressed as the expanded forms in the 
same group of basis functions, which can simplify 
the complexity of process neuron about 
time-aggregation operation. According to this 
algorithm, there are the same complexity between 
learning PNN and training traditional feed forward 
neural network. The application shows that this 
algorithm has not only simplified the operation of 
PNN but also increased the stability and convergence 
in network learning. There are many other methods 
to choose orthogonal basis function. Basis function 
can be chosen as Circular function, Multinomial 
function, Fourier basis function, Wavelet basis 
function, Walsh function etc.  

Based on the predigesting algorithm mechanism, 
the algorithm of group training is employed to 
complete the calculation of errors. If there are 
P groups of training samplings, according to the 
gradient descent algorithm, the error in Fig.1 is 
obtained as: 
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In (24), jy is the output of the thj group training 
sample; )(kd j is the expected output of 

thk training.  
Traditional gradient decent algorithm has some 

flaws in lower convergence speed and smallest in 
part etc, in practical applications. By simulation, 
“false saturation” and heavy oscillation are proved to 
happen often on networks, so it is very hard to obtain 
satisfying training results.  

Adding momentum into the regulation of 
weighting can not only rise the convergence speed of 
network, but also prevent the oscillation when error 
curved surface is regulated. The regulation equation 
is 

)()1()()1( khkwkw ηαη −+Δ=+Δ , (25) 

)1()()1( +Δ+=+ kwkwkw ,   (26) 

)(
)()(

kw
kEkh

∂
∂

=   ,           (27) 

where α )10( <<α  is learning speed, and 
)10( <<ηη is regulation coefficient of momentum,  

)(kw  is network weighting value of every layer. 
If error ξ<E or training times maxNK <  

the expectation of network has been achieved. Then 
output the learning results and end training, save 
network weighting value and error regulated every 
time. Otherwise, the value of circulation time added 
1, and then the regulation is continued.  

4. Case study 
Thirteen orders IMF components and a residue r  
were obtained by the EMD decomposition to the 
nonstationary random vibration signals of a 
spacecraft sampled during the flight. The first four 
orders IMF components and the residue were shown 
in fig2. 
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Fig.2 :origin signal, the first four orders IMF components 
and the surplus item.  

It was shown that each order IMF component 
contained different time rule which made the 
character of the signal revealed at different 
distinguish rate. It was also known that the EMD was 
a method of principal component analysis and the 
decomposed result containing the main information 
of the origin signals. However the decomposed IMF 
was not a standard IMF containing only one 
component but a nonstandard IMF containing many 
components. The phenomenon was outstanding in 
the first three orders IMF components. Twenty orders 
PNN auto regression model was used to make 
time-varying parameter analysis to the first three 
orders IMF components and the time-varying 
auto-spectral density were obtained respectively, as 
the following fig3, fig4 and fig5. The energy of 
vibration signals mainly concentrated in the range 
from 230Hz to 260Hz. The change trend of the 



energy with the time was clearly displayed in this 
range. The conclusion that the vibration signals and 
the stimulation signals had much pertinence in the 
range obtained. Considered the relation between 
response and stimulation in kinetics system, the 
energy of stimulation signals mainly concentrated in 
this range also and the dynamic variation was also 
the same with the vibration response. The energy of 
signal at 130Hz was strong at beginning but 
decreased with time. Hence the signal at 130Hz 
might be disturbing signal. The energy of signal at 
40Hz was relatively weak and was not dynamic 
variation throughout the time. Hence the signal at 
40Hz might be a structure signal or a load signal 

 
Fig.3: PNN time-frequency spectrum of 1thorder IMF. 

 
Fig.4:PNN time-frequency spectrum of 2ndorder IMF. 

 
Fig.5:PNN time-frequency spectrum of 3rd order IMF. 

 
Fig.6:PNN time-frequency spectrum of all IMFs. 

 
Fig.7:STFT time-frequency spectrum 
which has little pertinence with stimulation of this 
system. 

The time-varying auto-spectral density could be 
reconstituted by linear superposing through the 
time-varying auto-spectral density of the first three 
order IMFs. As in the following fig6. A comparation 
between the power spectrum in fig6 and in fig7 
obtained by the method of short-time Fourier 
transform had been made. It showed that the two 
spectrums both described the time-frequency 
character of signals realistically. Moreover the law of 
energy changing with time was also same. But there 
existed disturbance of the crossed signals and the 
distinguish rate of frequency in fig11 was much less 
clear than in fig10 .Hence the method to estimate 
time-varying AR  model parameter and 
time-varying auto-spectral density by PNN is valid. 
The method avoids the correlative estimate by using 
the datum directly. So the method has the characters 
of less-workload and high-precision distinguish rate 
of frequency. Besides it can analyze a large-datum 
signal with less EMS memory by modulating the 
number of hide layers and neural cell according to 
real occasion. 

5. Conclusions 



The results indicate that it is perfectly to analyze 
some nonlinear amplitude modulation signals whose 
frequencies are very close through multi-component 
PPN based on EMD. The method has avoided greatly 
the inconsistency brought by the approximation of 
taking multi-component IMF as single-component 
IMF. Hence the method has improved distinguish 
rate of frequency and reduced random error.  

References 
[1] G.S. Hu, Digital signal processing: theory、m

-ethod and realizing. Tsinghua University Pr
-ess, Beijing, 2003. 

[2] N..E. Huang, Z. Shen. and S..R. Long., The 
empirical mode decomposition and the Hilb-
ert spectrum for nonlinear and nonstationary
 time-series analysis. ProcR Soc, 454:903-99
5, 1998. 

[3] Y.M.. Zhong, S.R.. Qin and B.P.. Tang, Study
 on a new transform method forvibration si
gnal. Journal of Vibration Engin-eering, 15:2
33-238, 2002.  

[4] J.S.. Cheng, D.J.. Yu and Y. Yang, R-esearch

 on the intrinsic mode function(IMF)criterion
 in EMD method. Mechanical Syste-ms and
 Signal Processing, 20:817-824, 2006. 

[5] Z.W.. Liu and X.Q. Lian, Research andapplic
ation of artificial intelligence for waterenviro
nment protection. Procedings of 2006 Intern
ational Conference on AI(ICAI’06), pp.153-1
56, 2006. 

[6] Z.. Chen and S.X. Zheng, Analysis on end e
ffects of EMD method. Journal ofData Acq
uisition & Processing, 18:114-118, 2003.  

[7] X.G. He and J.Z.. Liang, Process neur-al net
work. World Computer Congress 2000,Proce
edings of Conference on Intelligent Inf-orma
tion Processing, pp.143-146, 2000.  

[8] S.H.. Xu and X.G.. He, Research and applica
tions of radial basis PNN. Journal ofBeijing
 University of Aeronautics and Astro-nautics,
 30:14-17, 2004. 

[9] F. Konzin. and F. Nakajima, The order deter
-mination problem for linear time-varying A
Rmodels. IEEE Transon Automatic Control, 2
5 :250-257, 1980.

 


