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1. INTRODUCTION

Several mathematical frameworks can be used to evaluate an uncertainty analysis. Probability theory is the most traditional representation
of uncertainty, which is familiar to non-mathematicians. Probability is used as a representation of subjective belief, which is common in a
quantitative analysis of events in different applications. Safety assessments should deal with rare events, and thus it is difficult to assess the
relative frequencies of these events [1]. The Bayesian approach for the uncertainty analysis is to specify a coherent probability measure as the
current state of available knowledge and uses Bayes’ theorem to adjust the probabilities as new evidence, which is unveiled. Though Bayesian
inference can be employed to determine the probability of decisions correctness based on prior information, it has some disadvantages,
namely (1) the knowledge required to generate the prior probability distributions may not be available, (2) instabilities may occur when
conflicting data are presented and/or the number of unknown propositions is large compared to the known propositions [2], (3) available
information should be characterized by a specific distribution or an exact assertion of the truth of a proposition for the decision maker, and
(4) Bayesian inference offers a few opportunities to express incomplete information or partial belief [3].

Imprecise probability is a generic term for any mathematical model, which measures chance or uncertainty without crisp numerical proba-
bilities. The evidence or Dempster—Shafer (D-S) theory of belief structures is one type of imprecise probabilities, which offers a more flexible
representation of uncertainty over the crisp probabilistic approach. Based on the Dempster’s work, Shafer [4] proposed the D-S theory as
an alternative to Bayesian inference. This theory is a generalization of the Bayesian theory and can robustly deal with incomplete data. It
allows the representation of both imprecision and uncertainty [5, 6]. Rather than computing probabilities of propositions, it computes prob-
abilities that evidence supports the propositions or alternatives, which deal with uncertainty reasoning based on incomplete information.
The D-S theory tackles the prior probability issue by keeping a track of an explicit probabilistic measure of a possible lack of information.
It is suitable for taking into account the disparity among knowledge types [7]. Because it is able to provide a federative framework [8] and
combines cumulative evidence for changing prior opinions in the light of new evidence [9].
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The D-S theory is well developed and considered as the most appropriate alternative for uncertainty quantification, which deals with lack
of knowledge. For example, Jiang et al. [10] proposed a new method to deal with a reliability analysis to solve engineering problems by
using the D-S theory under uncertainty. Tang et al. [11] presented an evidential uncertainty quantification method to determine uncer-
tainties with imprecise information, which is included in revealing the material constants of the metal fatigue crack growth model. Yin et al.
[12] proposed an efficient algorithm to solve an acoustic problem under uncertainty and applied the Jacobi polynomial for evidence-theory
based on an uncertainty analysis. Then, Yin et al. [13] analyzed the response of built-up systems in the mid-frequency range by using the
D-S theory and a model of a finite element/statistical energy analysis under uncertainty. Jian et al. [14] evaluated flutter risk and the struc-
tural stability of the system, which deals with the D-S theory and uncertainty quantification.

In the probability theory, Shannon entropy is one of the best-known measures of uncertainty for a purely probabilistic system [15]. Based on
the Shannon entropy concept, many studies have formulated to handle uncertainty in different fields of science. For example, Thapliyal and
Taneja [16] used the concept of the Shannon entropy to evaluate the uncertainty as a measure of inaccuracy associated with distributions
of order statistics. Olvera-Guerrero et al. [17] used the non-linear Shannon entropy to measure the uncertainty of a boiling water reactor to
assess a system stability and operation.

Gu [18] introduced a new concept of entropy and multi-scale Shannon entropy and then analyzed its application to detect predictive power
for the Dow Jones Industrial Average Index (DJIAI). In the fields of component lifetimes of a system, Gupta et al. [19] considered the
Shannon entropy as a measure of the uncertainty associated with a residual lifetime distribution and acquired the properties of the residual
and the entropy function of order statistics. Tahmasebi ef al. [20] proposed a new extension of cumulative residual entropy using the Shannon
entropy as a measure of the uncertainty associated with the lifetime of a system. Toomaj and Doostparast [21] introduced a new concept of a
stochastic order for comparing mixed systems and used cumulative residual entropy, which measures the residual uncertainty of a random
variable. They applied these concepts to evaluate component lifetimes of competing systems using the Shannon entropy, in order to handle
uncertainty. The other applications are fault diagnosis [22], risk [23], etc.

Generally, frameworks, which are considered the uncertainty of the physical events or the behavior of a system, can be categorized into two
types of uncertainty. Type one is uncertainty due to stochastic and irreducible variabilities, which is inherent in nature (i.e., aleatory uncer-
tainty), and the other one is resulting from unknown physical phenomena due to a lack of knowledge (i.e., epistemic uncertainty). In Section
2, a brief introduction is provided two uncertainties. For adequate data existing in probability theory, numerous uncertain models (e.g.,
various types of entropies) are used as the most appropriate evaluation for aleatory uncertainty quantification. Non-probabilistic methods
based on interval specifications or alternative mathematical frameworks (e.g., D-S theory) are proposed for possible better representations
of epistemic uncertainty.

Obviously, in the analysis process of the system performance, uncertainty appears at different steps of analysis and the interaction between
these sources of uncertainty cannot be modeled easily. Thus, in order to evaluate and reduce uncertainty, different models and modern
mathematical frameworks have been proposed to quantify both aleatory and epistemic uncertainties in systems (e.g., see [24, 25]). However,
the existing methods to evaluate the effect of mixed uncertainty using a piece of information and different mathematical frameworks are
efficient, and modern frameworks for mathematical representation of uncertainty are still under development.

Therefore, in this paper, the concepts of D-S theory and Shannon entropy are used to handle uncertainty for systems’ failure in each state
considering the uncertainty bounds. On the other hand, the objective is to introduce a new technique to calculate uncertainty bounds based
on the D-S theory and Shannon entropy. This paper is organized as follows. In Section 2, we introduce the type of uncertainty. Sections 3
and 4 introduce some concepts of the D-S theory and Shannon entropy as a measure of uncertainty. Section 5 describes a heuristic method
for the entropy of interval-valued probabilities. It is assumed that there is a system with n different states. Conclusions are summarized in
Section 6.

2. TYPES OF UNCERTAINTY

In the field of uncertainty quantification, uncertainty in the governing equations may assume two uncertainties (i.e., aleatory and epistemic).
Aleatory uncertainty can be characterized by known probability distributions whilst epistemic uncertainty arises from a lack of knowledge
of probabilistic information. It arises from the inherent variation associated with the system under consideration and is irreducible. The
sources of aleatory uncertainty are typically represented by using a probabilistic framework. It is referred to inherent uncertainty due to the
attribute of intrinsic randomness and probabilistic variables, which is associated with the physical system.

On the other hand, it is a result of a naturally occurring process, variability in the underlying variables or statistical variability, which is
stochastic and more collected data in a given model cannot reduce this uncertainty. Thus, stochastic uncertainty in the sequence of possible
events is entirely aleatory by nature. Epistemic uncertainty represents any lack of knowledge or information in any phase or activity of
the modeling process [26, 27] and it is reducible through the introduction of additional information. Source of this uncertainty is of data
completeness and quality. Hence, it can be reduced by more knowledge that is available. Therefore, epistemic uncertainty is reducible as
results of an inaccurate scientific understanding of the natural phenomenon being modeled or data quality, completeness or incomplete
knowledge of the underlying process.
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Frequently, strong statistical information (e.g., probability distribution functions or high-order statistical moments) is not available. Exper-
imental data needed to construct this information are often expensive. Thus no data or only a small collection of data points may be obtain-
able consequently. In these cases, expert opinion is used to handle epistemic uncertainty in conjunction with the available data to produce
weak inferential estimates of parametric characteristics in a form of lower and upper bounds.

Other sources of epistemic uncertainty include limited understanding or misrepresentation of a modeled process, known commonly as a
model specification uncertainty. The inclusion of enough additional information about either the model parameters or structure can lead to
areduction in the predicted uncertainty of a model output. Consequently, we can consider epistemic uncertainty as providing (conservative)
bounds on an underlying aleatory uncertainty, in which reduction and convergence to the true aleatory uncertainty (or a constant value
in some cases) can be obtained given sufficient additional information [28]. To learn more, the reader may find some information about
evidence theory [25, 29], possibility theory [30], interval analysis [31], discrete probability distributions [32], fuzzy arithmetic [33] and
probability bounds [34, 35]. These theories are different from each other in terms of characterizing the input parameter uncertainty and
kind of propagation from a parameter level to model an output level. In this paper, we propose a framework for quantification of epistemic
uncertainty. We calculate the upper and lower bounds for uncertainty based on entropy and D-S theory.

3. D-S THEORY OF EVIDENCE

The D-S theory is a mathematical theory of evidence first proposed by Dempster in early 1967 and then extended by Shafter in 1976. It
makes inferences based on uncertain knowledge from different information sources. This theory allows strengthening or erosion of beliefs
by combining additional sources of evidence, even in the presence of partly contradictory evidence. There are three critical functions in the
D-S theory, namely the basic probability assignment function (BPA or m), the belief function (Bel), and the plausibility function (PI). For
a finite set of mutually exclusive and exhaustive propositions (i.e., Q), a power set 2 is the set of all the subsets of Q including itself and a
null set @. The basic probability assignment is a critical variable of evidence theory and does not refer to probability in the classical sense.
For any subset Aof 2%, the BPA, represented as m (A), defines a mapping of 2 to the interval between 0 and 1. Formally, this description
of m can be represented by:

m:2% > 10,1] (1)

m(@) =0 (2
Z m(A) =1 3)
Ae2®

The upper and lower bounds of an interval can be defined from the BPA. This probability interval contains the precise probability of a set
of interest in the classical sense and is bounded by two measures, namely Bel and Pl The lower bound Bel for a set A is defined as the sum
of all the BPAs of the proper subsets (B) of the set of interest (A) (B C A). The upper bound Pl is the sum of all the BPAs of the sets (B) that
intersect the set of interest (A) (BN A # ¢). According to the definition above, the Bel and P! for a set A can be described by Egs. (4) and
(5), respectively.

Bel(A)= )’ m(B) )
BIBCA

Pl(A)= ), m(B) (5)
BIA#Q

It is readily provable that Bel and Pl have the following relation.
Bel(~ A) = PI(B) (6)

Example 1. Assuming Q = {a, b, c}, P {@,a,b,c,aub,aUc,bUc,aUbuUc},then; Bel(a) = m(a) and Pl(a) = m(a) + m(aU b) +
m(a VU c) + m(a U b). The uncertainty of A can be represented as; u (A) = PI(A) — Bel(A), where u (A) is a measure of the uncertainty
level of A. [Bel (A) ,Pl (A)] is called the confidence interval and contains more important information regarding A. BPA of evidence can be
combined according to Dempster’s rule. Considering that the subset A has two information sources S; and S, and let m; and m, be BPAs
of sources S; and S, respectively. BPA of the subset A can be obtained by:

mA) =m®B) ®@m©) = —— ¥ mBm© %
BNnC=A

where k is the degree of conflict in two sources of evidence. It is BPA that the combination assigns to the null subset and represents contra-
dictory evidence. The denominator in Dempster’s rule 1 — k is a normalization factor. The effect of the normalization factor 1 — k in Eq. (7)
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is the elimination of conflicting pieces of information between the two sources which is combined. The combined k does not exist and the
two evidence sources S; and S, are said to be in full contradiction [36]. This study uses the D-S theory as the framework for representing
the uncertainty of failure identification for states of a system.

Example 2. Assume that a system’s failure states include a, b, and c. The fault hypothesis set is Q = {a, b, c}. Assume that two evidences A
and B are obtained. BPAs of faults supported by such evidences are m(A), = 0.7, m(A),;, = 0.2 and m(A), . = 0.2; therefore, m(A)q = 0.1,
because m(A), + m(A),, + m(A)q = 1, for evidence B, m(B), = 0.4, m(B), . = 0.2 and therefore m(B), = 0.4. These two evidences do
not support any other subsets of 2. The given m(A), value of 0.7 and m(A),, value of 0.20 indicate that evidence A provides a belief value
of 70% supporting hypothesis a and a belief value of 20% supporting hypothesis b or ¢ and supporting hypothesis a or b or ¢ with a belief
value of 10%. The belief and plausibility functions for evidence A can be derived by:

bel(A), = m(A), = 0.7

bel(A), = m(A), = 0.0

bel(A), = m(A), = 0.0

bel(A),, = m(A), + m(A), + m(A),, =0.7+0.0+0.2=0.9
bel(A), . = m(A), + m(A), + m(A), = 0.7

bel(A), . = m(A), + m(A), + m(A),, = 0.0

bel(A), ;= m(A), + -+ + m(A),. = 1.0

a,b,c

PU(A), = m(A), + m(A),, + m(A), . + m(A)g = 1.0
PU(A), = m(A), + m(A),, + m(A), . + m(A)g = 0.3

PUA), = m(A), + m(A), . + m(A), . + m(A)g = 0.1

PUA),, = m(A), + m(A), + m(A),, + m(A), . + m(A), . + m(A)g = 1.0 (8)
DAY, = m(A), + m(A), + m(A),, + m(A), . + m(A), + m(A)g = 1.0

DAY, = m(A), + m(A), + m(A),, + m(A), . + m(A), + m(A)g = 0.3

PUA)pe = M(A), + - + m(A)g = 1.0

Therefore, we have:

m(A), =0.7 m(B), =04
m(A)u,b =0.2 m(B)h’c =02
m(A)g =0.1 m(B)g =04

By applying the D-S theory of combination on sources of information A and B, the following data are generated based on these evidence

sources as summarized in Table 1. The results are as follows.

m(C) =m(A) ® m(B)
k =0.2840.14 = 0.42, degree of conflict
1 — k = 0.58 normalization factor

m(C), = 0.28/0.58 = 0.48
m(C), = 0.08 + 0.04 + 0.04/0.58 = 0.27
m(C). =0.0;m(A),;, = 3B =0.13;

m(C)q = 0.04/0.58 = 0.06

Similarly, belief and plausibility functions and belief interval can be determined by using the corresponding equation described earlier,
as shown in Table 2. By combining m (A) with m (B) using Egs. (7) and (8), a new BPA, m (C) characterized for all the contain subsets.

Table 1 Combination of information A and B.

mA)g =07  m@Ap=00  mA) =00  m(A),}=02 mA)gc=00  mAp=00  mA)yp=0.1

m(B),; =0.0 {a} 0.0 {¢} 0.0 {¢} 0.0 {a} 0.0 {a} 0.0 {¢} 0.0 {a} 0.0
m(A)p, =0.4 {¢} 0.28 {b} 0.0 {¢} 0.0 {b} 0.0 {¢} 0.0 {b} 0.0 {b} 0.0
m(B); =0.0 {¢} 0.0 {¢} 0.0 {c} 0.0 {¢} 0.0 {c} 0.0 {c} 0.0 {c} 0.0
m(B)u,b =0.0 {a} 0.0 {b} 0.0 {¢} 0.0 {a,b} 0.0 {a} 0.0 {b} 0.0 {a,b} 0.0
m(B)g ¢ =0.0 {a} 0.0 {¢} 0.0 {c} 0.0 {a} 0.0 {a,c} 0.0 {c} 0.0 {a,c} 0.0
m(B)p . = 0.2 {¢} 0.14 {b} 0.0 {c} 0.0 {b} 0.04 {c} 0.0 {b,c} 0.0 {b,c} 0.02
m(B)u,b,c =04 {a} 0.28 {b} 0.0 {c} 0.0 {a,b} 0.08 {a,c} 0.0 {b,c} 0.0 Q =0.04
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Table 2 Interval-valued uncertainty.

subsets m (C) bel (C) plL(O) belief interval U(C) = pl(C) —bel (C)
(%] 0.0 0.0 1.0 [0.0, 1.0] 0.0
{a} 0.48 0.48 0.67 [0.48, 0.67] 0.19
{b} 0.27 0.27 0.49 [0.27, 0.49] 0.22
{c} 0.0 0.0 0.09 [0.0, 0.09] 0.09
{a,b} 0.13 0.88 0.97 [0.88, 0.97] 0.09
{a,c} 0.0 0.48 0.7 [0.48, 0.7] 0.22
{b,c} 0.03 0.3 0.49 [0.3, 0.49] 0.19
Q 0.06 1.0 1.0 [1.0, 1.0] 0.0

Table 2 represents BPA (or mass function), belief, plausibility, belief interval and uncertainty value of the subsets. Belief intervals allow
reasoning about the certainty of our beliefs or the degree of certainty. Accordingly, small differences between belief and plausibility show
less certainty about our belief. Conversely, large differences show the more uncertainty about our belief.

The probability in each subset lies somewhere between belief and plausibility values. A belief function represents the evidence or informa-
tion, which is supported by each subset directly. Thus, the probability cannot be less than this value. A plausibility function represents an
upper bound on the degree of support that can be assigned to each subset if more specific information becomes available. It is the maximum
share of the evidence, which can possibly have for all subsets. Therefore, a plausibility function is the maximum possible value of probability.

In this example, comparing the impact of the uncertainty about each subset with other uncertainties shows that, in states ¢ ({c}) and a or b
({a, b}), it is the lowest uncertainty bound (expect of Q and @) between all uncertainty bounds. It is equal to 0.09, while the belief degree
on states a or b ({a, b}) is the highest one (i.e., 0.88). On the other hand, with the minimum uncertainty, the most likely fault or failure
occur in states a or b. Therefore, based on evidence from two samples, state a or b has the highest probable value of event on the system
behavior. Although, a determination of a fault state in this example is obvious and simple; however, Eq. (9) may generally be considered as a
comparison index to express relations between subsets using belief intervals [37], which will have a similar result based on the above reasons.

max {0, pl(xi) — bel (xj)} — max {0, bel (x;) — pl (xj)}

P (x> x) = [ p1 (i) = bel ()] + [ pl (x;) = bel (x;)]

©)

4. SHANNON ENTROPY

Shannon [15] presented entropy as a measurement of the uncertainty level of information. The entropy is a function of the probability
distribution function. Let x be a nominal attribute on a finite set X = {x1, ..., x, } with probability distribution function p (x). The entropy
H (X) of X is defined by:

HX) = - Zp (xi)log,p (x:) (10)
i=1

The Shannon entropy can be taken as a measure of the uncertainty about the realization of a random variable. Entropy has the following
properties: (1) by convention, 0log0 = 0 and (2) in experiment, X = {x1,...,x, }, if p(x;) = 1 and the rest is equal to 0, then H (x) = 0,
implying that there is not any uncertainty in experiment A and a decisive conclusion can be made. On the contrary, if one knows nothing
about experimental results beforehand, then p (x;)) = 1/n (i =1,2,3,...,n), H(X) reaches its maximum value H™™ (x) = log, (n). Obvi-
ously, the set has a maximal extent of uncertainty in this case. The Shannon entropy is used to measure the uncertainty level of evidence in
this study [15].

5. ENTROPY AND INTERVAL-VALUED PROBABILITY

Uncertainty is usually related to lack of knowledge about future events. Thus, a definition of risk can be considered as the amount of lacking
information. Therefore, in this approach, we adopt the idea that uncertainty reflects how much we do not know about the future. Entropy is
the basic notion in the information theory field. Informally, we can define entropy as the measure of uncertainty of a system that at a given
moment can be in one of  states, in which a set of all the possible states is defined, and the probability of some system states is known. We
can define entropy formally as follows.

Let us assume that there are n different states, where a system can be in Si, Sz, ..., Su. In the following equation, the probability of system S
in state s; is P;.

PS~s)=P;, i=1,2,...,n (11)
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If values of all P; in Eq. (11) are known, then the entropy of a system can be calculated by:
H= —ZPilogPi (12)
i=1

Let us consider how the entropy can be calculated if we are dealing with the interval-valued probability values. Obviously, the entropy itself
will be interval-valued. In this section, we introduce a generalized definition of entropy, suitable for interval-valued probabilities. As before,
we assume that system can be in 7 states; however, the probability that a system is in the i-th state is the interval and is equal to [P{m“, P{“a"] .
In this case, when probabilities are single-valued rather than interval-valued, it is required that the sum of probabilities is set to 1 as shown

below.
Z Pi=1 (13)

If probabilities are interval-valued, then this constraint can be rewritten by:

DA ED WA (14)
It is easy to show that Eq. (13) is a special case of Eq. (14), when P = PN (where P; is the probability for each i). Moreover, if we define
P = Bel; and P{™ = PI;, it can be shown that Eq. (16) holds.

Bel(x)) <P(x)) <Pl(x)) i=1,2,..,2" (15)
ZP(x,-) =1

Vi : Bel(x;) < Pl(x;)
= Bel (x;) log Bel (x;) (16)
> —PI(x;) log Pl (x;)

It should be noted that the states with lower probability values are more informative. Thus, we can expect that in order to calculate the upper
boundary of entropy H™, we should use the lower probability bounds Bel;. We can find the upper boundary of entropy for a system by:
H™(X) = - Z Bel (x;) log Bel (x;) (17)
i=1

and the lower boundary of entropy:

H™ (X) = =) Pl(x;)log Pl (x;) (18)
i=1

Example 3. Assume that three information sources A, B and C are under consideration with different states (e.g., Q = {a, b, c}). Suppose
that the system’s failure in state a based on three evidence sources is determined. Additionally, the belief and plausibility functions by using
Egs. (4) and (5) are respectively derived by:

bel(A) ,=0.7 [ bel(B) ,=0.6 [ bel(C) ,=0.0
pl(A) ,=1.0 | pl(B) ,=1.0 | pl(C) ,=06

The uncertainty interval in the case at hand is as follows:

H™ = — (0.1 x1og0.1 + 1.0 log 1.0 + 0.6 x log 0.6) = 0.13

H™ = - (0.7 x10g 0.7 + 0.6 X 10g 0.6 + 0.0 x log 0.0) = 0.24

Therefore, it can be noticed that based on evidence from three samples, the uncertainty interval for the systems failure in state a is [0.13, 0.24].

From Eq. (16), it follows that H™" < H™ Moreover, as mentioned above, entropy in a system with interval-valued probability is equal to:

H= [Hmin’ Hmax] (19)
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Figure1 Upper and lower bounds of
uncertainty.

The obtained definition of this interval-valued probability is a generalization of the “traditional” entropy of a system with single-valued
probabilities (or mass function). Now let us examine whether the additivity feature holds for the generalized entropy in the D-S theory, as
defined in Egs. (17) and (18). If additivity holds, it means whether we have two independent systems (say, X and Y), then entropy based on
the D-S theory of a system obtained by joining systems X and Y is equal to the sum of individual generalized entropies in the D-S theory
for X and Y. In other words, if additivity holds, then we have:

HX,Y)=H(X) + H() (20)

If we define generalized entropy in the D-S theory as Eqgs. (17) and (18), then it can be shown that we have two systems (i.e., X and Y)
with states accordingly x1, x2, ..., X, and y1,¥2, ..., ¥m, with P(X ~ x;) = p; and P (Y ~ yi) = 7;. Then, lower and upper bounds of the two
systems should be summed separately to obtain the corresponding bounds of the summed entropy.

n

M=

H™ (X,Y) = — ( pl (xi,yj) log pl (x,-,yj)>

Il
—
-
Il
-

pl(xi.yj) log pl (x;) pl (yjlxj))

1l
_
-

Il
_

1l
L~
™M-T
M=

m n om (21)
=— Zpl (xi,yj) log Pl (xi) — Z Z Pl (xi, y;) log pl (yjlx;)
i=1 j=1 i=1 j=1
=— Y plGx)logpl(x) — Y pl(y)logpl ()
i=1 i=2
~ Hmin (X) +Hmin (Y)
H™(X,Y) = — <Z bel (x;) log bel (x;) + 2 bel (yj) log bel (yj)> 22)
i=1 i=2

~ [max ()Q 4 e (Y)

Therefore, we can determine the approximate uncertainty bounds (i.e., lower and upper uncertainty bounds) of two independent systems
that should be summed separately to obtain the corresponding bounds of each system. These values from each interval contribute to H™"
and H™ are shown in Fig. 1.

In addition, the relative entropy is another important concept of entropy. It is known as a measure of distance between two probability
distributions. It is evaluated divergence between probabilities or mass function of two systems X (X = x1, %2, ..., xy)and (Y = y1,y2, ..., Ym),
where, P(X ~ x;) = piand P (Y ~ y;) = 1.
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Let m (x;) and m (yi), (i=1,2,...,n) be two basic mass functions of systems X and Y. If these values are considered as the estimation of
exact probabilities under uncertainty, then the relative entropy of measurement m (x;) with respect to the measure m ( yi) is defined by:

m (x;)
m (yi)
m (y:)

=— Z m (x;)log )
=-E <log mEx)) ) (23)
> —log <E Tn((i)) )

= —log(z m, (%), (}3)

=0

H(m(X) || m(Y)) = Zm(x:)log

Obviously, if and only if (x;) = m (y,-), H(m(X) || m(Y)) = 0. Thus, if bel (x;) and bel (yi), where (i = 1,2, ..., n), are belief functions of X
and Y, then we have:

bel (x;) S

bel (31) ~

Furthermore, the lower bound for the relative entropy with respect to plausibility functions pl (x;) and pl (yi) of X and Y is as follows:

H™ (m(X) || m(Y)) = Z bel (x;) log (24)

pl(x)

pl ()

>0

H™ (m(X) || m(V)) = Zpl(x» log

6. CONCLUSION

One way to assess the uncertainty between proposed theories under imprecise probabilities is the D-S theory. In probability theory, the
best-known measure of uncertainty in a purely probabilistic system is the Shannon’s entropy. This paper incorporates information and
probabilities for different states of systems considered as an interval-valued probability, and then a heuristic approach is used to generalize
entropy in the D-S theory for an uncertainty model. This approach is proposed to approximate upper and lower uncertainties for a presented
formal problem. Since it is hard to solve this formal problem directly, the proposed method is a proper method to find an approximate
solution. Accordingly, different examples are presented for the simple proposed method. The results show the efficiency of the method to
find an approximate solution to quantify uncertainty bounds. Furthermore, the new definition of uncertainty bounds for two independent
systems is explained, which is held by the additivity property. Then, quasi-additivity of uncertainty bounds is shown in Fig. 1. Finally, the
upper and lower bounds of relative entropy are presented to evaluate the divergence between two mass functions.
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