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ABSTRACT
The continuous-time bilinear (COBL) process has been used to model non linear and/or non Gaussian datasets. In this paper,
the first-order continuous-time bilinear COBL (1, 1) model driven by a fractional Brownian motion (fBm for short) process is
presented. The use of fBm processes with certain Hurst parameter permits to obtain a much richer class of possibly long-range
dependent property which are frequently observed in financial econometrics, and thus can be used as a power tool formodelling
irregularly series having memory. So, the existence of Itô’s solutions and there chaotic spectral representations for time-varying
COBL (1, 1) processes driven by fBm are studied. The second-order properties of such solutions are analyzed and the long-range
dependency property are studied.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. COBL(1,1) DRIVEN BY FRACTIONAL BROWNIAN MOTION

In discrete-time series analysis, the assumption of linearity and/or Gaussianity is frequently made. Unfortunately these assumption lead to
models that fail to capture certain phenomena commonly observed in practice such as limit cycles, asymmetric distribution, leptokurtosis,
etc.Motived by these deficiencies, non linear parametricmodelling of time series has attracted considerable attention in recent years. Indeed,
one of the most useful class of non-linear time series models is the bilinear specification obtained by adding to an Autoregressive moving
average (ARMA) model one or more interaction components between the observed series and the innovations. However, it is observed that
these models are not be able to give full information about some datasets exhibit unequally spaced observations and hence the resort to a
continuous-time version is crucial. So, in this paper we consider a continuous-time bilinear (COBL) processes (X (t))t∈ℝ defined on some
complete probability space (Ω, 𝒜, P) equipped with a filtration (𝒜t)t≥0 and subjected to be a solution of the following affine time-varying
stochastic differential equation (SDE)

dX (t) = (𝛼 (t)X (t) + 𝜇 (t)) dt + (𝛽 (t) + 𝛾 (t)X (t)) dWh (t) , t ≥ t0,X (t0) = X0 (1)

denoted hereafter COBL (1, 1). The parameters 𝛼 (t), 𝜇 (t), 𝛾 (t) and 𝛽 (t) are differentiable complex deterministic functions subject to the
following assumption

Condition 1

A1 For all T > t0, ∫ Tto |𝛼(t)|dt < ∞, ∫ Tt0 |𝜇(t)|dt < ∞, ∫ Tt0 |𝛾(t)|2dt < ∞. ∫ Tt0 |𝛽(t)|2dt < ∞.

A2 𝛼(t), 𝜇(t), 𝛽(t) ∈ ℂ and ℜe (𝛾 (t)) = 0 and ℜe {𝛼 (t)} < 0, for all t ≥ t0.

In Eq. (1) (Wh (t))t∈ℝ is a real fBm with Hurst parameter h∈ 0, 1
2 defined on a basic given filtered stochastic probability space

(Ω, 𝒜, (𝒜t)t≥0 , P), its covariance kernel is Cov (Wh (t) ,Wh (s)) = 𝜅 (h)
2 (|t|2h+1 + |s|2h+1 − |t − s|2h+1), for all t, s ≥ 0, where 𝜅 (h) =
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Γ (1 − 2h)
h (2h + 1) 𝜋

cos(
𝜋
2

(1 − 2h)) and admits a spectral representation Wh(t) = ∫ℝ 𝜙t(𝜆)(i𝜆)−hdZ(𝜆) where 𝜙t (𝜆) = eit𝜆 − 1
i𝜆 and dZ (.) is a

complex−valued Gaussian spectral measure defined on (Ω, 𝒜, P) with zero mean, variance E{|dZ (𝜆) |2} = dG (𝜆) = d𝜆
2𝜋

and where the

principal value of 1
2𝜋

∫ℝ 𝜙t(𝜆)d(𝜆) is 0. Note that the initial state X (t0) is a random variable, defined on the same probability space (Ω, 𝒜, P)
independent of 𝜎(W(t), t0 ≤ t ≤ T) such that E {X (t0)} = m (t0) and Var {X (t0)} = R (t0) < +∞.

It is well known that if h = 0, then the corresponding fBm reduces to the usual Brownianmotion, otherwise, (Wh (t))t≥0 is neither aMarko-
vian nor a semimartingales processes and hence the usual calculus cannot be used, so a different calculus is required. This non Markovian
processes have not an independent stationary increments and are well suited for modelling data exhibiting a long-range dependency. For an
in-depth detailed mathematical framework of the pertinent properties of fBm, we refer the reader toMishura [1] and the references therein.

The SDE Eq. (1) is called time-invariant when 𝛼 (t), 𝜇 (t), 𝛾 (t) are complex deterministic constant functions, i.e., there is some constants
complex 𝛼, 𝜇, 𝛾 such that 𝛼 (t) = 𝛼, 𝜇 (t) = 𝜇, 𝛾 (t) = 𝛾 and for all t.

The SDE Eq. (1) encompasses many commonly used models in the literature. Some examples among others are

1. First-order continuous-time autoregressive processes (CAR(1) for short): This classes of SDE may be obtained by assuming 𝛾 (t) = 0
for all t (see [2] and the reference therein).

2. Gaussian Ornstein-Uhlenbeck (OU) process: The Gaussian OU process is defined as dX (t) = (𝜇 (t) − 𝛼 (t)X (t)) dt + 𝛽 (t) dW(h) (t),
with 𝛽 (t) > 0 for all t ≥ 0. So it can be obtained from SDE Eq. (1) by assuming 𝛾 (t) = 0 for all t (see [3] and the reference therein).

3. Nelson’s diffusion process: In the diffusion process of Nelson (see [4], Chapter 2), the time-varying volatility process may be defined
as the second-order solution process (V (t))t≥0 of dV (t) = 𝜆 (t) (𝜇 (t) − V (t)) dt + 𝛾 (t)V (t) dW(h) (t) in which 𝜆 (t) , 𝜇 (t) and 𝛾 (t) are
positive deterministic functions. This SDE can be obtained easily from Eq. (1).

4. Geometric Brownian motion (GBM): This class of processes is defined as a ℝ−valued solution process (X (t))t≥0 of dX (t) =
𝛼 (t)X (t) dt + 𝛾 (t)X (t) dW(h) (t) , t ≥ 0. So it can be obtained from Eq. (1) by assuming 𝛽 (t) = 𝜇 (t) = 0 for all t (see [5] and the
reference therein).

It is worth noting that beside the abovementioned particular cases, the Eq. (1)may be extended to vectorial case, i.e., whenX (t) isℝd−valued
process, so other particular models can be deduced.

2. THE SOLUTION PROCESSES OF COBL(1,1)

Let ℑ(h) = ℑ (W(h)) ∶= 𝜎 (W(h) (t) , t ≥ t0) (resp ℑ(h)
t ∶= 𝜎 (W(h) (s) , t0 ≤ s ≤ t)) be the 𝜎 -algebra generated by (W(h) (t))t≥0 (resp. gen-

erated by W(h) (s) up to time t) and let 𝕃2 (ℑ(h)) = 𝕃2 (ℂ, ℑ(h), P) (resp. 𝕃2 (ℑ(h)
t ) ) be the Hilbert space of nonlinear 𝕃2−functional of

(W(h) (t))t≥0. In this section, we are interested in solving the SDE Eq. (1) in 𝕃2 (ℑ(h)
t ). As already pointed by several authors (see for instance

[6] for further discussions), that there is no general theory for the solution of SDE driven by an fBm if h ≠ 0. Nevertheless, recently some
studies was investigated the existence of such solutions for various families of SDE driven by an fBm.

2.1. The Itô Approach

Our first approach is based on the Itô formula with respect to fBm and the general results on SDE to prove the uniqueness of the solution.
First, we start by the fractional Itô’s formula which is a powerful tool for dealing the solution. Consider the following SDE driven by fBm

dX (t) = a (t,X (t)) dt + b (t,X (t)) dWh (t) , X (t0) = X0 (2)

in which a (., .), b (., .) are known continuous functions that represents the drift and diffusion respectively of the SDE Eq. (2) supposed to
be smooth enough, and set Y (t) = U (t,X (t)) for some differentiable function U ∶ ℝ → ℝ. Then Dai and Heyde [7] have shown that the
Itô formula with respect to fBm is given by

dY (t) = {
𝜕U
𝜕t (t,X (t)) + a (t,w) 𝜕U

𝜕x (t,X (t))} dt + b (t,w) 𝜕U
𝜕x (t,X (t)) dWh (t) . (3)

Therefore, from the SDE Eq. (2) and the Itô formula Eq. (3) we obtain

dY (t) = 𝜕U
𝜕t (t,X (t)) dt + 𝜕U

𝜕x (t,X (t)) dX (t) (4)

So, the Itô′s solution of the SDE Eq. (1) is given byPdf_Folio:21
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Theorem 2.1. Under the assumption 1, the unique Itô’s solution of SDE Eq. (1) in 𝕃2 (ℑ(h)) is given by

X (t) = Φh (t, t0)
⎧⎪
⎨
⎪⎩
X (t0) +

t

∫
t0

Φ−1
h (s, t0) 𝜇 (s) ds +

t

∫
t0

Φ−1
h (s, t0) 𝛽 (s) dWh (s)

⎫⎪
⎬
⎪⎭

, t ≥ t0 (5)

where Φh (t, t0) = exp {∫ tt0 𝛼 (s) ds + ∫ tt0 𝛾 (s) dWh (s)} with Φh (t0, t0) = 1 and the stochastic integral ∫ tt0 𝛾(s)dWh(s) is defined in Riemann’s
sense in probability.

Proof. First it is no difficult to see that Φh (t, t0) is the unique solution of SDE

dΦh (t, t0) = 𝛼 (t) Φh (t, t0) dt + 𝛾 (t) Φh (t, t0) dWh (t) .

Now, set Φh (t, t0) = exp {Y (t)}, Z(t) = X(0) + ∫ tt0 e−Y(s)𝜇(s)ds + ∫ tt0 e−Y(s)𝛽(s)dWh(s) and let X (t) = U (Y (t) ,Z (t)), where U is the function defined
by U (x, y) = exy. The fractional It ô formula Eq. (3) and the expression Eq. (4) gives

dX (t) = 𝜕U
𝜕x (Y (t) ,Z (t)) dY (t) + 𝜕U

𝜕y (Y (t) ,Z (t)) dZ (t)

= eY(t)Z (t) dY (t) + eY(t)dZ (t)
= X (t) dY (t) + eY(t)dZ (t)

= X (t) (𝛼 (t) dt + 𝛾 (t) dWh (t)) + eY(t) (e−Y(t)𝜇 (t) + e−Y(t)𝛽 (t) dWh (t)) dt

= (𝛼 (t)X (t) + 𝜇 (t)) dt + (𝛾 (t)X (t) + 𝛽 (t)) dWh (t) .

and hence the result follows. □

Remark 1. If 𝛽 (t) = 0, then the Itô solution of SDE Eq. (1) reduces to

X (t) = Φh (t, t0)
⎧⎪
⎨
⎪⎩
X (t0) +

t

∫
t0

Φ−1
h (s, t0) 𝜇 (s) ds

⎫⎪
⎬
⎪⎭

, t ≥ t0 (6)

and when 𝛾 (t) = 0 and 𝛽 (t) ≠ 0, this is provides a solution of GaussianOU process, therefore if we are interested in non-Gaussian solution
of Eq. (1) , it is necessary to assume that |𝜇 (t) |2 + |𝛽 (t) |2 > 0 and 𝛾 (t) ≠ 0.

Remark 2. In time-invariant case, with ℜe {𝛾} = 0 and ℜe {𝛼} < 0, then the It ô solution of SDE Eq. (1) can be written as

X (t) = 𝜇
t

∫
−∞

exp {𝛼 (t − s) + i𝛾 (W
h (t) − Wh (s))} ds + 𝛽

t

∫
−∞

exp {𝛼 (t − s)} dWh (s) .

Remark 3. For any t ≥ t0, let −𝜉(t) = ∫ tt0 𝛼(s)ds + ∫ tt0 𝛾(s)dWh(s) and 𝜂h(t) = ∫ tt0 𝜇(s)ds + ∫ tt0 𝛽(s)dWh(s), then the solution process Eq. (5)
may be rewritten as

X (t) = e−𝜉(t)
⎧⎪
⎨
⎪⎩
X (t0) +

t

∫
t0

e𝜉(s)d𝜂h (s)
⎫⎪
⎬
⎪⎭

, t ≥ t0 (7)

is the solution process of generalized Ornstein-Uhlenbeck (GOU) process driven by an fBm defined by dX (t) = −𝜉 (t)X (t) dt+ d𝜂h (t) , t ≥
t0,X (t0) = X0.

2.2. The Frequency Approach

In this subsection, we discuss a second approach to solve the SDE Eq. (1) based on the spectral representation. Indeed, it is now well known
that for any regular second-order process (X (t))t≥t0 (i.e., X (t) is ℑ(h)

t −measurable not necessary stationary, belonging to 𝕃2 (ℑ(h))) admits
the so-called Wiener-Itô (or Stratonovich) spectral representation, i.e.,

X (t) = gt (0) + ∑
r≥1

1
r! ∫

ℝr

gt (𝜆(r)) e
itΣ𝜆(r)

r

∏
j=1

(i𝜆j)−hdZ (𝜆(r)) . (8)
Pdf_Folio:22
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where 𝜆(r) = (𝜆1, ..., 𝜆r), Σ𝜆(rf) = ∑r
i=1 𝜆i and dZ (𝜆(r)) = ∏r

j=1 dZ(𝜆i) (see [8] for more details). The representation Eq. (8) is unique up to
the permutation of the arguments of the evolutionary transfer functions gt (𝜆(r)), r ≥ 2 and gt (𝜆(r)) ∈ 𝕃2 (Gh) = 𝕃2 (ℂn,Bℂn ,Gh) for all

t ≥ t0, with dGh(𝜆(r)) = 1
(2𝜋)r

∏r
i=1 |𝜆i|−2hd𝜆(r) and such that

∑
r≥0

1
r! ∫

ℝr

||gt(𝜆(r))||
2 dGh(𝜆(r)) < ∞ for all t ≥ t0. (9)

Let us recall here the so-called the diagram formula forWiener–Itô representation Eq. (8) which play an important role in some subsequent
proofs and that state that for all g and f defined on ℝ and on ℝr respectively such that (g, f) ∈ 𝕃2 (ℝ) × 𝕃2r (ℝr), if f is symmetric then

∫
ℝ

g (𝜆) dZ (𝜆) ∫
ℝr

f (𝜆(r)) dZ (𝜆(r)) = ∫
ℝr+1

g (𝜆r+1) f (𝜆(r)) dZ (𝜆(r+1)) + r
2𝜋 ∫

ℝr−1

⎧⎪
⎨
⎪⎩∫ℝ

g (𝜆r)f (𝜆(r)) d𝜆r

⎫⎪
⎬
⎪⎭
dZ (𝜆(r−1)) .

The spectral representation of the solution process of SDE Eq. (1) is given in the following theorem

Theorem 2.2. Assume that the process (X (t))t≥t0 generated by the SDE Eq. (1) has a regular second-order solution. Then, the evolutionary
symmetrized transfer functions ( ̃gt (𝜆(r)))t≥t0 , r ∈ ℕ of such solution are given by the symmetrization of the solution of the following first
order ordinary differential equations

g(1)
t (𝜆(r)) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝛼 (t) gt (0) + 𝜇 (t) + 𝛾 (t)
2𝜋 ∫

ℝ

gt (𝜆) |𝜆|−2hd𝜆, r = 0

(𝛼 (t) − iΣ𝜆(r)) gt (𝜆(r)) + r𝛿[r=1]𝛽 (t)

+𝛾 (t) (rgt (𝜆(r−1)) + 1
2𝜋

∫
ℝ
gt (𝜆(r+1)) |𝜆r+1|−2hd𝜆r+1) , r ≥ 1

(10)

where the superscript (j) denotes j−fold differentiation with respect to t and where Σ𝜆(r) = ∑r
i=1 𝜆i.

Proof. First, applying of the diagram formula for the nonlinear term X (t) dW
h (t)
dt we get

X (t) dW
h (t)
dt = ∫

ℝ

gt (0) eit𝜆(i𝜆)−hdZ (𝜆) +
∞

∑
r=1

1
r! ∫

ℝr+1

̃gt (𝜆(r)) e
itΣ𝜆(r+1)

r+1

∏
t=1

(i𝜆l)−hdZ (𝜆(r+1))

+
∞

∑
r=1

1
(r − 1)! ∫

ℝr−1

eitΣ𝜆(r−1)

⎛
⎜⎜
⎝

1
2𝜋 ∫

ℝ

gt (𝜆(r)) |𝜆r|−2hd𝜆r

⎞
⎟⎟
⎠

r−1

∏
l=1

(i𝜆l)−hdZ (𝜆(r−1)) .

Second, we insert the spectral representation Eq. (8) of the process (X (t))t≥t0 and the last expression of X (t) dWh (t) in the Eq. (1) the results
follows. □

Remark 4. The existence and uniqueness of the solution Eq. (10) is ensured by general results on linear ordinary differential equations, so

gt(𝜆(r)) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝜑t (0)
(
gt0 (0) +

t∫
t0

𝜑−1
s (0) (𝜇(s) + 𝛾(s) 1

2𝜋 ∫
ℝ
gs(𝜆) ||𝜆||−2h d𝜆) ds

)
, r = 0

𝜑t (𝜆)
(
gt0 (𝜆) +

t∫
t0

𝜑−1
s (𝜆) {𝛽(s) + 𝛾(s) (gs(0) + 1

2𝜋 ∫
ℝ
gs(𝜆(2)) ||𝜆2||−2h d𝜆2)} ds

)
, r = 1

𝜑t(𝜆(r)) (
gt0 (𝜆(r)) +

t∫
t0

𝜑−1
s (𝜆(r))𝛾(s) (rgs(𝜆(r−1)) + 1

2𝜋 ∫
ℝ
gs(𝜆(r+1)) ||𝜆r+1||−2h d𝜆r+1) ds

)
, r ≥ 2

(11)

in which 𝜑t (𝜆(r)) = exp {∫ tt0 (𝛼(s) − iΣ𝜆(r)) ds} .

Remark 5. Noting that beside the condition Eq. (9) a necessary conditions for that the evolutionary transfer functions (gt (𝜆(r)) , r ∈ ℕ)
defined by Eq. (11)  determines a second-order process are

∫
ℝ

|
|
|
||
∫
ℝ

gt(𝜆(r+1)) ||𝜆r+1||−2h d𝜆r+1

|
|
|
||

2

||𝜆r||−2h d𝜆r < +∞ and ∫
ℝ

||gt(𝜆(r+1))|| ||𝜆r+1||−2h d𝜆r+1 < +∞
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for all t ≥ t0. These conditions are extremely difficult to be verified, except in time-invariant case when an explicit formula for the transfer
functions are given (see for instance [9]).

It is worth noting that if ℜe {𝛾 (t)} ≠ 0, the SDE Eq. (1) may be haven’t a second-order solution, but it does if 𝛾 (t) is purely imaginary. So
in what follows, we consider the particular SDE

dX (t) = (𝛼 (t)X (t) + 𝜇 (t)) dt + i𝛾 (t)X (t) dWh (t) , t ≥ t0,X (t0) = X0 (12)

and assume that

A3. 𝛼 (t) , 𝜇 (t) ∈ ℂ, 𝛾 (t) ∈ ℝ and ℜe {𝛼 (t)} < 0, 𝛾 (t) ≠ 0 for all t ≥ t0.

Under the condition A3, the Itô’s solution of Eq. (12) reduces to

X (t) = Φh (t, t0)
⎧⎪
⎨
⎪⎩
X (t0) +

t

∫
t0

Φ−1
h (s, t0) 𝜇 (s) ds

⎫⎪
⎬
⎪⎭

, (13)

in which the function 𝛾 (t) is replaced by i𝛾 (t). The spectral representation of Eq. (12) is given in the following lemma

Lemma 1. Assume that the process (X (t))t≥t0 generated by the model Eq. (12) has a regular second-order solution. Then, the symmetrized
evolutionary transfer functions ( ̃gt (𝜆(r)))t∈ℝ , r ∈ ℕ of such solution may be obtained by the symmetrization of the following functions

gt (𝜆(r)) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜑t (0)
(
gt0 (0) +

t∫
t0

𝜑−1
s (0) (𝜇 (s) + i𝛾 (s) 1

2𝜋
∫
ℝ
gs (𝜆) |𝜆|−2hd𝜆) ds

)
, r = 0

𝜑t (𝜆(r)) (
gt0 (𝜆(r)) + i

t∫
t0

𝜑−1
s (𝜆(r)) 𝛾 (s) (r gs (𝜆(r−1)) + 1

2𝜋
∫
ℝ
gs (𝜆(r+1)) |𝜆r+1|−2hd𝜆r+1) ds

)
, r ≥ 1

(14)

Lemma 2. In time-invariant case we obtain

g (𝜆(r)) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

g (𝜆(r)) = − 1
𝛼

⎧⎪
⎨
⎪⎩

𝜇 + i𝛾
2𝜋 ∫

ℝ

g (𝜆) |𝜆|−2hd𝜆
⎫⎪
⎬
⎪⎭
if r = 0

−i𝛾
(𝛼 − i𝜆(r))

⎧⎪
⎨
⎪⎩
r g (𝜆(r−1)) + 1

2𝜋 ∫
ℝ

g (𝜆(r+1)) |𝜆r+1|−2hd𝜆r+1

⎫⎪
⎬
⎪⎭
if r ≥ 1

so, its symmetrized version may be written as

̃g (𝜆(r)) = Sym{g (𝜆(r))} = 𝜇(i𝛾)r
∞

∫
0

exp {𝛼u − 𝛾2

2
k (h) u2h+1

}

r

∏
j=1

1 − e−iu𝜆j

i𝜆j
du.

3. THE MOMENTS PROPERTIES AND THE SECOND-ORDER STRUCTURE

In this section, we analyze the spectrum, i.e., the second-order structure of the process (X (t))t≥t0 solution of the SDE Eq. (1). For this
purpose let (Ψh (t, t0))t≥t0 be the mean function of the process (Φh (t, t0))t≥t0 , and set Wh(t, u, s, v) = h(2h + 1)𝜅 (h) ∫ tu ∫ sv 𝛾(v1)𝛾(v2)|v1 −
v2|2h−1dv2dv1, u ≤ t, v ≤ s. Then, we have

Lemma 3. Under the conditions of 1, we have the following assertions

1. Ψh(t, t0) = exp {∫ tt0 𝛼(v1)dv1 + h (2h + 1) 𝜅(h)
2

∫ tt0 ∫ tt0 𝛾(v1)𝛾(v2)|v1 − v2|2h−1dv1dv2} for t ≥ t0.

2. E{Φh (t, t0) Φ−1
h (u, t0)} = Ψh (t, u) for t ≥ u.

3. E{Φh (t, t0) Φh (s, t0)} = Ψh (t, t0) Ψh (s, t0) exp {Wh (t, t0, s, t0)} for t ≥ s.

4. E{Φh (t, t0) Φh (s, t0)Φ−1
h (v, t0)} = Ψh (t, t0) Ψh (s, v) exp {Wh (t, t0, s, v)} for t ≥ s ≥ v.

5. E{Φh (t, t0) Φh (s, t0)Φ−1
h (u, t0) Φ−1

h (v, t0)} = Ψh (t, u) Ψh (s, v) exp {Wh (t, u, s, v)} for t ≥ s ≥ v.
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Proof. The assertions of the Lemma 3 follows upon observation that by using the expectation of exponential Gaussian process, we have

Ψh (t, t0) = exp
{

t∫
t0

𝛼 (v1) dv1 + 1
2E{(

t∫
t0

𝛾(v1)dWh(v1)
)

2

}}

= exp
{

t∫
t0

𝛼 (v1) dv1 + h (2h + 1) 𝜅 (h)
2

t∫
t0

t∫
t0

𝛾 (v1) 𝛾 (v2) |v1 − v2|2h−1dv1v2
}

and for t ≥ u

E{Φh (t, t0) Φ−1
h (u, t0)} = exp

⎧⎪
⎨
⎪⎩

t

∫
t0

𝛼 (v1) dv1 + 1
2E

⎧⎪
⎨
⎪⎩

⎛
⎜
⎜
⎝

t

∫
t0

𝛾(v1)dWh(v1)
⎞
⎟
⎟
⎠

2⎫⎪
⎬
⎪⎭

⎫⎪
⎬
⎪⎭

= exp
⎧⎪
⎨
⎪⎩

t

∫
t0

𝛼 (v1) dv1 + h (2h + 1) 𝜅 (h)
2

t

∫
u

t

∫
u

𝛾 (v1) 𝛾 (v2) |v1 − v2|2h−1dv1dv2
⎫⎪
⎬
⎪⎭

= Ψh (t, u) .

and so on the rest are immediate. □

Lemma 4. Under the condition of Lemma 3, the mean function (mh (t) = E {X (t)})t≥t0 is given by

mh (t) = Ψh (t, t0)m (t0) +
t

∫
t0

Ψh (t, u) 𝜇 (u) du, t ≥ t0.

and the covariance function (Rh (t, s) = E{(X (t) − mh (t)) (X (s) − mh (s))})t≥s is given by

Rh (t, s) = Ψh (t, t0) Ψh (s, t0) exp {Wh (t, t0, s, t0)}R (t0) + Ψh (t, t0) Ψh (s, t0) [exp {Wh (t, t0, s, t0)} − 1] |m (t0) |2

+m (t0)
s

∫
t0

Ψh (t, t0) Ψh (s, v) [exp {Wh (t, t0, s, v)} − 1] 𝜇 (v)dv

+m (t0)
t

∫
t0

Ψh (s, t0)Ψh (t, u) [exp {Wh (t, u, s, t0)} − 1] 𝜇 (u) du

+
t

∫
t0

s

∫
t0

Ψh (t, u) Ψh (s, v) [exp {Wh (t, u, s, v)} − 1] 𝜇 (v)𝜇 (u) dvdu

+ h (2h + 1) 𝜅 (h)
t

∫
t0

s

∫
t0

Ψh (t, u) Ψh (s, v) exp {Wh (t, u, s, v)} 𝛽 (v)𝛽 (u) |u − v|2h−1dvdu.

Proof. From the It ô’s solution Eq. (5), we can obtain

mh (t) = E {X (t)} = E {Φh (t, t0)X (t0)} +
t

∫
t0

E{Φh (t, t0) Φ−1
h (u, t0)} 𝜇 (u) du

= Ψh (t, t0)m (t0) +
t

∫
t0

Ψh (t, u) 𝜇 (u) du.
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Since Wh (t) independent of X (t0), then E {Φh (t, t0)X (t0)} = E {Φh (t, t0)} E {X (t0)} = Ψh (t, t0)mh (t0). In order to evaluate the expression of
Rh (t, s) we use the Itô’s solution Eq. (5) to obtain

E{X (t)X (s)} = E{Φh (t, t0) Φh (s, t0)} E{|X (t0) |2} + m (t0)
s

∫
t0

E{Φh (t, t0) Φh (s, t0)Φ−1
h (v, t0)} 𝜇 (v)dv

+m (t0)
t

∫
t0

E{Φh (s, t0)Φh (t, t0) Φ−1
h (u, t0)} 𝜇 (u) du

+
t

∫
t0

s

∫
t0

E{Φh (t, t0) Φh (s, t0)Φ−1
h (u, t0) Φ−1

h (v, t0)} 𝜇 (v)𝜇 (u) dvdu

+ h (2h + 1) 𝜅 (h)
t

∫
t0

s

∫
t0

E{Φh (t, t0) Φh (s, t0)Φ−1
h (u, t0) Φ−1

h (v, t0)} 𝛽 (v)𝛽 (u) |u − v|2h−1dvdu,

In other hand

mh (t)mh (s) = Ψh (t, t0) Ψh (s, t0)|m (t0) |2 + m (t0)
s

∫
t0

Ψh (t, t0) Ψh (s, v)𝜇 (v)dv

+m (t0)
t

∫
t0

Ψh (s, t0)Ψh (s, u) 𝜇 (u) du +
t

∫
t0

s

∫
t0

Ψh (t, u) Ψh (s, v)𝜇 (v)𝜇 (u) dvdu,

the fact that Rh (t, s) = E{X (t)X (s)} − mh (t)mh (s) the expression for Rh(t, s) follows. □

Lemma 5. Consider the time-invariant process (X (t))t≥t0 generated bySDE Eq. (1) . Then under the condition 1, the mean and covariance
functions of the solution process (X (t))t≥t0 are given by

mh = 𝜇
∞

∫
0

Kh (u) du,

Rh (|𝜏|) = |𝜇|2
∞

∫
0

∞

∫
0

Kh (u1)Kh (u2) (exp {− 𝛾2

2
𝜅 (h)Wh

(𝜏) (u1, u2)} − 1) du1du2

+ |𝛽|2h (2h + 1) 𝜅 (h)
∞

∫
0

∞

∫
0

Kh (u1)Kh (u2) exp {− 𝛾2

2
𝜅 (h)Wh

(𝜏) (u1, u2)} du1du2,

where

Wh
(𝜏) (u1, u2) = |𝜏|2h+1 − |𝜏 − u1|2h+1 − |𝜏 + u2|2h+1 + |𝜏 − u1 + u2|2h+1,

and Kh (t) = exp {𝛼t − 𝛾2

2
𝜅 (h) t2h+1

} .

Proof. Straightforward and hence omitted. □

Corollary 1. Consider the time-invariant version of the SDE Eq. (12) , then lim
𝜏→+∞

R (𝜏)
c𝜏−𝛿 = 1 for some constant c and 0 < 𝛿 < 1, this means

that the solution process exhibits long range dependence. In this case the dependence between X (t) and X (t + 𝜏) decays slowly as 𝜏 → +∞
and. ∫ℝ R (|𝜏|) d𝜏 = ∞.

Proof. First we have

exp {− 𝛾2

2
𝜅 (h) (|𝜏|2h+1 − |𝜏 − u1|2h+1 − |𝜏 + u2|2h+1 + |𝜏 − u1 + u2|2h+1

)}
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= exp {− 𝛾2

2
𝜅 (h) |𝜏|2h+1

(1 − |1 − u1
𝜏

|2h+1 − |1 + u2
𝜏

|2h+1 + |1 + u2 − u1
𝜏

|2h+1
)} ,

and

(1 − u1
𝜏 )

2h+1
= 1 − (2h + 1) u1

𝜏
+ (2h + 1) (2h)

2
u21
𝜏2

+ ...𝜏 → +∞

(1 + u2
𝜏 )

2h+1
= 1 + (2h + 1) u2

𝜏
+ (2h + 1) (2h)

2
u22
𝜏2

+ ...𝜏 → +∞

(1 + u2 − u1
𝜏 )

2h+1
= 1 + (2h + 1) (u2 − u1)

𝜏
+ (2h + 1) (2h)

2
(u2 − u1)2

𝜏2
+ ...𝜏 → +∞.

Let 𝛿 = − (2h − 1), it is clear 0 < 𝛿 < 1 because 0 < h < 1
2 , then we have

lim
𝜏→+∞

exp {− 𝛾2
2 𝜅 (h)Wh

𝜏 (u1, u2)} − 1

𝜏−𝛿 = lim
𝜏→+∞

exp {
𝛾2
2 𝜅 (h) h (2h + 1) u1u2𝜏2h−1

} − 1

𝜏2h−1 = 𝛾2

2
h (2h + 1) u1u2.

It follows that

lim
𝜏→+∞

R (𝜏)
𝜏−𝛿 = |𝜇|2

∞

∫
0

∞

∫
0

Kh (u1)Kh (u2) lim
𝜏→+∞

𝜏𝛿
{exp {− 𝛾2

2
𝜅 (h)Wh

𝜏 (u1, u2)} − 1} du1du2

= 𝛾2

2
𝜅 (h) h (2h + 1) |𝜇|2

∞

∫
0

u1Kh (u1) du1
∞

∫
0

u1Kh (u2) du2

= 𝛾2

2
𝜅 (h) h (2h + 1) |𝜇|2

|
|
|
||

∞

∫
0

uKh (u) du
|
|
|
||

2

= c < ∞,

Hence, the process (X (t))t≥0 generated by the SDE Eq. (12) with time-invariant parameters is a long memory process. □

3.1. Third-Order Structure of COBL(1,1) Process

For the sake of convenience and simplicity, we shall consider the time-invariant version of the SDE Eq. (1). Moreover, we assume the process
solution admits the spectral representation Eq. (8) in which the symmetrized version of transfer functions g (𝜆(r)) may be written as

g (𝜆(r)) = 𝜇(i𝛾)r
∞

∫
0

Kh (u) 1 − e−iu𝜆j

i𝜆j
du, ∀r ≥ 0.

Then using the representation Eq. (8) we can obtain the following approximation

X (t) = g (0) + ∫
ℝ
g (𝜆1) eit𝜆1dZ (𝜆1) + ∫

ℝ2
g (𝜆(2)) eit𝜆(2)dZ (𝜆(2)) + 𝜉 (t)

= X(1) (t) + X(2) (t) + 𝜉 (t) ,

where 𝜉 (t) is a second-order stationary process which it is orthogonal to the first two terms. The symmetrized transfer functions ̃g (𝜆1) and
̃g (𝜆(2)) are given by

g (𝜆1) = 𝜇 (i𝛾)
∞

∫
0

Kh (u) 1 − e−iu𝜆1

i𝜆1
du and g (𝜆1, 𝜆2) = 𝜇 (i𝛾)2

∞

∫
0

Kh (u)
2

∏
j=1

1 − e−iu𝜆2

i𝜆2
du

It can be shown that

Ch(s, u) = E{(X(t) − g(0)) ((X(t + s) − g(0)) ((X(t + u) − g(0))}

= E{X(1)(t)X(1)(t + s)X(2)(t + u)} + E{X(1)(t)X(2)(t + s)X(1)(t + u)}

+ E{X(2)(t)X(1)(t + s)X(1)(t + u)} + O (1) .
Pdf_Folio:27

“JSTA-17-4-3” — 2018/12/21 — 17:28 — page 613 — #8

F. Merahi et al. / Journal of Statistical Theory and Applications 17(4) 606–615 613



We calculate E{X(1) (t)X(1) (t + s)X(2) (t + u)}, and the other terms can be obtained by symmetry. First we observe that

E{X(1) (t)X(1) (t + s)X(2) (t + u)}

= E
⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) eit𝜆1+i(t+s)𝜆2dZ (𝜆(2)) ∫
ℝ2

g (𝜆3, 𝜆4) ei(t+u)(𝜆3+𝜆4)dZ (𝜆3, 𝜆4)
⎫⎪
⎬
⎪⎭

= 2! ∫
ℝ2

sym{g (𝜆1) g (𝜆2) eit𝜆1+i(t+s)𝜆2
} sym{g (𝜆1, 𝜆2) ei(t+u)(𝜆1+𝜆2)}dF (𝜆(2))

= 2 ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) sym{eis𝜆1
} e−iu(𝜆1+𝜆2) d𝜆1𝜆2

(2𝜋)2

= 1
(2𝜋)2

⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) eis𝜆1e−iu(𝜆1+𝜆2)d𝜆1𝜆2 + ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) eis𝜆2e−iu(𝜆1+𝜆2)d𝜆1𝜆2

⎫⎪
⎬
⎪⎭

= 1
(2𝜋)2

⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) ei(s−u)𝜆1−iu𝜆2d𝜆1𝜆2 + ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) e−iu𝜆1+i(s−u)𝜆2d𝜆1𝜆2

⎫⎪
⎬
⎪⎭

.

Moreover we have
E{X(1) (t)X(2) (t + s)X(1) (t + u)}

= E
⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) eit𝜆1+i(t+u)𝜆2dZ (𝜆(2)) ∫
ℝ2

g (𝜆3, 𝜆4) ei(t+s)(𝜆3+𝜆4)dZ (𝜆3, 𝜆4)
⎫⎪
⎬
⎪⎭

= 2! ∫
ℝ2

sym{g (𝜆1) g (𝜆2) eit𝜆1+i(t+u)𝜆2
} sym{g (𝜆1, 𝜆2) ei(t+s)(𝜆1+𝜆2)}dF (𝜆(2))

= 2 ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) sym{eiu𝜆1
} e−is(𝜆1+𝜆2) d𝜆1𝜆2

(2𝜋)2

= 1
(2𝜋)2

⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) eiu𝜆1e−is(𝜆1+𝜆2)d𝜆1𝜆2 + ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) eiu𝜆2e−is(𝜆1+𝜆2)d𝜆1𝜆2

⎫⎪
⎬
⎪⎭

= 1
(2𝜋)2

⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) ei(u−s)𝜆1−is𝜆2d𝜆1𝜆2 + ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) e−is𝜆1+i(u−s)𝜆2d𝜆1𝜆2

⎫⎪
⎬
⎪⎭

.

It remains to compute E{X(2) (t)X(1) (t + s)X(1) (t + u)}, then

E{X(2) (t)X(1) (t + s)X(1) (t + u)}

= E
⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆3) g (𝜆4) ei(t+s)𝜆3+i(t+u)𝜆4Z (d𝜆3, d𝜆4) ∫
ℝ2

g (𝜆1, 𝜆2) eit(𝜆1+𝜆2)Z (d𝜆(2))
⎫⎪
⎬
⎪⎭

= 2! ∫
ℝ2

sym{g (𝜆1) g (𝜆2) ei(t+s)𝜆1+i(t+u)𝜆2
} sym{g (𝜆1, 𝜆2) eit(𝜆1+𝜆2)}dF (𝜆(2))

= 2 ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2))sym{eis𝜆1+iu𝜆2
}

d𝜆1𝜆2

(2𝜋)2

= 1
(2𝜋)2

⎧⎪
⎨
⎪⎩∫

ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) eis𝜆1+iu𝜆2d𝜆1𝜆2 + ∫ℝ2
g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) eiu𝜆1+is𝜆2d𝜆1𝜆2

⎫⎪
⎬
⎪⎭

.
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Hence

Ch (s, u) = 2 ∫
ℝ2

g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2) sym{ei(s−u)𝜆1−u𝜆2 + ee
i(u−s)𝜆1−s𝜆2 + ei(s𝜆1+u𝜆2)

}
d𝜆1𝜆2

(2𝜋)2
.

By taking Fourier transforms (omitting the terms of O (1)), the bispectral density function f (𝜆1, 𝜆2) can be shown to be f (𝜆1, 𝜆2) =
2

(2𝜋)2
{S (𝜆1, 𝜆2) + S (𝜆2, −𝜆1 − 𝜆2) + S (𝜆1, −𝜆1 − 𝜆2)} where S (𝜆1, 𝜆2) = g (𝜆1) g (𝜆2) g (−𝜆1, −𝜆2). It is clear from the above that the bis-

pectrum is zero for all frequencies 𝜆1 and 𝜆2 if and only if the process is linear (𝛾 = 0) (and Gaussian).

4. CONCLUSION

This paper describes some basic probabilistic properties of COBL process driven by an (f)Bm. Our main aim was focused firstly on the
existence of the solution in time-frequency domain and secondary to prove that the use of fBm as innovation we led to a long-range depen-
dency property.
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