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1.  INTRODUCTION

Unfortunately, some cracking incidents reported. For example, 
Nintendo Switch Online is the online service for playing the games 
provided with it and released on September 18, 20181. However, 
Kuchera and Frank [1] reported that Nintendo Switch Online was 
already cracked, and own ROMs can be played using the cracked 
Nintendo Switch.

To protect the software from cracking, the obfuscation methods 
were proposed. An obfuscation method is to change programs hard 
to understand by preserving input/output specification. Various 
obfuscation methods are proposed [2–4], and are implemented 
to tools, such as Dash-O2, ProGuard3, and etc. In particular, the 
Identifier Renaming Method (IRM) is widely used, which changes 
the identifiers in the programs to meaningless names. Because it is 
easy to implement and to understand the approach [5,6]. However, 
IRM did not sufficiently discuss the tolerance against attacks, and 
strength of the protection. Because the relationships between the 
meanings of identifiers and strength of the protection are not clear.

Now, we consider a scenario that an adversary steals programs 
and obfuscates them by an IRM. The original authors of the pro-
grams try to analyze the programs by some methods, such as de-
compilation. The analysis of the programs is quite hard since an 

1 https://www.nintendo.com/switch/online-service/
2 https://www.preemptive.com/products/dasho/
3 https://www.guardsquare.com/en/proguard

IRM eliminates the meanings of identifiers. If a technique gives 
meanings to methods of programs, it is useful for the analysis. Of 
course, it is a security risk that adversaries conduct the technique. 
However, the obfuscation method should tolerate some attacks and 
should be evaluated the tolerance. Therefore, this paper proposes 
the de-obfuscation method for the identifier renamed programs 
and evaluates the tolerance of IRM. If we succeed in de-obfuscation 
by the proposed method, it can be said that tolerance of IRM is low.

For this, we try to restore identifiers from programs applying IRM, 
illustrated in Fig. 1. Usually, programs have several identifiers, 
such as class, method, and variable names. We focus on, especially, 
method names in programs. Because the clues for restoring the 
variable names is few since they strongly depend on the domain of  
programs. Also, class names are hard to restore, too, since they depend 
on variable names. Therefore, at first, the paper proposes to restore 
method names in programs from their opcode list. Especially, this 
paper focuses on restoring verbs in method names. Because some 
verbs in method names relate to their behaviors. Thus, the goal of 
this paper is to recommend the verbs of the method names.

For restoration, we use the random forest which is one of the machine 
learning algorithms. The proposed method, at first, constructs a res-
toration model from a huge number of programs. Then, the model 
recommends the names from an opcode list of methods. The opcode 
list is independent variable (explanatory variable), and the response 
variable (objective variable) is a verb of method names.

The remainder of the paper first defines the software obfuscation 
method and IRM (Section 2). Next, proposes a method for restor-
ing the method names (Section 3). Afterward, we conduct exper-
iments to evaluate the proposed method (Section 4), then discuss 
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the threats to validity (Section 5). Finally, the conclusion will be 
shown (Section 7).

2.  PRELIMINARY

2.1.  Program Obfuscation Method

This section formulates the notion of program obfuscation method 
[7,8]. We start with the definition of the program understanding 
since the obfuscation prevents malicious users from understanding 
the program.

Definition 1. (Program understanding cost): Let p be a given pro-
gram and X be a set of information included in p. When a user 
can extract X from p by a certain method, then we define that the 
user has understood p about X. For this, we denote a cost of the 
understanding as c(p, X) in an abstract manner. The cost would 
be characterized by, for example, the time, efforts, the necessary 
knowledge, devices, etc., taken for the analysis. Then, we give a 
general definition of the program obfuscation.

Definition 2. (Program obfuscation): Let p be a given pro-
gram, X be a given a set of information of p, I be an input set  
of p, and r(p, I) be an output set of p with I. Then, the obfuscation 
of p with respect to X is to translate p into p¢ with a certain method 
T (i.e., p¢ = T(p)), such that 

Condition 1: r(p, I) = r(p′, I)

   Condition 2: c(p, X) < c(p′, X).

Condition 1 means input/output mapping of the program are pre-
served before and after obfuscation. The obfuscation must preserve 
the external specification of the target program. Also, Condition 2 
shows that extracting X from p′ is more difficult than p.

2.2.  Identifier Renaming Method

An identifier renaming method is one of the obfuscation methods. 
The identifier renaming method is widely used since almost obfus-
cation tools use the method. The method replaces each name in 
the program with another, to hide information reasoned from the 
name. Note that the replacing provides no effects for the program 
execution. Because names in a program are just identifiers for the 
computers.

Definition 3. [Identifier Renaming Method (IRM)]: Let p be a 
given program, Up be a set of all name appeared in p, and Np(Ì 
Up) be a set of names, which are targeted on the obfuscation. An 
identifier renaming method for p is to replace each name n Î Np in 

p to other name n¢(= t(n)), and to obtain an obfuscated program p¢, 
where t is one-to-one mapping (t : Np → Np¢(Np¢ Ì Up¢)).

If p is an object-oriented program, a name appears in a class, 
a method, a field or a local variable. The names are shown in 
the declaration and the reference parts. The IRM changes the 
names appeared in the declaration part, therefore, involving the  
reference part.

3.  THE PROPOSED METHOD

3.1.  Key Idea

The program generally uses a lot of names such as class, method, 
and field. The names appearing in the program are categorized into 
the declaration and the reference parts. In the declaration part, the 
name is shown in the method and the variable names. In the refer-
ence part, the name is used as calling the methods, and assigning 
and loading the variable. Almost IRMs change the names appeared 
in the declaration and the reference parts are changed as a side 
effect. For this, this paper focuses on restoring (de-obfuscating) 
names of methods in declaration parts. Note that the IRM targeted 
on reference part does not support in this paper [8].

The de-obfuscation needs to acquire the clues from the obfuscated 
program. The remained clues are opcodes in the methods because 
IRM does not affect them. However, the IRM eliminates the mean-
ings of names contained in the original programs. Moreover, 
another obfuscation method might be applied for opcodes. 
Therefore, it is impossible to completely de-obfuscate the IRM, 
since the clues are not enough.

On the other hand, there are many software repositories in the world, 
today. The repositories have a huge number of libraries, and programs. 
This paper tries to recommend the original or similar names by using 
the opcodes of methods from the programs in the repositories.

However, it is still difficult to restore the method names. The 
method names are usually composed of a verb and an object (e.g., 
isEmpty and getBytes). The object depends on the field variable, 
class names or etc. In IRM, the meanings of all names are eliminated. 
Therefore, it is a quite hard task to guess the names of the objects.  
In this paper, we focus on restoring the verb part of the method 
names. Figure 2 illustrates the key idea of the proposed method. 
From Fig. 2, the response variable is the verb of the method name, 
and the clues (independent variable) is the list of opcodes.

Note that, the target of our method is the Java language. However, 
the proposed method can port to other platforms, easily.

3.2.  Procedures of the Proposed Method

3.2.1.  Overview

The goal of this paper is to recommend verbs for the method name 
from opcodes. For this, we construct the restoration model from 
opcodes of a huge number programs in the software repositories. 
The model recommends verbs of each method, therefore, the obfus-
cated program by IRM is de-obfuscated by applying the model.

Figure 1 | The purpose of the proposed method
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The procedure of the proposed method consists of the following 
four phases.

	 1.	 Collecting the learning data.
	 2.	 Converting the collected data for the model.
	 3.	 Constructing the restoration model.
	 4.	 De-obfuscating the target programs.

3.2.2.  Collecting the learning data

At phase 1, at first, software repositories are chosen for collecting a 
program set. Then, a program set P = {p1, p2,..., pn} is constructed from 
selected repositories. The collected programs are adjusted to the learn-
ing data format to construct the restoration model. Next, we extract a 
method information set Mi = {mi,1, mi,2,..., mi,l} from each pi(1 ≤ i ≤ n). 
mi,j(1 ≤ i ≤ n, 1 ≤ j ≤ l) has two properties, a method name ci,j and an 
opcode list O b b b m c Oi j

i j i j
z
i j

i j i j i j, 1
,

2
, ,

, , ,= { , ,..., } = { , }( ).

3.2.3. � Converting the collected data  
for the model

In the phase, each method information mi,j is transformed to ′mi j,  by 
the following four steps for the input of the machine learning. The 
first step in the phase is to extract the first verb from ci,j and obtain ti,j. 
For example, the method name getSize is transformed into get. Some 
methods do not start with verbs, we eliminate them from Mi.

In the second step, we normalize each ti,j  to ti,j. This normalization 
converts with the following rules.

•• A verb for third person singular form into base form (e.g., equals 
to equal).

•• A verb in abbreviation form to non-abbreviation form (e.g., auth, 
init, and calc to authenticate, initialize, and calculate).

•• Inconsistent spelling into unified form (e.g., analyze, and analyse 
to analyze).

Note that, we have considered seven words new, setup, cleanup, 
init, calc, to, and as as verbs since these words are often used as 
words similar to verbs, based on previous studies [8].

In the third step, each bk
i j

i j
,

,ÎO  is merged by its meanings.  
For example, several store opcodes exist in Java virtual machine 
(e.g. istore, lstore, and etc.) [9]. However, the meaning of each store 

opcode is same, which pops a value from the stack and stores it into 
the local variable. The differences of the opcodes of same meanings 
are the targeted types, istore is for int type, and lstore is for long 
type. Therefore, bk

i j,  is converted into ok
i j,  by merging with the rules 

shown in Table 1. The resultant opcode list is O o o oi j
i j i j

z
i j

, 1
,

2
, ,= { , ,..., }, 

and the resultant data are ¢mi j i j i j, , ,= { , }t O .

In the final step in the phase, we vectorize the opcode list Oi,j to 
i j

i j i j
z
i j

z
i ja a, 1

,
1

, , ,= {{ , },...,{ , }}o o  by the number of appearances. ak
i j,   

is the number of appearing ok
i j,  in Oi j k z, (1 )≤ ≤ . Finally, f i n j li j i j i j, , ,= { , }(1 ,1 )t  £ £ £ £ 

f i n j li j i j i j, , ,= { , }(1 ,1 )t  £ £ £ £ is obtained which converted from ′mi j, .

3.2.4.  Constructing the restoration model

In this phase, we construct a restoration model from fi,j  shown 
in Section 3.2.3. The random forest is selected for the machine 
learning algorithms to construct the restoration model. The 
objective variables are ti,j and the explanatory variables are Oi,j. 

Table 1 | The merge rules for JVM instructions

Group Opcode

STACK nop, pop, pop2, dup, dup_x1, dup_x2, dup2, dup2_
x1, dup2_x2, swap

CONSTANT aconst_null, iconst_X, lconst_X, fconst_X, dconst_X, 
bipush, sipush, ldc, ldc_w, ldc2_w

LOAD iload, lload, fload, dload, aload, iload_X, lload_X, 
fload_X, dload_X, aload_X

ARRAY iaload, laload, faload, daload, aaload, baload, 
caload, saload, iastore, lastore, fastore, dastore, 
aastore, bastore, castore, sastore, arraylength, 
multianewarray

STORE istore, lstore, fstore, dstore, astore, istore_X, lstore_X, 
fstore_X, dstore_X, astore_X

ADD iadd, ladd, fadd, dadd, iinc
SUBTRACT isub, lsub, fsub, dsub
MULTIPLY imul, lmul, fmul, dmul
DIVIDE idiv, ldiv, fdiv, ddiv
REMAIN irem, lrem, frem, drem
NEGATE ineg, lneg, fneg, dneg
SHIFT_LEFT ishl, lshl
SHIFT_RIGHT ishr, lshr
USHIFT_RIGHT iushr, lushr
AND iand, land
OR ior, lor
XOR ixor, lxor
CAST i2l, i2f, i2d, l2i, l2f, l2d, f2i, f2l, f2d, d2i, d2l, d2f, i2b, 

i2c, i2s, checkcast
COMPARE lcmp, fcmpl, fcmpg, dcmpl, dcmpg, instanceof
BRANCH ifeq, ifne, iflt, ifge, ifgt, ifle, if_icmpeq, if_icmpne, if_

icmplt, if_icmpge, if_icmpgt, if_icmple, if_acmpeq, 
if_acmpne, goto, jsr, tableswitch, lookupswitch, 
ifnull, ifnonnull, goto_w, jsr_w

RETURN ireturn, lreturn, freturn, dreturn, areturn, return, ret
FIELD getstatic, putstatic, getfield, putfield
INVOKE invokevirtual, invokespecial, invokestatic,  

invokeinterface, invokedynamic
NEW new, newarray, anewarray
THROW athrow
OTHERS monitorenter, monitorexit, wide

Figure 2 | The key idea of the proposed method
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Therefore, the model outputs verbs of the methods from their 
opcode list.

3.2.5.  De-obfuscating the target program

This phase de-obfuscates the given obfuscated programs by IRM by 
the restoration model in Section 3.2.4. The inputs for the model is the 
vectorized opcode list from the given obfuscated programs. Therefore, 
we extract vectorized opcode list Oi, j from given programs in the 
same way as in Section 3.2.2. Finally, the model recommends a candi-
date verb v for each method from the vectorized opcode list.

4.  EXPERIMENTAL EVALUATION

4.1.  Research Questions

We evaluate the proposed method through the following three 
research questions.

•• RQ1: How much can the proposed method restore the  
original verb?

•• RQ2: Is the sequence of opcodes important?
•• RQ3: Is the proposed method useful?

4.2.  Experimental SetUp

4.2.1.  The restoration model

For the experiment, we obtain programs as learning data from the 
Maven central repository (MCR) [10]. Then, the program set P 
was obtained from MCR and obtained 17,714 jar files which are 
the newest version of each product. Next, we extracted 21,738,029 
methods from all classes in the jar files. The constructors (<init>) 
and static initializers (<clinit>) are eliminated from the extracted 
methods. Because the names of them are fixed in JVM and the Java 
languages.

We applied phase 2 shown in Section 3.2.3 to the extracted methods. 
Small and too large methods are eliminated. Because those methods 
are too few or too much information and are noise for the resto-
ration. It is [30, 1000] that the range of opcodes length for the target 
methods. This range is about 10–300 lines of code.

Finally, we obtained 2,404,277 methods and 1,813 verbs. However, 
the usage frequencies of the verbs vary widely. Therefore, the 
experiments narrow down to the top 20 of usage frequencies, and 
resultant methods are 935,796 methods. The verbs in the top 20 of 
usage frequencies were denoted T = {t1,…,t20}. Before choosing T, 
we eliminate verbs get and set, because clues of them for restoration 
are usually little, and resultant verbs are not very useful.

4.2.2.  Test data

The test data are shown in Table 2. Those programs were randomly 
chosen from sonartype releases maven repository4. That is, the  

4 https://oss.sonatype.org/content/repositories/releases/

restoration model does not include the programs for test data. 
Moreover, the method information was extracted from those  
programs, and we narrow the target methods with the method 
name in T.

Besides, we developed python script to conduct above procedures 
with scikit-learn5 on Python 2 platform. Also, the experiments were 
conducted on macOS High Sierra (10.13.3), MacBook Pro, 2.7 GHz 
Intel Core i5, 16 g.

4.3. � How Much can the Proposed Method 
Restore the Original Verb?

This RQ investigates the success rate for the restoration. The 
experimental overview is shown in Fig. 3. The procedure of the 
experiment is that we (1) construct the restoration model from the 
learning data shown in Section 4.2.1, (2) restore the names for test 
data (Section 4.2.2), and (3) evaluate the names restored from the 
model. In the (3), the evaluation examines that the names restored 
from the model and original names are the same.

The result of the experiment shows that the success rate for resto-
ration was 39.19% (5,740/14,647). In other words, 39.19% of verbs 
are restored to original verbs. The confusion matrix for each verb 
is shown in Table 3. The columns of TP, FP, FN, and TN show the 
count in true positive, false positive, false negative and true nega-
tive, respectively. Also, the columns of P and R indicate precision 
and recall. From Table 3, the precision (P) and recall (R) vary widely 

5 http://scikitlearn.org/stable/

Table 2 | The programs for the test data

Name Data size

BTSync-Java-0.1.jar 5.2 MB
DynamicJasper-core-fonts-1.0.jar 2.9 MB
acm-2.0.0-preview-5.jar 251 KB
amqp-scala-client_2.12-2.0.0.jar 555 KB
api-doc-0.0.34.jar 554 KB
bitcoinj-core-0.15-cm04.jar 1.5 MB
codedeploy-notifications_2.11-0.2.1.jar 208 KB
dw-jdbc-0.4.jar 167 KB
elasticsearch-5.0.0-beta1.jar 8.9 MB
flink-kudu-connector-1.0.jar 34 MB
geopackage-core-1.3.1.jar 314 KB
itk-payloads-0.5.jar 1.8 MB
ixa-pipe-chunk-1.1.0.jar 5.3 MB
ixa-pipe-parse-1.1.1.jar 59 MB
mlapi_2.12-0.0.1.jar 367 KB
monetdb-java-lite-2.33.jar 6.4 MB
no-exceptions_2.11-1.0.1.jar 173 KB
openfin-desktop-java-adapter-6.0.1.0.jar 310 KB
orbit-runtime-1.1.0.jar 1.9 MB
payara-microprofile-1.0-4.1.2.172.jar 37 MB
phtree-0.3.1.jar 336 KB
scala-expect_2.12-6.0.0.jar 199 KB
scenery-0.2.2.jar 1.5 MB
schemaspy-maven-plugin-1.2.1.jar 280 KB
semanticvectors-5.8.jar 12 MB
siren-join-2.4.5.jar 210 KB
uaiMockServer-1.2.5.jar 579 KB
vldocking-3.0.4.jar 392 KB

https://oss.sonatype.org/content/repositories/releases/
http://scikitlearn.org/stable/
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equal and to were relatively high, precision and recall exceed 75% 
and 55%, respectively. This result was considered by two reasons. 
The first reason is equals and toString methods are defined in java.
lang.Object which is the root class of the inheritance hierarchy in 
the Java language. The second reason is the process of almost meth-
ods of equals and toString are quite similar.

On the other hand, the precision and recall of do and test are low, 
under 20% and 15%, respectively. Therefore, it was hard to recom-
mend the verb by the proposed method, since there is no typical 
process in the methods of those names.

From the result, the answer to RQ1 was that the proposed method 
successfully restored in 40% verbs. However, the precision of the 
restoration strongly depends on verbs. The restoring success rate is 
high in the methods have typical processes. The verbs which have 
various meanings are hard to restore to the original verbs since the 
processes in the methods are various.

4.4. � Is the Sequence of Opcodes  
Important?

In RQ1, the restoration model was constructed from the appear-
ance frequencies of the opcodes by vectorization. In addition, in the 
RQ2, we also focus the order of opcodes to use 2 g of the opcodes. 
The 2 g is the two contiguous opcodes and shows the relationships 
between them.

In RQ2, the new restoration model was constructed from the 
appearance frequencies of the 2 g by vectorization. We conducted 
the experiment by the new model from the learning data shown in 
Section 4.2.1, then applied the model to test data shown in Table 2.

In the result of RQ2, the success rate for restoration was 49.71% 
(7,281/14,647), the result was improved about 10% from the result 
of RQ1. Also, the confusion matrix in the experiment is shown in 
Table 4. The columns of Table 4 are the same as Table 3. Table 4 
shows that precisions and recalls are improved from Table 3 in all 
verbs except precision of write.

From the result, the restoration model of the RQ2 is useful for 
restoring the verbs. Therefore, the answer of RQ2 was yes, it 
is important not only the appearance frequencies but also the  
relationships between the opcodes.

4.5.  Is the Proposed Method Useful?

The final RQ examines whether the proposed method provides 
useful information for analyzing the identifier renamed programs.  

Figure 3 | Overview of the experimental evaluation

Table 3 | Restoration results: confusion matrix

TP FP FN TN P (%) R (%)

add 442 1667 459 12079 21.0 49.1
apply 152 210 462 13823 42.0 24.8
be 520 950 170 13007 35.4 75.4
check 130 352 342 13823 27.0 27.5
copy 58 105 223 14261 35.6 20.6
create 453 1599 595 12000 22.1 43.2
do 77 492 484 13594 13.5 13.7
equal 946 86 397 13218 91.7 70.4
find 159 633 254 13601 20.1 38.5
generate 46 133 110 14358 25.7 29.5
initialize 64 218 259 14106 22.7 19.8
parse 238 363 559 13487 39.6 29.9
process 55 209 247 14136 20.8 18.2
read 428 733 602 12884 36.9 41.6
remove 242 361 291 13753 40.1 45.4
run 118 179 1254 13096 39.7 8.6
test 10 40 404 14193 20.0 2.4
to 1032 301 773 12541 77.4 57.2
visit 187 85 307 14068 68.8 37.9
write 383 191 715 13358 66.7 34.9

Table 4 | Restoration results: confusion matrix (2 g)

TP FP FN TN P (%) R (%)

add 529 1632 372 12114 24.5 58.7
apply 283 178 331 13855 61.4 46.1
be 573 440 117 13517 56.6 83.0
check 160 256 312 13919 38.5 33.9
copy 91 71 190 14295 56.2 32.4
create 543 1311 505 12288 29.3 51.8
do 77 385 484 13701 16.7 13.7
equal 1221 52 122 13252 95.9 90.9
find 187 382 226 13852 32.9 45.3
generate 66 127 90 14364 34.2 42.3
initialize 125 321 198 14003 28.0 38.7
parse 277 276 520 13574 50.1 34.8
process 74 237 228 14108 23.8 24.5
read 480 290 550 13327 62.3 46.6
remove 276 233 257 13881 54.2 51.8
run 173 183 1199 13092 48.6 12.6
test 85 218 329 14015 28.1 20.5
to 1141 368 664 12474 75.6 63.2
visit 290 70 204 14083 80.6 58.7
write 630 336 468 13213 65.2 57.4
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The RQ1 and 2 investigated that can the proposed method restore 
the original verbs from the opcodes. However, similar verbs with the 
originals would be also useful, therefore, it was not necessary to the 
correct restoration. For example, to and convert, and perform and run 
are quite similar, therefore, either verb should be correct restoration 
result. Hence, the experiment calculates the similarities between 
original and recommended verbs using WordNet6. We used path sim-
ilarity which calculates the reciprocal of the length of the path through 
the common hypernym [11]. Since, the WordNet cannot calculate the 
similarity between different parts of speeches, we used almost synony-
mous verbs for the words shown in Section 3.2.2. The experiment used 
the restoration model constructed in RQ2. Moreover, test data were all 
methods of programs shown in Table 2, 37,395 methods.

The result of the experiment shows that the success rates were 
21.81%, 29.84%, and 57.01% when the path similarities were 1 
(synonym), 1/2 (hypernym), and 1/3, respectively. The success rate 
from the results was lower than RQ1 and 2 since the number of test 
data increased [14,627 (RQ1) to 37,395 (RQ3) methods, about 2.5 
times]. Therefore, the answer of RQ3 was yes, the proposed method 
can provide verbs with similar meanings to the originals.

5.  THREATS TO VALIDITY

5.1.  The Learning Data and Test Data

In the experiments, the learning and test data were obtained from 
Maven repositories. Those data were selected automatically, how-
ever, the results of the experiments depends on them. Moreover, 
the suitabilities of original names were not evaluated. It means that  
the names in the learning and test data were potentially not suit-
able, e.g., names and contents of methods are unmatched, or no 
meanings in the names. The unsuitable names in the learning 
data will derive the wrong restoration. However, if the number of 
unsuitable names was few, the impact to the results are little. On 
the other hand, unsuitable names in the test data affect the results.

5.2.  The Contribution to De-obfuscation

The goal of this paper is to restore the verb in the method names, 
and this paper showed the restoring methods of the verb from 
method contents. However, we did not evaluate the contribution 
to the tolerance of IRM by our restoration method. In other words, 
we have to evaluate the effect of the de-obfuscation against IRM by 
our method in our future work.

5.3.  Inconsistency against Instinct

In the experiment for RQ3, the similarities between words were cal-
culated using WordNet. The similarities are calculated based on not 
the programming language, but natural languages. The meanings 
in the programming and the natural languages generally have gaps. 
Especially, in the case of path similarity was 1/3, we did not evaluate 
whether the results from the proposed method were certainly suitable.

Table 5 shows example pairs of the original and recommended 
names. The names in first two columns are relatively similar 

6 https://wordnet.princeton.edu/

meanings in use of programs, therefore, the proposed method 
succeeded in the restoration. However, the meanings of last two 
rows are quite different. In the case of last two rows, the proposed 
method failed to restore. Some results are similarly suitable to 
original names, and other results are the wrong restoration. Thus, 
in our future works, we will create a dictionary for programming 
languages.

5.4.  Clues for the Restoration

This paper used only the opcodes of the methods as the clues for 
restoration. Since IRM keeps types defined in the system librar-
ies, the types might be the clues for restoration. Other information 
in the programs which keeps by the IRM would improve the suc-
cess rate of the restoration. However, other obfuscation techniques 
might modify them. It is our future works to improve the success 
rate by using other clues.

5.5.  Restoration Target Verbs

This paper targeted top 20 verbs in the learning data for resto-
ration. In our previous works, the restoration model was con-
structed by using all verbs [12]. The resultant success rate was 
6.4, quite low. However, investigating frequencies of the verbs 
were 22 types of verbs occupy 90% of the recommended verbs.  
The 22 types of verbs were shown in Table 3, and get and set. 
Even if using all verbs for the model did not improve the recom-
mendation results. Also, in the test data, 20 verbs in T occupy the 
40% of verbs. Therefore, narrowing targets are good practice for 
de-obfuscating IRM.

6.  RELATED WORKS

Currently, there are a few researchers to study the evaluation of the 
obfuscation methods. For example, Udupa et al. [13] proposed the 
de-obfuscation technique of the basic block flattering method (one 
of control flow obfuscations) using the static and dynamic analyses. 
In data flow obfuscations, it is evaluated itself by defining metrics. 
Kanzaki et al. [14] evaluated the obfuscation methods by to mea-
sure program stealthiness from the artificiality of opcodes. Also, 
Cimato et al. [15] proposed the de-obfuscation method of IRM. 
However, the restoring targets of Cimato et al. were variable names, 
not method names.

On the other hand, the analysis methods focused on the names 
were proposed. Kashiwabara et al. [6] proposed the recommended 
method for verbs in method names. The clues of recommenda-
tion are class and method names used in a method. However, their 
major targets are Java source codes, therefore, the method is not 
used in de-obfuscation.

Table 5 | Examples of original and recommended name pair

Original Recommended

start run
translate convert
read write
accept remove

https://wordnet.princeton.edu/
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7. CONCLUSION

This paper evaluated the tolerance of IRM, and restored the 
verbs of methods by the random forest. For the clues of the res-
toration, we focus on the opcodes in the methods. The experi-
mental evaluations show that the success rate for the restoration 
was 49.71% by using the appearance frequencies of opcodes’  
2 g as clues. Also, experiment focuses on meanings of verbs was 
conducted and shows that the success rate was 57.01% when 
the path similarities in WordNet was 1/3. In our future works,  
we improve the success rate by narrowing targets, using other clues, 
and updating algorithms for calculating similarities between verbs.
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