
* Corresponding author. Email: i1788287@cc.kyoto-su.ac.jp

Improvement of the Dynamic Software Birthmark Process
by Reducing the Time of the Extraction

Takanori Yokoi1,*, Haruaki Tamada2

1Division of Frontier Informatics, Graduate School of Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Kyoto 603-8555, Japan
2Faculty of Information Science and Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Kyoto 603-8555, Japan

1.  INTRODUCTION

The dynamic software birthmark methods are the methods to
detect the stolen programs based on the runtime behavior of
the target programs. For this, the dynamic birthmark methods
extract the characteristics of programs themselves by running the
target programs. Then, the extracted characteristics are compared
and calculated the similarities between two characteristics. If the
similarity is greater than the given threshold, either of programs
is suspected the stolen program from the other. Based on the
process, many researchers proposed various dynamic software
birthmark methods focused on different aspect of the runtime
behaviors. However, the problem is that above detection proce-
dure consumes much time cost. The main cause is the extraction
requires the suitable inputs, and the cost for preparing inputs is
quite high. Because, the preparation of inputs need the under-
standing the target programs, and the dynamic birthmarks gener-
ally require several inputs for reliable results.

If script kiddies try to steal the programs, they simply copy the pro-
grams, and conceal the source codes. However, it is a quite tough
task to detect them. First, quite a huge number of programs are
released in the whole world. Second, we cannot use the source
code for detection, and the binaries are sensitively changed by the
compile options. Therefore, the software birthmarks are applied,
however, the dynamic software birthmarks need the knowledge
to apply them described above. Hence, this paper tries to reduce
the required knowledge to apply the dynamic software birthmarks
for detecting software theft. For this, we eliminate on the under-

standing cost for extracting the dynamic software birthmarks, by
using the unit test codes. Generally, the unit test codes are aims
to find the bugs of the programs, they give the inputs to the target
programs. We focus on the inputs in the unit test codes for extract-
ing the dynamic software birthmarks. That is, the proposed method
can extract the dynamic software birthmarks without any under-
standing of the target programs.

The rest of this paper is organized as follows. Section 2 gives the
general definition about the birthmarks. Section 3 describes the
proposed method. Section 4 shows the experimental evaluations
and their results. Finally, Section 5 concludes the paper.

2.  PRELIMINARY

2.1.  Definition of the Birthmarks

Before describing the proposed method, we explain the definition
of software birthmarks. The software birthmarks are defined by
Tamada et al. [1,2]. Based on the definition, the dynamic birthmarks
are defined as follows by Myles et al. [3] and Tamada et al. [4].

Definition 1. (Dynamic Software Birthmark) Let p and q be
given programs. Let I be given input for p or q. Further, let B(p,
I) be a set of characteristics extracted from runtime information
obtained from providing p with I by a certain method B. If the
conditions below are met, B(p, I) is said to be a dynamic birth-
mark of p with I.

Condition 1: B(p, I) is obtained from providing a program p with
an input I.

A RT I C L E I N F O
Article History

Received 27 June 2018
Accepted 24 September 2018

Keywords

Dynamic birthmarks
unit tests
plagiarism detection
software protection

A B S T R AC T
It is a quite tough task to detect the stolen programs since there is a quite huge number of programs in the world. The dynamic
software birthmarks were proposed to detect the suspects of plagiarisms based on the runtime behavior of the programs. The
detection process with the dynamic birthmarks is composed of extraction, and comparison phases. However, the extraction phase
spends much time because it requires to prepare the inputs for running the programs. Generally, preparing the inputs requires
the understanding about the target programs. Hence, this paper tries to reduce the extraction time without the understanding the
programs by using the unit tests. We evaluated the credibility and resilience of properties of the dynamic birthmarks extracted
by the proposed method. As a result, the similarities were greater than 0.8 among the newest two versions of the same products.
On the other hand, similarities between different projects were under 0.355.

© 2018 The Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Journal of Networked and Distributed Computing
Vol. 6(4); December (2018), pp. 224–231

DOI: 10.2991/ijndc.2018.6.4.5; ISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

mailto:i1788287%40cc.kyoto-su.ac.jp?subject=
http://creativecommons.org/licenses/by-nc/4.0/
https://www.atlantis-press.com/journals/ijndc

	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231 	 225

Condition 2: If q is a copy of p, then B(p, I) = B(q, I).

Condition 1 indicates that a birthmark is an information extracted by
running p and is not additional information. In other words, birth-
mark does not require additional information likes software water-
marks. Condition 2 means that the same birthmark can be obtained
from a copied program. If birthmarks B(p, I) and B(q, I) are different,
it means that q is not a copy of p. However, even if the same program,
the birthmarks may vary depending on the inputs (B (p, I) ≠ B (p, J)).

Two properties known as resilience and credibility should also ide-
ally be satisfied.

Property 1: (Resilience) For a p′ obtained by an arbitrary equivalent
transformation of p, B(p, I) = B(p′, I) is satisfied.

Property 2: (Credibility) When programs p and q that develop inde-
pendently, (B (p, I) ≠ B (p, I)) is satisfied.

Resilience property indicates a resistance of birthmark to various
types of attacks. Credibility property indicates that programs cre-
ated completely independently can be differentiated even if their
specifications are the same. The birthmarks that completely satisfy
both these properties are difficult to create. Therefore, in practice,
the strength of the birthmark must be set appropriately at the discre-
tion of the user. Also, by Condition 1, birthmark information can be
constructed without providing special information for the program.

The different kinds of dynamic birthmarks were proposed by
various researchers. Each birthmark focuses on different runtime
behaviors of the program. For example, the dynamic birthmarks based
on execution path [3], API calls [4], runtime heaps [5], and etc. were
proposed.

2.2.  Similarities of the Birthmarks

The previous birthmark methods calculate similarities between two
extracted birthmarks. The typical range of similarities is [0, 1] by the
conventional papers. 0 means two programs are completely different,
and 1 means the one program is strongly suspected a copy of the
other. Then, the similarity between B(p, I) and B(q, I) is denoted by
sim(B (p, I), B(q, I)). Also, the threshold e is introduced to decide
the copy or not. We classify the score from sim into three groups to
clarify the result from similarity, shows in the following equation [6].

sim((,), (,)) = 1B p I B q I
copy relation
nocopy relation

otherwi

≥
≤ −
e
e

sse inconclusive







If the similarity value is greater than e, p and q have a copy relation,
and if the similarity value is less than 1 – e, p and q are not a copy
relation. In other cases, the birthmark method cannot conclude
relation of two programs. The typical value of e is 0.75 in the con-
ventional papers [7].

3.  THE PROPOSED METHOD

3.1.  Motivation

Figure 1 depicts the typical scenario of the dynamic birthmarks.
At first, we prepare two programs for comparing by the dynamic

birthmarks, and the inputs for them. One program is a plaintiff pro-
gram, and the other is a defendant program. The inputs are quite
important since the different input generates different birthmarks.
Next, the dynamic birthmarks are extracted from two programs by
running them with the prepared inputs (extraction phase). Finally, two
extracted dynamic birthmarks are compared, and calculated similar-
ity (comparison phase). The above procedures are called the birth-
marking process.

The scenario is shared as the implied knowledge of the conventional
papers. However, the conventional scenario involves the important
issue. The issue is the time for the performing the scenario. The back-
ground of the issue is that the birthmark methods are to detect the pro-
gram theft, not to prove. To detect the theft should examine the huge
number of targets. Therefore, it is a quite serious issue that time is con-
sumed for extracting a birthmark and comparing a pair of birthmarks.
Because many birthmarks are extracted and the many pairs of birth-
marks should be compared. For this, the goal of this paper is to reduce
the total time of the birthmarking in focusing on the extraction phase.

The static birthmarks can be extracted easily since it requires only
program itself. Therefore, reducing total time methods focus on
comparing phase [8–10]. On the other hand, the dynamic birth-
marks require the inputs for extracting them, and the extraction
phase is conducted just before comparison. Therefore, automati-
cally conducting the extraction phase contributes to reducing the
total time. The time-consuming steps in the extracting phase are as
follows. The one is to prepare the inputs for the programs since the
inputs are prepared by the developers by fitting to the programs.
The other one is to extract the dynamic birthmarks since to run the
program consumes the time. For automatic extraction, this paper
focuses on unit test codes on the projects as suitable inputs.

3.2. � Extracting the Dynamic Birthmarks
using the Unit Tests

The unit tests aim to find the bugs by running the target programs.
The unit test codes generally give the concrete inputs to the methods
of the target programs and examine the return values. Ideally, all
methods of the target programs are tested by executing the unit test
codes. Therefore, we can use the unit test codes as suitable inputs
for extracting dynamic birthmarks.

On the other hand, the coverage is a metric for sufficiency evalu-
ation of the unit tests, should be high as possible. The metric can

Figure 1 | Typical scenario of the dynamic birthmarks

226	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231

be used as the indicators of the inputs’ diversities for the dynamic
birthmark extraction.

In the conventional scenario, an evaluation by the birthmarks is
conducted among a few plaintiff programs and a lot of defendant
programs. Because the software theft is happened in anywhere and
identity guaranteed the programs are hard to find. However, Open
Source Software (OSS) is spread over the world, today. We can use
OSS as the plaintiff programs. Therefore, the scenario in the paper
is that we conduct the evaluation among a lot of plaintiff programs
and a few defendant programs.

Figure 2 shows the overview of the proposed method. In the proposed
method, we use OSS projects as a lot of plaintiff projects. Then, the
dynamic birthmarks are extracted beforehand and store them into
some databases. In the comparing phase, extracting the dynamic
birthmarks pays the effort only from defendant programs. Finally, we
compare between the dynamic birthmarks reading from databases
and extracted above.

3.3. � Automatic Extraction of the
Dynamic Birthmarks

Aspect-Oriented Programming (AOP) is a programming para-
digm that embeds the program code fragments [11]. The fragments
are called cross-cutting concern and usually compose of common
code (e.g. logging). Recently, AOP is used as the implementation of
Dependency Injection (DI) [12].

The target of the paper is the projects. A project has a set of target
programs and a set of unit test codes. The target programs are the
product codes of the project. Therefore, we extract the dynamic
birthmarks from the target programs by weaving the extracting
codes with AOP and execute unit tests. Then, the dynamic birth-
marks are extracted through the weaved codes.

Now, the below of the section describes the notation of the
proposed method. At first, let R be a project, P = {p1, p2,..., pn}
be a set of product codes, and T = {t1, t2,..., tm} be a set of test
codes. Also, let wB be an aspect code to extract a certain type

of dynamic birthmark. Note that, a program of the unit tests
has several test methods, thus, let each method be a test code.
Then, we weave wB into P, and obtain a set of weaved product
codes Ak = {a1, a2,..., an}. The inputs for P is in each test code ti,
therefore, we regard ti as an input (1 ≤ i ≤ m). Therefore, we
denote B(,) { (,), (,),..., (,)}P T B P t B P t B P tm m= 1 1 2 2 is the dynamic
birthmarks for the proposed method.

3.4.  Comparing the Dynamic Birthmarks

The different input generally generates the different birthmark, as
mentioned in Section 3.1. However, it is hard to unify the inputs
for the different projects. Because the format of inputs generally
differs. Therefore, this paper does not unify the inputs for the
projects, uses the unit test codes as the raw inputs. Moreover, the
proposed method extracts several birthmarks, since a project has
several test codes.

In other words, the two projects Rx= {Px, Tx} and Ry= {Py, Ty} are given,
the birthmarks are extracted as Bx x x x x mx x x mx

B P t B P t= { (,),..., (,)},1 ,1 , , ,
and By y y y y my y y my

B P t B P t= { (,),..., (,)},1 ,1 , , . Then, mx × my matrix is
generated by comparing between every pair of birthmarks. Besides,
each birthmark in B is denoted as bi, j = Bi, j (Pi, ti, j).

	

m

b b b b
b b

x y

x y x m y

x y

x

(,) =

(,) ... (,)
(,) ...

,1 ,1 , ,1

,1 ,2B B

sim sim
sim ssim

sim sim

(,)

(,) ... (,)

, ,2

,1 , , ,

b b

b b b b

x m y

x y m x m y m

x

y x y

� � �

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷

Then, we consider m(Bx, By) to the cost matrix, and apply maxi-
mum weighted bipartite matching algorithms [13]. Next, we find
pairs in order to be the maximum value among all possible match-
ings. Finally, the similarity between Bx and By are the average value
of the pairs [14].

4.  EXPERIMENTAL EVALUATION

4.1.  The Target Project in the Experiment

This paper evaluates the proposed method focuses on the extraction
cost and the credibility and resilience performances shown in the
definition. For this, we compare the dynamic birthmarks extracted
from OSS projects. The evaluation exploits three categories, three
projects, and four version products (3 categories × 3 projects × 4
versions = 36 products). Besides, the categories are libraries for
command lines, JSON, and CSV. Each category and project are
chosen by the number of stars. Note that, in this paper, a product
means a corresponding executable, and its product source and unit
test codes. The products are distinguished by its name and version.
Also, a project is a set of products in the same name and different
versions.

Table 1 shows the target projects in the experiments and Table 2
shows their metrics. The columns of Table 2 are that Version,
|P|, |T|, C0, C1, and Release shows product versions, the number
of product code files, number of test methods, statement cov-
erage (C0), branch coverage (C1), and release year, respectively.
The coverages of almost product increased by updating versions. Figure 2 | The overview of the proposed method

	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231 	 227

4.2. � Extracting the Dynamic Birthmarks
with AOP

In the experiments, EXEFREQ dynamic birthmark was used,
which represents frequencies of method calls [4]. In the definition
of EXEFREQ, the system libraries are given. Therefore, we set the
packages starts with java and javax in the standard API in Java1 as
the system libraries2.

We developed the aspect code shown in Fig. 3 for AspectJ 1.8.103,
and weaved it to the product codes of the target products. Then,

1 https://docs.oracle.com/javase/8/docs/api/
2 �The standard API in Java includes other packages (e.g., org.w3c.dom, and
etc.), however, we omitted them for easy to understand in this paper.

3 https://www.eclipse.org/aspectj/

Table 1 | The selected target projects and their web pages

Projects
Web page

CLI

Commons CLI
https://commons.apache.org/cli/

Args4j
http://args4j.kohsuke.org/

JLine2
https://jline.github.io/jline2/

JSON

Gson
https://github.com/google/gson

Jettison
https://github.com/jettison-json/jettison

Svenson
https://github.com/fforw/svenson

CSV

Esperio CSV
http://www.espertech.com/esper

Jdbi
http://jdbi.org/

Super CSV
https://super-csv.github.io/super-csv/

Table 2 | The number of product codes and test methods of products

Projects Version |P| |T| C0 (%) C1 (%) Release

�Commons CLI

1.1 20 214 83 80 2007
1.2 20 187 96 91 2010
1.3 22 364 96 93 2015
1.4 22 372 96 93 2017

Args4j

2.0.8 24 33 67 60 2008
2.0.16 40 59 73 67 2009
2.0.31 62 151 76 73 2014
2.33 63 162 77 74 2015

JLine2

2.0 29 25 52 39 2009
2.6 30 43 62 46 2012
2.13 48 141 79 55 2015
2.14.5 48 143 79 56 2017

Gson

1.1 74 204 68 60 2008
2.4 62 966 84 79 2015
2.8.0 63 1,014 83 79 2016
2.8.2 63 1,014 83 79 2017

Jettison

1.0 27 49 49 42 2008
1.3.1 37 80 48 40 2011
1.3.7 38 115 54 47 2014
1.3.8 38 119 54 47 2016

Svenson

1.4.2 60 117 69 69 2012
1.5.0 64 123 63 63 2015
1.5.7 74 160 63 65 2017
1.5.8 74 160 63 65 2017

Esperio CSV

5.2.0 26 81 75 72 2015
5.4.0 26 81 75 72 2016
6.1.0 26 81 75 72 2017
7.0.0 26 81 75 72 2017

Jdbi

2.14 156 163 59 53 2011
2.40 222 266 67 59 2012
3.0.0 164 344 67 57 2017
3.0.2 169 358 67 57 2018

Super CSV

2.0.0 69 377 100 100 2012
2.2.0 82 450 100 100 2014
2.4.0 84 516 99 100 2015
2.4.1 88 549 98 99 2016

In the evaluation, we assume that the product in different version
is stolen. Therefore, the same products in different version expect
to have high similarities. Also, the similarities among different
projects should be low.

Figure 3 | The aspect code for extracting EXEFREQ birthmarks

https://docs.oracle.com/javase/8/docs/api/
https://www.eclipse.org/aspectj/

228	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231

Table 3 | The results of the libraries of command lines

Product Version
Common CLI Args4j JLine2

1.1 1.2 1.3 1.4 2.0.8 2.0.16 2.0.31 2.33 2.0 2.6 2.13 2.14.5

Commons CLI

1.1 1.000
1.2 0.577 1.000
1.3 0.396 0.646 1.000
1.4 0.389 0.643 0.976 1.000

Args4j

2.0.8 0.117 0.083 0.051 0.050 1.000
2.0.16 0.186 0.162 0.118 0.116 0.733 1.000
2.0.31 0.286 0.355 0.307 0.302 0.320 0.476 1.000
2.33 0.267 0.353 0.307 0.303 0.294 0.436 0.929 1.000

JLine2

2.0 0.014 0.010 0.006 0.006 0.015 0.016 0.009 0.008 1.000
2.6 0.029 0.026 0.020 0.019 0.020 0.023 0.020 0.019 0.121 1.000
2.13 0.020 0.022 0.028 0.028 0.009 0.012 0.016 0.018 0.048 0.185 1.000
2.14.5 0.020 0.021 0.028 0.028 0.009 0.012 0.016 0.018 0.047 0.185 0.987 1.000

Figure 3 | Continued

the test codes in the products are executed on JUnit 54 platform
in order to extract the EXEFREQ dynamic birthmarks.

Figure 3 is the aspect code for extracting EXEFREQ. In the pro-
posed method, the code of Fig. 3 is weaved into the product
codes and runs the unit tests for extracting EXEFREQ dynamic
birthmarks.

In the code of Fig. 3, at first, the shutdown hook of JVM is reg-
istered in the constructor to output the extracted birthmarks.
Next, the names of the test method are stored at beforeTest
method, and the resultant birthmarks are outputted at after-
Test method with the name of the test method. Then, since
EXEFREQ is the frequencies of the called methods, before-
Weave method stores the called method into List. Finally, in
output method, the registered called methods are converted to
the frequencies by toFreq method and outputted by formatting
by formatForOutput method. Note that, Fig. 3 collects thread
id since the EXEFREQ birthmarks are collected for each thread
from the definition [4].

4.3. � Evaluation of Performance for the
Dynamic Birthmarks

This experiment evaluates the accuracy of the proposed method
in the aspect of the two properties shown in Section 2.1. Tables
3–5 show the results of comparing among products by the pro-
posed method. The first and the next column of each table repre-
sent project names and their versions. Also, the first and next row
also show the project names and their versions. The following rows
and columns represent the similarities between corresponding ver-
sions of projects. In Tables 3–5, the bold font shows the similarities
are greater than 0.75 which is the typical value of e. Moreover, the
similarities of the grayed pairs were under 0.25 (1– e) in the same
project.

The similarities between the latest version and the next recent
version of each project were greater than 0.8 and were higher than
the other pairs. Additionally, the similarities in grayed cells were
under 0.25, mean the pair were not similar, even if it paired in the
same project.

4 https://junit.org/junit5

https://junit.org/junit5

	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231 	 229

Table 4 | The results of JSON libraries

Product Version
Gson Jettison Svenson

1.1 2.2 2.8.0 2.8.2 1.0 1.3.1 1.3.7 1.3.8 1.4.2 1.5.0 1.5.7 1.5.8

Gson

1.1 1.000
2.4 0.177 1.000
2.8.0 0.165 0.900 1.000
2.8.2 0.165 0.889 0.984 1.000

Jettison

1.0 0.130 0.080 0.074 0.072 1.000
1.3.1 0.130 0.105 0.099 0.096 0.716 1.000
1.3.7 0.140 0.131 0.126 0.123 0.568 0.766 1.000
1.3.8 0.137 0.131 0.126 0.124 0.557 0.753 0.983 1.000

Svenson

1.4.2 0.071 0.013 0.013 0.012 0.040 0.039 0.041 0.040 1.000
1.5.0 0.082 0.016 0.015 0.013 0.045 0.045 0.047 0.046 0.918 1.000
1.5.7 0.103 0.020 0.019 0.018 0.056 0.056 0.066 0.065 0.768 0.825 1.000
1.5.8 0.103 0.020 0.019 0.018 0.056 0.056 0.066 0.064 0.770 0.825 0.990 1.000

Table 5 | The results of CSV libraries

Product Version
Esperio CSV Jdbi Super CSV

5.2.0 5.4.0 6.1.0 7.0.0 2.14 2.40 3.0.0 3.0.2 2.0.0 2.2.0 2.4.0 2.4.1

Esperio CSV

5.2.0 1.000
5.4.0 0.999 1.000
6.1.0 0.999 0.999 1.000
7.0.0 0.999 0.999 0.999 1.000

Jdbi

2.14 0.036 0.035 0.035 0.036 1.000
2.4 0.022 0.022 0.022 0.022 0.445 1.000
3.0.0 0.002 0.002 0.002 0.002 0.037 0.043 1.000
3.0.2 0.002 0.002 0.002 0.002 0.036 0.042 0.990 1.000

Super CSV

2.0.0 0.015 0.015 0.015 0.015 0.089 0.159 0.020 0.020 1.000
2.2.0 0.014 0.014 0.014 0.014 0.060 0.135 0.026 0.025 0.847 1.000
2.4.0 0.021 0.021 0.021 0.021 0.070 0.137 0.039 0.038 0.662 0.793 1.000
2.4.1 0.019 0.019 0.019 0.019 0.065 0.131 0.040 0.039 0.509 0.623 0.823 1.000

Then, we investigated the differences among products, shown
in Table 6. The columns show project name, compared from,
and to. The columns labeled Pc, Pu, Pa, Pd are the number of
product code files with exact matches, updates, additions, and
deletions, respectively. Note that, additions and deletions mean
that the files exist only in to or from. The ratio column is the
percentage of the exact match between versions, calculated by

P
P P P P

c

c u a d+ + +
. Besides, the investigation was performed by

diff command5.

The ratio columns between the latest and the next recent version
are greater than 0.8 in all products. The results illustrate that the
similarities from the recent versions by the proposed method were
certainly high.

On the other hand, the similarities among different projects
were generally low, the max value was 0.355, which between
Args4j 2.0.31 and Commons CLI 1.2. The results mean that the
proposed method can distinguish the independent projects.

5 https://www.gnu.org/software/diffutils/

4.4. � Evaluation of Cost for Extracting
the Dynamic Birthmarks

The experiment evaluates the cost of extraction for the dynamic
birthmarks by the proposed method. Figure 4 shows that the flow-
chart depicts differences between the proposed method and conven-
tional method. The dynamic birthmarks are extracted from runtime
behavior of the programs, therefore, extracting them must run the
programs. For running the programs, it requires the inputs. Hence,
we must understand the target programs for preparing the inputs in
the conventional methods. Additionally, the dynamic birthmarks are
sensitively changed by the given inputs. Because different inputs per-
form different control flow in the program. Extracting the character-
istics of the whole programs requires the multiple inputs. Therefore,
the cost to prepare the inputs is generally high.

On the other hand, understanding the programs does not require
with the proposed method. Since the coverages by the test codes
usually high in the mature projects, the proposed method can
extract the characteristics of the whole programs. Therefore,
the cost of extracting the dynamic birthmark with the proposed
method are generally low than the conventional methods.

https://www.gnu.org/software/diffutils/

230	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231

Table 6 | Similarities between product code in same project

from to Pc Pu Pa Pd Ratio

Commons CLI

1.1 1.2 2 18 0 0 0.090
1.1 1.3 0 20 2 0 0.000
1.1 1.4 0 20 2 0 0.000
1.2 1.3 0 20 2 0 0.000
1.2 1.4 0 20 2 0 0.000
1.3 1.4 18 4 0 0 0.818

Args4j

2.0.8 2.0.16 10 14 16 0 0.250
2.0.8 2.0.31 1 23 38 0 0.016
2.0.8 2.33 1 23 39 0 0.016
2.0.16 2.0.31 7 32 23 1 0.111
2.0.16 2.33 7 32 24 1 0.109
2.0.31 2.33 51 11 1 0 0.810

JLine

2.0 2.6 1 25 4 3 0.030
2.0 2.13 0 26 22 3 0.000
2.0 2.14.5 0 26 22 3 0.000
2.6 2.13 0 30 18 0 0.000
2.6 2.14.5 0 30 18 0 0.000
2.13 2.14.5 47 1 0 0 0.979

Gson

1.1 2.4 0 23 39 51 0.000
1.1 2.8.0 0 23 40 51 0.000
1.1 2.8.2 0 23 40 51 0.000
2.4 2.8.0 25 37 1 0 0.397
2.4 2.8.2 22 40 1 0 0.349
2.8.0 2.8.2 51 12 0 0 0.810

Jettison

1.0 1.3.1 9 17 11 1 0.237
1.0 1.3.7 5 21 12 1 0.128
1.0 1.3.8 5 21 12 1 0.128
1.3.1 1.3.7 18 19 1 0 0.474
1.3.1 1.3.8 18 19 1 0 0.474
1.3.7 1.3.8 31 7 0 0 0.816

Svenson

1.4.2 1.5.0 48 12 4 0 0.750
1.4.2 1.5.7 30 30 14 0 0.405
1.4.2 1.5.8 30 30 14 0 0.405
1.5.0 1.5.7 35 29 10 0 0.473
1.5.0 1.5.8 35 29 10 0 0.473
1.5.7 1.5.8 73 1 0 0 0.986

Esperio CSV

5.2.0 5.4.0 25 1 0 0 0.962
5.2.0 6.1.0 0 26 0 0 0.000
5.2.0 7.0.0 0 26 0 0 0.000
5.4.0 6.1.0 0 26 0 0 0.000
5.4.0 7.0.0 0 26 0 0 0.000
6.1.0 7.0.0 24 2 0 0 0.923

Jdbi

2.14 2.4 73 67 82 16 0.307
2.14 3.0.0 0 39 125 117 0.000
2.14 3.0.2 0 39 130 117 0.000
2.4 3.0.0 0 47 117 175 0.000
2.4 3.0.2 0 47 122 175 0.000
3.0.0 3.0.2 154 10 5 0 0.911

Super CSV

2.0.0 2.2.0 0 69 13 0 0.000
2.0.0 2.4.0 0 69 15 0 0.000
2.0.0 2.4.1 0 69 19 0 0.000
2.2.0 2.4.0 72 10 2 0 0.857
2.2.0 2.4.1 69 13 6 0 0.784
2.4.0 2.4.1 78 6 4 0 0.886

5.  CONCLUSION

This paper aims to extract the dynamic birthmarks beforehand
for reducing the total time of the birthmarking process. For this,
the proposed method focuses on the unit tests in a project, and
OSS projects as plaintiff programs. We weave an aspect code for

extracting the target birthmarks to the product codes, then the
birthmarks are extracted by running the unit tests.

In the experiments, the two properties of the birthmarks were
evaluated, credibility and resilience performance. In the same
project, the similarities between most recent two versions were

	 T. Yokoi and H. Tamada / International Journal of Networked and Distributed Computing 6(4) 224–231 	 231

greater than 0.8. On the other hand, the similarities among dif-
ferent projects were generally low, less than 0.355. Additionally,
we compared the cost of extracting the birthmarks between the
conventional method and the proposed method, the proposed
method can reduce the extraction cost.

In our further works, we will conduct scaling up of experiments,
implement extraction aspect code for other types of birthmarks, and
evaluate the quality of birthmarks extracted by the proposed method.

ACKNOWLEDGMENT

Part of this work was supported by JSPS KAKENHI Grant Numbers
17K00196, 17K00500, and 17H00731.

REFERENCES

  [1]	 H. Tamada, M. Nakamura, A. Monden, K. Matsumoto, Design
and evaluation of birthmarks for detecting theft of java pro-
grams, in: Proceedings of the IASTED International Conference
on Software Engineering (IASTED SE 2004), Innsbruck, Austria,
February 2004, pp. 569–575.

  [2]	 H. Tamada, M. Nakamura, A. Monden, K. Matsumoto, Java
birthmarks — detecting the software theft —, IEICE Trans. Inf.
Syst. E88-D (2005), 2148–2158.

  [3]	 G. Myles, C.S. Collberg, Detecting software theft via whole
program path birthmarks, in: Proceedings of the Information
Security the 7th International Conference (ISC 2004), Springer-
Verlag, Berlin Heidelberg, 27–29 September 2004, pp. 404–415.

Figure 4 | The flowchart of the proposed method and the conventional
method

  [4]	 H. Tamada, K. Okamoto, M. Nakamura, A. Monden, K-i.
Matsumoto, Dynamic Software Birthmarks to Detect the Theft
of Windows Applications, in: Proceedings of the International
Symposium on Future Software Technology 2004 (ISFST 2004),
October 2004, pp. CD-ROM.

  [5]	 P.P.F. Chan, L.C.K. Hui, S.M. Yiu, JSBiRTH: dynamic JavaScript
birthmark based on the run-time heap, in: Proceedings of the
35th Annual Computer Software and Applications Conference
(COMPSAC), IEEE, Munich, Germany, 18-22 July 2011, pp.
407–412.

  [6]	 Z. Tian, Q. Zheng, T. Liu, M. Fan, DKISB: dynamic key instruc-
tion sequence birthmark for software plagiarism detection, in:
Proceedings of the 2013 IEEE 10th International Conference
on High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous
Computing (HPCC_EUC), IEEE, Zhangjiajie, 13-15 November
2013, pp. 619–627.

  [7]	 D. Schuler, V. Dallmeier, C. Lindig, A dynamic birthmark for
Java, in: Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007),
ACM, New York, NY, USA, 5-9 November 2007, pp. 274–283.

  [8]	 J. Nakamura, H. Tamada, Fast comparison of software birthmarks
for detecting the theft with the search engine, in: Proceedings
of the 4th International Conference on Applied Computing &
Information Technology (ACIT 2016), IEEE, Las Vegas, NV,
USA, December 2016.

  [9]	 J. Nakamura, H. Tamada, mituba: scaling up software theft detec-
tion with the search engine, in: Proceedings of the International
Conference on Software Engineering and Information Management
(ICSIM 2018), Casablanca, Morocco, January 2018, pp. 6–10.

[10]	 T. Tsuzaki, T. Yamamoto, H. Tamada, A. Monden, Scaling up
software birthmarks using fuzzy hashing, Int. J. Software Innov.
(IJSI), 5 (2017), 89–102.

[11]	 G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, J. Irwin, Aspect-oriented programming, in:
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 1997), Springer-Verlag, Finland, June
1997, pp. 220–242.

[12]	 D.R. Prasanna, Dependency Injection. Manning Publications
Co., 1st ed., New York, USA, 2009.

[13]	 H.W. Kuhn, On the origin of the Hungarian method, in: J.K.
Lenstra, A.H.G. Rinnooy Kan, A. Schrijver (Eds.), History of
Mathematical Programming, CWI, Amsterdam and North-
Holland, Amsterdam, 1991, pp. 77–81.

[14]	 Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, Z. Yang, Reviving
sequential program birthmarking for multithreaded software pla-
giarism detection, IEEE Transactions on Software Engineering,
44 (2017), 491–511.

https://doi.org/10.1093/ietisy/e88-d.9.2148
https://doi.org/10.1093/ietisy/e88-d.9.2148
https://doi.org/10.1093/ietisy/e88-d.9.2148
https://doi.org/10.1007/978-3-540-30144-8_34
https://doi.org/10.1007/978-3-540-30144-8_34
https://doi.org/10.1007/978-3-540-30144-8_34
https://doi.org/10.1007/978-3-540-30144-8_34
https://doi.org/10.1109/COMPSAC.2011.60
https://doi.org/10.1109/COMPSAC.2011.60
https://doi.org/10.1109/COMPSAC.2011.60
https://doi.org/10.1109/COMPSAC.2011.60
https://doi.org/10.1109/COMPSAC.2011.60
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1109/HPCC.and.EUC.2013.93
https://doi.org/10.1145/1321631.1321672
https://doi.org/10.1145/1321631.1321672
https://doi.org/10.1145/1321631.1321672
https://doi.org/10.1145/1321631.1321672
https://doi.org/10.1109/ACIT-CSII-BCD.2016.039
https://doi.org/10.1109/ACIT-CSII-BCD.2016.039
https://doi.org/10.1109/ACIT-CSII-BCD.2016.039
https://doi.org/10.1109/ACIT-CSII-BCD.2016.039
https://doi.org/10.1109/ACIT-CSII-BCD.2016.039
https://doi.org/10.1145/3178461.3178475
https://doi.org/10.1145/3178461.3178475
https://doi.org/10.1145/3178461.3178475
https://doi.org/10.1145/3178461.3178475
https://doi.org/10.4018/IJSI.2017070107
https://doi.org/10.4018/IJSI.2017070107
https://doi.org/10.4018/IJSI.2017070107
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1109/TSE.2017.2688383
https://doi.org/10.1109/TSE.2017.2688383
https://doi.org/10.1109/TSE.2017.2688383
https://doi.org/10.1109/TSE.2017.2688383

