
International Journal of Networked and Distributed Computing
Vol. 6(4); September (2018), pp. 195–203

DOI: 10.2991/ijndc.2018.6.4.1; ISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

* Corresponding author. Email: Jkim@saumag.edu

Optimized Common Parameter Set Extraction Framework by
Multiple Benchmarking Applications on a Big Data Platform

Jongyeop Kim1,*, Abhilash Kancharla2, Jongho Seol2, Indy N. Park3, Nohpill Park2

1Math and Computer Science, Southern Arkansas University, Magnolia, AR 71753, USA
2Computer Science, Oklahoma State University, Stillwater, OK USA
3Computer Science, Oklahoma City University, Oklahoma City, OK, USA

1.  INTRODUCTION

The Apache Hadoop Distributed File System (HDFS) [1] is one of
the prominent engines as a big data processing framework [2] with
its distributed processing capabilities over a cluster that composed
of multiple nodes [3]. The core technology of this open source is
called map and reduce, which is accomplished by appropriately
splitting a big task into each node and merging it through inter
process communication.

From the hardware perspective, the performance of Hadoop
increases in proportion to the number of nodes constituting a
cluster and their computing powers of each node. One the other
aspect of a given HW environment is that we can consider the
performance improvements by adjusting the proper configuration
parameters to achieve site specific goals.

In Hadoop, various configuration parameters [4] are firmly
related to MapReduce [5] interfacing mechanism among the
master node and numerous slaves. Finding the site specific
set of parameters will be a way to maximize the performance
of Hadoop. In other words, preparing a cluster with optimized
tuning [6,7] conditions means finding parameter combinations
that yields optimal performance.

To classify an optimized set of parameter, a professional expert
with Hadoop has to intervene to tune the cluster which is time-
consuming and tedious [4].

This is because there are many parameters [4,8] to consider and
difficulty in accurately grasping the correlation between param-
eters. Moreover, the parameter values that we expected best per-
formance should be verified on the real Hadoop clusters with
specialized MapReduce or given benchmarking applications.

Fortunately, there have been several studies conducted for efficient
tuning automated manner such as Naïve exhaustive [9], random
[10], and heuristically-based [11]. For the Naïve exhaustive and
random approach, the TestDFSIO is used and the heuristically-based
is evaluated with the TeraSort [12]. Since the methodology we have
proposed applies single benchmarking application given by Hadoop
distribution to evaluate each algorithm [11], it needs to be improved
to verify more complex MapReduce task environments.

In this paper, we proposed enhanced version of heuristically-based
algorithms to apply multiple benchmark application such as
TeraSort, TestDFSIO, and MrBench.

The rest of the paper is organized as follows. Section 2 introduces
preliminary works and reviews. Section 3 presents the extended
heuristically-based algorithms. Section 4 analyzes experimental
results. Finally in Section 5 concluding remarks are drawn along
with future works.

A RT I C L E I N F O
Article History

Received 27 June 2018
Accepted 20 September 2018

Keywords

Big data
Hadoop
configuration
performance tuning

A B S T R AC T
This research proposes the methodology to extract common configuration parameter set by applying multiple benchmarking
applications include TeraSort, TestDFSIO, and MrBench on the Hadoop distributed file system. The parameter search space
conceptually conducted named Ω(x) to hold status of all parameter values and its evaluation results for every stage to eventually
reduce benchmarking cost. In the process of determining parameter set for each stage, one parameter and its associated values
selected which is reduced system performance in terms of overall execution time difference that are measured by multiple
applications on a Hadoop cluster. The experimental results demonstrate the proposed extended greedy manner provide a
feasible benchmark model for the multiple MapReduce tasks. This model classified several candidate parameter value sets
that can be reduced the overall execution time by 27% of the values against Hadoop default settings. Moreover, we propose
e-heuristic greedy with alternative parameter selection model to evaluate second candidate parameter value which will lead
global optimum by returning back to the previous stage if local minimum is not found at the current stage compare to the
previous ones.

© 2018 The Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://www.atlantis-press.com/journals/ijndc
mailto:Jkim@saumag.edu
http://creativecommons.org/licenses/by-nc/4.0/

196	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203

2.  PRELIMINARY

In this section, the background knowledge of the Hadoop config-
uration parameters, parameter domains, couple of benchmarking
techniques and several proposed algorithms will be reviewed.

2.1.  Hadoop Parameters

The most important and fundamental concept of Hadoop is to
reduce the overall processing time by distributing one task to
multiple cluster nodes. To control the efficient operation between
master and slave nodes [13], tuning of configuration parameter
according to system environment is needed. Well-tuned parame-
ter values will keep the system in optimal condition and ultimately
improve system performance.

Apache Hadoop has more than 80 parameters [14] and 25 of these
parameters are significantly affected map and reduce performance [4].
Those parameters are defined at the $hadoop_home/conf/mapred-
site.xml as one of the properties. For example, io.sort.mb with
default value 100 and io.sort.record.percent with value 0.05 can be
described as follows:

•• Configuration for mapred-site.xml

There are several steps to set up parameter values static way, first
stop all the processes (Hadoop SecondaryNameNode, DataNode,
TaskTracker, JobTracker, NameNode) on the cluster using stop-
all.sh, manually modify the configuration, and then use start-all.
sh to start all the processes. Apache Hadoop operates using the
default value defined in $hadoop_home/docs/hdfs-default.xml, if
required parameters are not defined in the $hadoop_home/conf/
mapred-site.xml.

At the previous work we have developed a java application frame-
work to modify configuration files without human intervention
and applied at the several parameter evaluations [9–12].

As shown in Table 1, we have selected six important parameters for
evaluation set which includes a domain of double or integer type.
Each parameter distinguishes the minimum value from the max-
imum value based on the default value. When the tuning is com-
pleted, one value will be determined for each parameter.

2.2.  Parameter Value Domains

As shown in Table 2, all parameter values are constantly subdi-
vided by ranging from −90% up to +90% based on its low and
high values [11]. The reason for configuring this arity table is to
broaden the selection that one parameter can have.

2.3.  Parameter Space

The parameter space [9,11], denoted by Ω(x) is a sample space
composed of parameter combinations taken from arity table and
its time difference generated by map and reduce applications.

Depending on the algorithm chosen, the number of parameter
combinations can be variably changed. If we apply Naïve exhaustive
algorithm, the size of the space will hold a^p cases with its evalua-
tion results (where a: arity, n: number of parameter).

While the heuristically greedy algorithm requires multiple Ω(x)
spaces which will hold each cases respectively, e.g., a * p, a * (p − 1),
a * (p − 2), …, a * (p − (p − 1)).

2.4.  Benchmarking Applications

Apache Hadoop distribution provide predeveloped several
stress testing tools such as TestDFSIO, TeraSort, MrBench
and MnBench in forms of hadoop-test-1.2.1.jar or hadoop-
examples-1.2.1.jar.

<configuration>

<property>

<name>io.sort.mb</name>

<value>100</value>

</property>

<property>

<name>io.sort.record.percent</name>

<value>0.05</value>

</property>

<property>

<name>io.sort.spill.percent</name>

<value>0.80</value>

</property>

<property>

<name>io.sort.factor</name>

<value>10</value>

</property>

<property>

<name>mapred.job.shuffle.merge.percent
</name>

<value>0.66</value>

</property>

<property>

<name>mapred.job.shuffle.input.buffer.per-
cent</name>

<value>0.70</value>

</property>

</configuration>

Table 1 | Parameters and its values

Symbol Parameter and description Default Low High

P0(i.s.m) io.sort.mb 100 50 120
P1(i.s.r.p) io.sort.record.percent 0.05 0.01 0.09
P2(i.s.s.p) io.sort.spill.percent 0.80 0.40 0.90
P3(i.s.f) io.sort.factor 10 1 20
P4(m.j.s.m.p) mapred.job.shuffle.merge.

  percent
0.66 0.44 0.88

P5(m.j.s.i.b.p) mapred.job.shuffle.input.
  buffer.percent

0.70 0.40 0.90

	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203 	 197

Table 2 | Arity table of parameters

Par \ Arity% –90% –80% –70% –60% –50% –40% –30% –20% –10%

i.s.m 50 55 61 66 72 77 83 88 94
i.s.r.p 0.01 0.014 0.019 0.023 0.028 0.032 0.037 0.041 0.046
i.s.s.p 0.4 0.444 0.489 0.533 0.578 0.622 0.667 0.711 0.756
i.s.f 1 2 3 4 5 6 7 8 9
m.j.s.m.p 0.22 0.269 0.318 0.367 0.416 0.464 0.513 0.562 0.611
m.j.s.i.b.p 0.2 0.256 0.311 0.367 0.422 0.478 0.533 0.589 0.644

Par \ Arity% +10% +20% +30% +40% +50% +60% +70% +80% +90%

i.s.m 111 122 133 144 155 166 177 188 200
i.s.r.p 0.056 0.061 0.067 0.072 0.078 0.083 0.089 0.094 0.1
i.s.s.p 0.811 0.822 0.833 0.844 0.856 0.867 0.878 0.889 0.9
i.s.f 11 12 13 14 15 16 17 18 20
m.j.s.m.p 0.684 0.709 0.733 0.758 0.782 0.807 0.831 0.856 0.88
m.j.s.i.b.p 0.722 0.744 0.767 0.789 0.811 0.833 0.856 0.878 0.9

The TestDFSIO [12] for measuring throughput, average IO rate
mb/s, IO rate std deviation, and execution time on the HDFS clus-
ters are as follows:

(e.g. -nrFiles 10, -fileSize 100)

 ----- TestDFSIO -----: write
 Date & time: Fri Oct 19 21:38:29 EDT 2018

    Number of files: 10

Total MBytes processed: 1000

   Throughput mb/s: 1.6357509732718292

 Average IO rate mb/s: 1.6582612991333008

  IO rate std deviation: 0.2057749407824309

   Test exec time sec: 82.103

----- TestDFSIO -----: read
Date & time: Fri Oct 19 21:44:03 EDT 2018

   Number of files: 10

Total MBytes processed: 905

  Throughput mb/s: 6.272530530132189

Average IO rate mb/s: 35.75289535522461

IO rate std deviation: 88.22740064015464

  Test exec time sec: 40.019

The TeraSort [12] is a benchmark that combines testing the HDFS
and MapReduce of a Hadoop cluster [15]. It provides MapReduce
framework, File system counters, and Job Counters.

------- Tera Sort: (sort 30 K)

   Map input bytes = 30000

  Reduce input groups = 300

Combine output records = 0

 Reduce output records = 300

  Map output records = 300

  CPU time spent (ms) = 850

The MrBench [12] is an application to measure performance by
executing several small-scale jobs multiple times, as opposed to
large tasks on TeraSort. Following example shows average time
consumption for 30 runs.

$ hadoop jar hadoop-*test*.jar mrbench -numRuns 30

DataLines	 Maps	 Reduces	 AvgTime (ms)

	 1	 2	 1	 31414

2.5. � Cost of the Parameter Selection
Algorithms

The execution time of map and reduce task will not be estimated
before evaluation process has finished. This is because the cor-
relation between one value of parameter and the others does
not have a linear relationship. To verify this, we have to create a
combination of values and run each case in the actual Hadoop
environment. If it takes too much time, benchmarking will be
less effective.

Considering three methods we have proposed, we can express the
execution time as a Big O notation as follows:

2.5.1  Cost comparison

 > Naïve exhaustive: O(a^p)
 > Random method: O(1 * p * r) ≈ O(P^2)
 > Greedy: O(a*(p + (p − 1) + (p − 2) + … p − (p − 1))) ≈ O (p^3)

Where, p: number of parameters, 1: constant time, a: number of
parameter values.

The execution time of Naïve exhaustive method can be
expressed as O(a^p) because you have to take into account the
number of all cases, which in other words can be called the
combinatorial problem. This approach is beneficial for find-
ing appropriate parameters, but there is a time-consuming
disadvantage.

198	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203

To compensate for these drawbacks, the random method proposed.
In this method, a parameter value is picked from the arity table
by generating random numbers ranging from zero to 17. With this
method, we could shorten the execution time, but we could not
find a good candidate parameter compared to the Naïve exhaustive.

Finally, the heuristically greedy proposed to save benchmark-
ing time and find acceptable parameters. An important point of
this method was to fix the parameter value that most drastically
reduced execution time in one parameter space and to test other
parameters based on it.

Figure 1 shows how the benchmarking time changes as the number
of parameters to be tested increases. Here we can see the heuristi-
cally greedy lies between Naïve and Random, but almost similar to
Random’s execution time.

It is difficult to determine a linear correlation between each
parameter combination.

The heuristically greedy method is less efficient compared to the
random [10], but it has been verified in previous studies as a com-
putationally feasible way to find the best combination of parame-
ters. The heuristically-based parametric optimization took slightly
over quadratic time or at most cubic time and the performance is
also great with feasible optimization time [11].

3.  e-HEURISTIC GREEDY MODEL

The algorithms we proposed for extracting parameter sets is single
benchmark application exercised to a one algorithm. For example,
the TestDFSIO was applied to Naïve exhaustive and Random, the
TeraSort was tested on the heuristically greedy.

However, in actual systems, it is also important to identify the
parameter set that are applicable to common tasks because multi-
ple map reduce operations are performed with different character-
istics. So, we present the extended model called e-heuristic greedy
that can be fulfilled for the multiple applications by extending heu-
ristically greedy.

In this model, we evaluate map reduce performance with TeraSort,
TestDFSIO, and MrBench on the Hadoop HDFS. Likewise, the
heuristically-based [11] greedy, in the selection process of each
stage assumes one parameter value contributing to the most signif-
icant performance reduction in the parameter space is selected to
determine the subsequent parameters.

3.1. � e-Heuristic Greedy Structure and
Operations

The overall main logic of e-Heuristic greedy is similar to heuris-
tically greedy, but in the e-heuristic greedy, two more functions
are combined to hold MrBench and TestDFSIO benchmarks. This
model takes the form of batch processing. Once it is executed, the
Hadoop configuration is created and three benchmarking pro-
grams are sequentially executed based on this configuration. This is
because Hadoop HDFS must be restarted to apply changed param-
eter values for the new task. The component of the parameter space
that we set conceptually defined are stored in a single text file in the
Linux system.

3.2.  e-Heuristic Greedy – Parameter Space

The parameter evaluation space denoted by Ω composed of n − 1
spaces from Ω(0), Ω(1), …, Ω(n − 1) where n: number of config-
uration parameters. The Ω(0) is an initial evaluation space for all
parameters which includes set of values of parameter and its evalu-
ation results generated by benchmarking applications.

The first benchmarking uses the default parameter values (i.s.m
100, i.s.r.p 0.05, i.s.s.p 0.80, i.s.f 10, m.j.s.m.p 0.66, m.j.s.i.b.p 0.70)
provided by Hadoop distribution. Based on this subsequent pro-
cessing continues with this value and the result is stored in the
Ω(x + 1).

As shown in Table 3, the Ω(x) space is composed of parameter
values taken from the arity table and the execution time differ-
ence value of benchmarking compare to the result by generating
Hadoop default parameter values. In order to find out how each
parameter affects the execution result, 18 test cases are performed
for each parameter while others are retained default value.

In Table 3 consider the fifth row, highlighted yellow, this is an
example for the parameter p2 indexed by column 3rd which is i.s.s.p
(io.sort.spill.percent).

Figure 1 | Optimization cost of e-Heuristic greedy Figure 2 | e-Heuristic greedy model

	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203 	 199

The i.s.s.p increases the default value of 0.8 by +90% to obtain a
value of 0.9, and the remaining five parameters retain the default
value {p0: 100, p1: 0.05, p2: 0.9, p3: 10, p4: 0.66, p5: 0.7}. After
changing the Hadoop configuration file with the given one set of
parameter combinations, p0–p5, three benchmarking programs are
run under the same conditions.

The execution time difference, denoted by Diff, is calculated by
comparing the result obtained on the combination of default
parameter values and newly updated ones.

•• Calculate run time differences

Diff = �(diff TestDFSIO read + diff TestDFSIO write + diff TeraSort
exec + diff TeraSort CPU + diff MrBench exec)

diff TestDFSIO read = �(TestDFSIO read − default TestDFSIO read)

diff TestDFSIO write = �(TestDFSIO read − default TestDFSIO write)

diff TeraSort exec = (TeraSort exec – default TeraSort)

diff TeraSort CPU = (TeraSort CPU – default CPU)

diff MrBench exec = (MrBench exec – default CPU)

3.3. � e-Heuristic Greedy Model –
Determining Parameter

This model also assumes the values that can be locally minimized
the benchmarking results in the current stage will ultimately lead
to a global optimum.

Before moving on to the next stage Ω(n + 1) from the current Ω(n),
the parameter and its corresponding value that played a significant
role in reducing system performance need to be determined by
evaluating Diff value.

The only one parameter and associated value is fixed for each stage,
and in the next stage, the values in the attribute table are applied to
each parameter to pin down. By doing this the parameter space will
be eventually decreased.

•• Ω(x) space reduction

Ω(0) = a * p, Ω (1) = a * (p − 1), … , Ω(n) = a * (p − n)

	 where p: number of parameters, a: arity, n: number of stages.

•• Total cost of benchmarking

((* ()))a p i
i

n

−
=
∑

0

Table 4 shows how parameters are fixed when there are six param-
eters. For example, if p = 6 and a = 18, the stage for tuning requires
five Ω spaces, one additional parameter is fixed as the stage
increases, and the remaining one parameter is determined in the
final stage.

3.4. � e-Heuristic Greedy with Alternate
Parameter Selection

In the e-heuristic greedy model, the parameter is fixed based on
the local minimum for each stage. However, if the local mini-
mum value is less than previous stage, it is necessary to consider
next possible candidate parameter from the previous stage and
re-evaluate current stage with newly selected one to expect leading
better performance.

Figure 3 shows the processing steps and its evaluation costs. Each
bubble indicates the state that exists in the evaluation spaces and
arrows show the progression direction between the stages.

For example, in Case 2, the selected Diff value is larger than a state
S1 in Ω(1) compare to the state S0 in Ω(0). In this case, after select-
ing the candidate parameter and its values which is second smallest
Diff from S0 and the S1 is re-evaluated with the newly updated sets
and the result is saved at S6.

This methodology, each state can be performed once more, so the
following additional cost is required. However, we expect to find
better results than in e-heuristic greedy, and the performance test
for this model will proceed in the next study.

Table 3 | Ω(x) space components

Inc % inx p0 p1 p2 p3 p4 p5 Diff

+ 10 0 111 0.05 0.8 10 0.66 0.7 70
+ 30 4 100 0.05 0.8 10 0.733 0.7 620
- 30 5 100 0.05 0.8 10 0.66 0.533 1020
+ 90 2 100 0.05 0.9 10 0.66 0.7 –2770
- 90 3 100 0.05 0.8 2 0.66 0.7 1270

Figure 3 | Parameter fixed for each space

Table 4 | Parameter fixed for each space

Ω(0) Ω(1) Ω(2) Ω(3) Ω(4) Ω(5)

*i.s.m *i.s.m *i.s.m *i.s.m *i.s.m *i.s.m
i.s.r.p *i.s.r.p *i.s.r.p *i.s.r.p *i.s.r.p *i.s.r.p
i.s.r.p i.s.r.p *i.s.s.p *i.s.s.p *i.s.s.p *i.s.s.p
i.s.f i.s.f i.s.f *i.s.f *i.s.f *i.s.f
m.j.s.m.p m.j.s.m.p m.j.s.m.p m.j.s.m.p *m.j.s.m.p *m.j.s.m.p
m.j.s.i.b.p m.j.s.i.b.p m.j.s.i.b.p m.j.s.i.b.p m.j.s.i.b.p *m.j.s.i.b.p
* Parameters determined for the each Ω(x)

200	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203

	 Case 1
0

= −
=
∑((* ()))a p i
i

n
	 (1)

	 Case 2
0

1

1

= - + -
= =
å å((* ())) ((* ()))a p i a p i
i i

n

	 (2)

	 Case 3
2

2

2

= - + -
= =
å å((* ())) ((* ()))a p i a p i
i i

n

	 (3)

	 Case n a p i a p i
i

j

i j

n

= - + -
= =
å å((* ())) ((* ()))

0
	 (4)

where p: number of parameters, a: arity, n: number of stages, j:
number of cases.

3.5.  e-Heuristic Greedy Procedures

The e-heuristic greedy extended from the heuristically-based greedy
[11] composed of several functions includes runHadoop(), run
TeraSort(); runTestDFSIO(), runMrBench(). Each func-
tion activated by the main, and in these functions, the start () method
can be invoked repeatedly supported by the ProcessBuilder Class [15].

3.5.1.  e-Heuristic Greedy main

It manages all functions related to the whole benchmarking pro-
cess and number of iterations for each parameter evaluation space.
The runHadoop function responsible for control Hadoop HDFS
processors on the master and slave nodes such as NameNode,
DataNode, JobTracker, TaskTracker, and SecondaryNameNode.
Any combination of parameter values should be determined and
adapted to the configuration file for the next iteration of process.

Algorithm 1. e-Heuristic Greedy main [11]

Function: e-Heuristic Greedy main

Default_Par[] = �{100, 0.05, 0.80, 5, 0.1,
0.66, 0.70}

Fixed_Par[] = { }

for (int i = 0; i < runs, i++) {

  for (int j = 0; j < n, j++) {

  Selected_Par[]=DeterminePar

  (IncDec,Default_Par, percentInc,

    parIdx, Low, High);

  if (!(Fixed_par.contains(Selected_Par)){

    runHadoop();

    runTeraSort();

    runTestDFSIO();

    runMrBench();

   }

  endfor

 Fixed_Par[idx + 1]= min ext_CPU of OMEGA(i)

 OMEGA(i + 1) = min t_CPU of OMEGA(i)

endfor

3.5.2.  TestDFSIO

This class object is activated by main function with newly updated
parameter configuration for each iteration. As shown in Algorithm 2,
the write and read operation of TestDFSIO using start method to
create a process instances supported java class ProcessBuilder.

Algorithm 2. Function runTestDFSIO [9]

Function: runTestDFSIO

Input: nrFiles, fileSize, numFiles

Output: Execution time (Write + Read)

ProcessBuilder TestDFSIO_write =

  NewProcessBuilder(“ssh”,

  “hduser@master”, “hadoop”, “jar”,

  “~/hadoop-test-1.1.2.jar”, “TestDFSIO”,

   “write”, “-nrFiles”, fileSize,

   −fileSize”, numFiles);

run_Process(TestDFSIO_write);

run_Process(ProcessBuilder pb) {

 Process process = pb.start();

}

ProcessBuilder TestDFSIO_read =

  NewProcessBuilder(“ssh”,

 “hduser@master”, “hadoop”, “jar”,

  “~/hadoop-test-1.1.2.jar”, “TestDFSIO”,

   “read”, “-nrFiles”, fileSize,

   −fileSize”, numFiles);

run_Process(TestDFSIO_read);

run_Process(ProcessBuilder pb) {

 Process process = pb.start();

}

3.5.3.  TeraSort

To evaluate the performance of a TeraSort, we follow through
three steps as shown in Algorithm 3: TeraGen, TeraSort, and
TeraValidate. Function run_TeraGen randomly creates data,
run_TeraSort sorts this data, and run_TeraValidate obtains
output results.

Algorithm 3. Function runTeraSort [11]

Function: runTeraGen

Input: genSize

Output: Execution time

ProcessBuilder run_TeraGen =

  new ProcessBuilder (“ssh”,

  “hduser@master”, “hadoop”, “jar”,

  “~/hadoop-examples*.jar”,

	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203 	 201

  “TeraGen”, genSize, “/teraInput”);

run_Process(run_TeraGen);

ProcessBuilder run_TeraSort =

  new ProcessBuilder (“ssh”,

  “hduser@master”, “hadoop”, “jar”,

  “~/hadoop-examples*.jar”,

  “TeraSort”, “/teraInput”, “/teraOutput”);

run_Process(run_TeraSort);

ProcessBuilder run_TeraValidate =

   new ProcessBuilder (“ssh”,

   “hduser@master”, “hadoop”, “job”,

   “-history”, “all”,

   “/teraInput”, “>”,

   “/TeraSort_results.log”

run_Process(run_TeraValidate);

3.5.4.  MrBench

MrBench is also implemented in the same way as TestDFSIO.
In this way, for the benchmarking, it is possible to substitute the
manual typing on the command line of the Linux OS by the process
builder in succession.

Algorithm 4. Function runMrBench

Function: runMrBench

Input: processDir, numRuns

Output: Execution time

ProcessBuilder run_MrBench =

  new ProcessBuilder (“hadoop”, “jar”,

“~/hadoop-*test*.jar”, “mrbench”,
“-baseDir”,

  processDir, “-numRuns”, numRuns);

run_Process(run_MrBench);

run_Process(ProcessBuilder pb) {

  Process process = pb.start();

}

4.  EVALUATION AND ANALYSIS

In this study, one Hadoop cluster consist of one master node and
four slave nodes are used. Master node is configured with Intel(R)
Core(TM) i5-6500 CPU, 3.20 GHz and 8 GB memory; and slave
nodes with Intel(R) Core(TM) i3-6100T CPU, 3.20 GHz, and 8 GB
memory. Each machine is bundled via 100 Mbps SAU Local Area
Network. Hadoop version 1.2.1 and CentOS Linux release 7.3.1611
(Core) is used for the evaluation.

As shown in Table 5, a master node includes DataNode, NameNode,
SecondaryNameNode, TaskTracker, JobTracker, on each slave node
has TaskTracker and DataNode.

Table 5 | Processors on Hadoop clusters

Nodes Master node Slaves 1 Slaves 2

IP Address 10.106.*.203 10.106.*.22 10.106.*.136
Processors
on nodes

6931 TaskTracker 6928 TaskTracker 12844 TaskTracker
7043 RunJar 6795 DataNode 12735 DataNode
6744 JobTracker Slaves 3 Slaves 4
7208 RunJar 10.106.*.164 10.106.*.163
6345 DataNode 13040 TaskTracker 3795 TaskTracker
6571 S-NameNode 12935 DataNode 3659 DataNode6143 NameNode

4.1.  Evaluation Results

The performance of HDFS and MapReduce workloads are mea-
sured by TeraSort with Gensize 30 MB, MrBench with five runs,
and TestDFSIO with filesize 20 MB. As shown in the following
steps, one parameter and its associated values are fixed in each eval-
uation space. For the display purpose, the Diff value is multiplied
by 10 to visualize on the graph.

4.1.1.  Default parameter evaluation

To set up the reference value of the parameter tuning, default values
are applied to the six selected parameters. The total execution time
of 58.01 s is set as the reference value.

•• Exec time: 58.01 s
•• Default: {i.s.m: (100), i.s.r.p: (0.05), i.s.s.p: (0.80), i.s.f: (10),

m.j.s.m.p: (0.66), m.j.s.i.b.p: (0.70)}

4.1.2.  Parameter evaluation space Ω(0)

In this parameter space Ω(0), the parameter that has the greatest
effect on the total execution time is fixed to m.j.s.m.p. with its value
0.709.

•• Idx: 4, m.j.s.m.p (mapred.job.shuffle.merge.percent)
•• Increased +20%: 0.709, Exec: 45.69, Diff: −12.32 s

Figure 4 | Parameter trends on Ω(0)

% idx p1 p2 p3 p4 p5 p6 Diff

+ 20 4 100 0.05 0.8 10 0.709 0.7 -123.2

202	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203

•• Fixed: {m.j.s.m.p: (0.709)}
•• Default: {i.s.m: (100), i.s.r.p: (0.05), i.s.s.p: (0.80), i.s.f: (10),

m.j.s.i.b.p: (0.70)}

4.1.3.  Parameter evaluation space Ω(1)

In Ω(1), the i.s.r.p with 0.032 is selected as the second candidate.
We have here established two parameters m.j.s.m.p and i.s.r.p.

•• Idx: 1, i.s.r.p (io.sort.record.percent)
•• Increased −40%: 0.032, Exec: 43.91, Diff: −14.31 s
•• Fixed: {m.j.s.m.p: (0.709), i.s.r.p: (0.032)}
•• Default: {i.s.m: (100), i.s.s.p: (0.80), i.s.f: (10), m.j.s.i.b.p: (0.70)}

4.1.4.  Parameter evaluation space Ω(2)

•• Idx: 3, i.s.f (io.sort.factor)
•• Increased +60%: 16, Exec: 41.81, Diff: −16.2 s
•• Fixed: {m.j.s.m.p: (0.709), i.s.r.p: (0.032), i.s.f: (16)}
•• Default: {i.s.m: (100), i.s.s.p: (0.80), m.j.s.i.b.p: (0.70)}

4.1.5.  Parameter evaluation space Ω(3)

•• Idx: 2, i.s.s.p (io.sort.spill.percent)
•• Increased +10%: 0.811, Exec: 42.91, Diff: −15.1 s

Figure 5 | Parameter trends on Ω(1)

% idx p1 p2 p3 p4 p5 p6 Diff
- 40 1 100 0.032 0.8 10 0.709 0.7 -143

Figure 7 | Parameter trends on Ω(3)

% idx p1 p2 p3 p4 p5 p6 Diff
+ 10 2 100 0.032 0.811 16 0.709 0.7 -151

Figure 8 | Parameter trends on Ω(4)

% idx p1 p2 p3 p4 p5 p6 Diff
– 60 0 66 0.032 0.811 16 0.709 0.7 -172

•• Fixed: {m.j.s.m.p: (0.709), i.s.r.p: (0.032), i.s.f: (16), i.s.s.p:
(0.811)}

•• Default: {i.s.m: (100), m.j.s.i.b.p: (0.70)}

4.1.6.  Parameter evaluation space Ω(4)

•• Idx: 0, i.s.m (io.sort.mb)
•• Increased −60%: 66, Exec: 40.81, Diff: −17.2 s
•• Fixed: {m.j.s.m.p: (0.709), i.s.r.p: (0.032), i.s.f: (16), i.s.s.p: (0.811),

i.s.m: (66)}
•• Default: {m.j.s.i.b.p: (0.70)}

4.1.7.  Parameter evaluation space Ω(5)

•• Idx: 5, m.j.s.i.b.p (mapred.job.shuffle.input.buffer.percent)
•• Increased −10%: 0.533, Exec: 42.81, Diff: −15.2 s
•• Fixed: {m.j.s.m.p: (0.709), i.s.r.p: (0.032), i.s.f: (16), i.s.s.p: (0.811),

i.s.m: (66), m.j.s.i.b.p: (0.533)}
•• Default: { }

4.2. � Total Benchmarking Space Trend Analysis

Through the e-heuristic greedy algorithm, parameters are iden-
tified for each evaluation space as shown in Table 6. We did not
find the most optimal parameter set in Ω(5) at the last stage, but
fortunately we could identify the set that optimizes performance

Figure 6 | Parameter trends on Ω(2)

% idx p1 p2 p3 p4 p5 p6 Diff
+ 60 3 100 0.032 0.8 16 0.709 0.7 -162

	 J. Kim et al. / International Journal of Networked and Distributed Computing 6(4) 195–203 	 203

REFERENCES

  [1]	 Apache Hadoop Home Page, http://hadoop.apache.org/ (Last
accessed – Dec 20, 2017).

  [2]	 H. Han, Y. Wen, T.-S. Chua, X. Li, Toward scalable systems for
big data analytics: a technology tutorial, in: IEEE Access, Vol. 2,
IEEE, 24 June 2014, pp. 652–687 (Big Data Framework).

  [3]	 S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system, in:
Proceedings of the 19th ACM symposium on Operating systems
principles, Vol. 37, ACM, New York, NY, USA, 19–22 October
2003, pp. 29–43.

  [4]	 S. Babu, Towards automatic optimization of MapReduce programs,
in: Proceedings of the 1st ACM symposium on Cloud computing,
ACM, New York, NY, USA, 10–11 June 2010, pp. 137–142.

  [5]	 J. Dean, S. Ghemawat, MapReduce: simplified data processing
on large clusters, Communications of the ACM – 50th anniver-
sary issue, ACM, New York, NY, USA, Vol. 51, January 2008,
pp. 107–113.

  [6]	 Technical White Paper, Performance measurement of a Hadoop
cluster, AMAX, 2012.

  [7]	 M. Kontagora, H. González-Vélez, Benchmarking a MapReduce
environment on a full virtualization platform, in: 2010
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), IEEE, Krakow, 2010.

  [8]	 The Fresh Open Source Software Archive, http://fossies.org/linux/
misc/hadoop-1.2.1.tar.gz/hadoop-1.2.1/docs/mapred-default.
html. Web. 20 January 2015.

  [9]	 J. Kim, T.K. Ashwin Kumar, K.M. George, N. Park, Performance
evaluation and tuning for MapReduce computing in Hadoop dis-
tributed file system, in: 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), IEEE, Cambridge, UK, 22–24
July 2015.

[10]	 J. Kim, N. Park, Identification of the optimal Hadoop config-
uration parameter sets for MapReduce computing, in: 2015
3rd International Conference on Applied Computing and
Information Technology/2nd International Conference on
Computational Science and Intelligence, IEEE, Okayama, 12–16
July 2015.

[11]	 J. Kim, N.-J. Park, N. Park, A study of heuristically-based para-
metric performance improvement/optimization algorithms for
bigdata computing, in: 2016 4th Intl Conf on Applied Computing
and Information Technology/3rd Intl Conf on Computational
Science/Intelligence and Applied Informatics/1st Intl Conf
on Big Data, Cloud Computing, Data Science & Engineering
(ACIT-CSII-BCD), IEEE, Las Vegas, NV, USA, 12-14 December
2016.

[12]	 M.G. Noll, Benchmarking and stress testing a Hadoop cluster with
TeraSort, TestDFSIO & co., http://www.michael-noll.com/blog/
2011/04/09/benchmarking-and-stress-testing-an-hadoop-
cluster-with-terasort-testdfsio-nnbench-mrbench, 2011.

[13]	 T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc.,
2011, pp. 177–178.

[14]	 Hadoop 1.2.1 Documentation, Mapred-default Configuration
Parameters, https://hadoop.apache.org/docs/r1.2.1/mapred-default.
html. Web. 20 January 2015.

[15]	 TeraSort Benchmark Comparison for YARN, TeraSort Benchmark
Comparison for YARN | MapR, https://mapr.com/resources/tera-
sort-benchmark-comparison-yarn/.

[16]	 ProcessBuilder (Java Platform SE 7), 23 June 2018, https://docs.
oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html.

among the six spaces in Ω(4) with a parameter set and values
{m.j.s.m.p: (0.709), i.s.r.p: (0.032), i.s.f: (16), i.s.s.p: (0.811), i.s.m:
(66), m.j.s.i.b.p: (0.70)} to minimize execution time of −17.2 s. It
can be said that the local minimum value selected at each stage
contributed to finding a globally optimal value.

5.  CONCLUSION

This paper has presented a method to facilitate the extraction of
common parameter set for a Hadoop cluster by applying multi-
ple benchmarking application include TeraSort, TestDFSIO and
MrBench.

This model developed by extending the heuristically-based greedy
to adapt more complex map and reduce tasks. In each parameter
evaluation space, one parameter and its associated value is selected
that is considered to be the most locally optimum value by consid-
ering total sum of execution time. Since we assume that the selected
value will ultimately lead to a global optimum, the value of this
parameter is fixed in the next evaluation space and the remaining
available parameters are tested.

As a result of selecting sequence, this model has found one set
of parameter that shortens the execution time by 27% compared
with default one at the evaluation space Ω(4). In each space, of
course we could classify the parameter combinations with better
processing time than the default one, but we found that it may
not be possible to find better combinations as move on to the
next space.

ACKNOWLEDGEMENT

This study is supported by the FY1718 faculty research grant from
Southern Arkansas University (10-2860-5-020, 10-2860-6180).

Table 6 | Total parameter trend on all spaces

Ω\p p1 p2 p3 p4 p5 p6 Diff

Ω(0) 100 0.05 0.8 10 0.709 0.7 -12.32
Ω(1) 100 0.032 0.8 10 0.709 0.7 -14.31
Ω(2) 100 0.032 0.8 16 0.709 0.7 -16.18
Ω(3) 100 0.032 0.811 16 0.709 0.7 -15.11
Ω(4) 66 0.032 0.811 16 0.709 0.7 -17.23
Ω(5) 66 0.032 0.811 16 0.709 0.533 -15.23

Figure 9 | Parameter trends on Ω(5)

% idx p1 p2 p3 p4 p5 p6 Diff
– 30 5 66 0.032 0.811 16 0.709 0.533 -152

http://hadoop.apache.org/
http://hadoop.apache.org/
https://doi.org/10.1109/ACCESS.2014.2332453
https://doi.org/10.1109/ACCESS.2014.2332453
https://doi.org/10.1109/ACCESS.2014.2332453
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1145/1807128.1807150
https://doi.org/10.1145/1807128.1807150
https://doi.org/10.1145/1807128.1807150
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/CISIS.2010.45
https://doi.org/10.1109/CISIS.2010.45
https://doi.org/10.1109/CISIS.2010.45
https://doi.org/10.1109/CISIS.2010.45
http://fossies.org/linux/misc/hadoop-1.2.1.tar.gz/hadoop-1.2.1/docs/mapred-default.html
http://fossies.org/linux/misc/hadoop-1.2.1.tar.gz/hadoop-1.2.1/docs/mapred-default.html
http://fossies.org/linux/misc/hadoop-1.2.1.tar.gz/hadoop-1.2.1/docs/mapred-default.html
https://doi.org/10.1109/INDIN.2015.7281711
https://doi.org/10.1109/INDIN.2015.7281711
https://doi.org/10.1109/INDIN.2015.7281711
https://doi.org/10.1109/INDIN.2015.7281711
https://doi.org/10.1109/INDIN.2015.7281711
https://doi.org/10.1109/ACIT-CSI.2015.27
https://doi.org/10.1109/ACIT-CSI.2015.27
https://doi.org/10.1109/ACIT-CSI.2015.27
https://doi.org/10.1109/ACIT-CSI.2015.27
https://doi.org/10.1109/ACIT-CSI.2015.27
https://doi.org/10.1109/ACIT-CSI.2015.27
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
https://doi.org/10.1109/ACIT-CSII-BCD.2016.087
http://www.michael-noll.com/blog/%202011/04/09/benchmarking-and-stress-testing-an-hadoop-%0Acluster-with-terasort-testdfsio-nnbench-mrbench%2C%202011
http://www.michael-noll.com/blog/%202011/04/09/benchmarking-and-stress-testing-an-hadoop-%0Acluster-with-terasort-testdfsio-nnbench-mrbench%2C%202011
http://www.michael-noll.com/blog/%202011/04/09/benchmarking-and-stress-testing-an-hadoop-%0Acluster-with-terasort-testdfsio-nnbench-mrbench%2C%202011
http://www.michael-noll.com/blog/%202011/04/09/benchmarking-and-stress-testing-an-hadoop-%0Acluster-with-terasort-testdfsio-nnbench-mrbench%2C%202011
https://hadoop.apache.org/docs/r1.2.1/mapred-default.html
https://hadoop.apache.org/docs/r1.2.1/mapred-default.html
https://hadoop.apache.org/docs/r1.2.1/mapred-default.html
https://mapr.com/resources/terasort-benchmark-comparison-yarn/
https://mapr.com/resources/terasort-benchmark-comparison-yarn/
https://mapr.com/resources/terasort-benchmark-comparison-yarn/
https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html

