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ABSTRACT
Themaximum likelihood estimator (MLE) and uniformly minimum variance unbiased estimator (UMVUE) for the parameters
of a multivariate geometric distribution (MGD) have been derived. A modification of the MLE estimator (modified MLE) has
been derived in which case the bias is reduced. The mean square error (MSE) of the modified MLE is less than the MSE of the
MLE. Variances of the parameters and the corresponding generalized variance (GV) has been obtained. It has been shown that
the MLE andmodified MLE are consistent estimators. A comparison of the GVs of modified MLE and UMVUE has shown that
the modified MLE is more efficient than the UMVUE. In the final section its application has been discussed with an example of
actual data.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

It is appropriate and convenient to measure lifetime of devices such as on/off switches, bulbs, engines of an airplane on a discrete scale.
Discrete random variables also help study lifetimes such as the incubation period of diseases like AIDS, the remission time of cancers as well
as time to failure of engineering systems (see [1]). The discrete multivariate distributions are useful to measure lifetime data. The (MGD)
has been vital in studying reliability analysis. Various models of the bivariate geometric distribution (BGD) have been proposed to study
lifetime devices. Downtown [2] has described amodel for developing a BGD. This arises in a shockmodel with two components. Downtown
[2] describes this model asfollows. Suppose that the number of shocks suffered by each component before failure can be represented by a
population in which proportions p1 and p2 affected the first and second components respectively, without failure and a proportion 1-p1-p2
of the shocks lead to failure of both the components. Hence X is number of shocks to component 1 prior to the first failure and Y is number
of shocks to component 2 prior to the first failure. The joint probability function of (X, Y) is given by

𝜋X,Y (t1, t2) = (1 − p1 − p2) (1 − p1t1 − p2t2)−1 (1)

The corresponding joint probability mass function of (X,Y) is

P (X = x, Y = y) =

⎧
⎪
⎨
⎪
⎩

(
x + y
x ) px1p

y
2p3 ; x = 0, 1, 2, ... , y = 0, 1, 2, ... ,

0 < p1 < 1; 0 < p2 < 1; p3 = 1 − p1 − p2
0 ; otherwise

(2)

Hare Krishna and Pundir [3] have obtained the MLE and Bayes estimators of the parameters for this BGD. Dixit and Annapurna [4]
have further obtained the UMVUE estimators and have compared the MLE and UMVUE based on the (MSEs). Phatak and Sreehari [5]
introduced a version of bivariate geometric distribution as a stochastic model for giving the distribution of good and marginally good items
that are produced by a production unit. Marshall and Olkin [6] constructed a BGD based on the sequence of Bernoulli random variables
in which X was defined as the number of trials required for the rth occurence of an event A and Y was the number of trials required for the
sth occurence of an event B. If we consider Bernoulli trials then (X,Y) will have 4 possible values (0,0), (0,1), (1,0) and (1,1).
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We define P (X = i,Y = j) = pij ; i, j = 0, 1.

Let p00 + p01 = p0+, p10 + p11 = p1+, p00 + p10 = p+0, p01 + p11 = p+1

Marginally X and Y have negative binomial distribution. X follows NB (r, p1+) and Y follows NB (s , p+1).

The marginal probability functions are of the usual form but the joint probability function of (X,Y) is quite complicated. Reference may be
made to Marshall and Olkin ([6] Eq. 7.2).

On the same lines, Gultekin and Bairamov [7] constructed a trivariate geometric distribution and the correspondingmultivariate extension.
Srivastava and Bagchi [8] introduced the multivariate version of a geometric distribution and obtained certaincharacterizations.Vasudeva
and Srilakshminarayana [9] established some properties of the MGD and also obtained a characterization assuming it to follow the power
series distribution. Sreehari andVasudeva [10] have given characterization of theMGDbased on conditional distributions. Esary andDaniel
[11] studied properties of MGDs that were generated by a cumulative damage process. In this paper we look at another form of the MGD
and estimate its parameters by a new approach that reduces the bias.

Consider a systemwhich comprises of k components namelyC1,C2,...,Ck. The system is so designed that at any given time notmore than one
component can function. The system functions when any one component functions. The system initially functions because C1 functions.
When C1 stops functioning C2 starts functioning in the next trial keeping the system functioning.Thus system continues to function in this
manner till Ck functions. Let probability that component Ci fails be pi, i = 1,2,3, ..., k. Let Xi denote the trial at which component Ci fails,
i = 1,2, ..., k.

The joint probability mass function of (X1,X2, ⋅ ⋅ ⋅,Xk) is given as

P (X1 = x1, X2 = x2, …Xk = xk) =
⎧⎪
⎨
⎪⎩

(1 − p1)x1−1p1(1 − p2)x2−x1−1p2 … (1 − pk)xk−xk−1−1pk;
1 ≤ x1 < x2 < … < xk; 0 < pi < 1; i = 1, … , k

0 ; otherwise
(3)

The probability generating function (pgf) is given as

PX1X2...Xk (t1, t2, ..., tk) =
p1p2...pkt1t22...tkk

[1 − (1 − p1) t1t2...tk] [1 − (1 − p2) t2t3...tk] ... [1 − (1 − pk) tk]
(4)

In this paper we obtain UMVUE and MLE of the parameters in Eq. (1) and their functions.

2. UNIFORM MINIMUM VARIANCE UNBIASED ESTIMATOR (UMVUE)

Here we obtain the UMVUE of the parameters as well as of the functions of the parameters. We consider the trivariate case which has three
parameters, p1, p2 and p3. Here pi denotes the corresponding probability of the ith component in the system failing.

Consider the case where k = 3. Eqs. (1) and (2) become

P (X1 = x1,X2 = x2,X3 = x3) =
⎧⎪
⎨
⎪⎩

(1 − p1)x1−1p1(1 − p2)x2−x1−1p2(1 − p3)x3−x2−1p3 ;
1 ≤ x1 < x2 < x3; 0 < pi < 1; i = 1, 2, 3
0; otherwise

(5)

PX1X2X3 (t1, t2, t3) =
p1p2p3t1t22t33

[1 − (1 − p1) t1t2t3] [1 − (1 − p2) t2t3] [1 − (1 − p3) t3]
(6)

The pgf of S1 = ∑n
i=1 X1i , S2 = ∑n

i=1 X2i and S3 = ∑n
i=1 X3i is

PS1S2S3 (t1, t2, t3) =
(

p1p2p3t1t22t33
[1 − (1 − p1) t1t2t3] [1 − (1 − p2) t2t3] [1 − (1 − p3) t3] )

n

(7)

Hence the pmf of S1, S2 and S3 is co-efficient of ts11 t
s2
2 t

s3
3 in Eq. (7) and is given as

P (s1, s2, s3)

= (
s3 − s2 − 1
s3 − s2 − n ) (

s2 − s1 − 1
s2 − s1 − n ) (

s2 − 1
s2 − n ) pn1pn2pn3(1 − p1)s1−n(1 − p1)s2−s1−n(1 − p1)s3−s2−n;

n ≤ s1 < s2 < s3 < ∞; 0 < p1 < p2 < p3 < 1; 0 < p3

(8)
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Theorem 2.1. The UMVUE of pa11 p
a2
2 p

a3
3 (1 − p1)b1 (1 − p2)b2 (1 − p3)b3 is

(
s1 − b1 − a1 − 1
s1 − b1 − n ) (

s2 − s1 − b2 − a2 − 1
s2 − s1 − b2 − n ) (

s3 − s2 − b3 − a3 − 1
s3 − s2 − b3 − n )

(
s1 − 1
s1 − n ) (

s2 − s1 − 1
s2 − s1 − n ) (

s3 − s2 − 1
s3 − s2 − n )

(9)

Proof. The trivariate joint distribution of [(X11X21X31) , (X12X22X32) , ......, (X1nX2nX3n)] belongs to the exponential family and (S1, S2 and S3) is
sufficient and complete for Eq. (1). Hence by using Rao-Blackwell theorem we can obtain the UMVUE of

pa11 p
a2
2 p

a3
3 (1 − p1)b1 (1 − p2)b2 (1 − p3)b3 .

Let 𝜙 (s1, s2, s3) be the UMVUE of pa11 p
a2
2 p

a3
3 (1 − p1)b1 (1 − p2)b2 (1 − p3)b3

E (𝜙 (s1, s2, s3)) =
∞

∑
s1=n

∞

∑
s1=s2+n

∞

∑
s3=s2+n

𝜙 (s1, s2, s3) (
s3 − s2 − 1
s3 − s2 − n ) (

s2 − s1 − 1
s2 − s1 − n ) (

s1 − 1
s1 − n )

× pn1pn2pn3(1 − p1)s1−n(1 − p2)s2−s1−n(1 − p3)s3−s2−n;

= pa11 p
a2
2 p

a3
3 (1 − p1)b1 (1 − p2)b2 (1 − p3)b3

(10)

Hence
∞

∑
s1=n

∞

∑
s2=s1+n

∞

∑
s3=s2+n

𝜙 (s1, s2, s3) (
s3 − s2 − 1
s3 − s2 − n ) (

s2 − s1 − 1
s2 − s1 − n ) (

s1 − 1
s1 − n )

× pn−a1
1 pn−a2

2 pn−a3
3 (1 − p1)s1−n−b1 (1 − p2)s2−s1−n−b2 (1 − p3)s3−s2−n−b3 = 1;

(11)

Therefore

𝜙 (s1, s2, s3) =
(

s1 − b1 − a1 − 1
s1 − b1 − n ) (

s2 − s1 − b2 − a2 − 1
s2 − s1 − b2 − n ) (

s3 − s2 − b3 − a3 − 1
s3 − s2 − b3 − n )

(
s1 − 1
s1 − n ) (

s2 − s1 − 1
s2 − s1 − n ) (

s3 − s2 − 1
s3 − s2 − n )

(12)

□

Particular Cases

1. a1 = a2 = a3 = 1 and b1 = b2 = b3 = 0

p̂1p2p3 =
(
s1 − 2
s1 − n ) (

s2 − s1 − 2
s2 − s1 − n ) (

s3 − s2 − 2
s3 − s2 − n )

(
s1 − 1
s1 − n ) (

s2 − s1 − 1
s2 − s1 − n ) (

s3 − s2 − 1
s3 − s2 − n )

= (n − 1)3

(s1 − 1) (s2 − s1 − 1) (s3 − s2 − 1)

(13)

2. a1 = 1 and a2 = a3 = b1 = b2 = b3 = 0

p̂1 =
(

s1 − 2
s1 − n )

(
s1 − 1
s1 − n )

= n − 1
s1 − 1

(14)

3. a2 = 1 and a1 = a3 = b1 = b2 = b3 = 0

p̂2 =
(

s2 − s1 − 2
s2 − s1 − n )

(
s2 − s1 − 1
s2 − s1 − n )

= n − 1
s2 − s1 − 1

(15)
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4. a3 = 1 and a1 = a2 = b1 = b2 = b3 = 0

p̂3 =
(

s3 − s2 − 2
s3 − s2 − n )

(
s3 − s2 − 1
s3 − s2 − n )

= n − 1
s3 − s2 − 1

(16)

5. a1 = b1 = 1 and a2 = a3 = b2 = b3 = 0

̂p1 (1 − p1) =
(
s1 − 3
s1 − n − 1 )

(
s1 − 1
s1 − n )

= (n − 1) (s1 − n)
(s1 − 1) (s1 − 2)

(17)

Similarly it is possible to obtainUMVUE for various combinations of pa11 p
a2
2 p

a3
3 (1−p1)b1 (1−p2)b2 (1−p3)b3 for different values of a1,a2,a3,b1,b2

and b3.

Theorem 2.2. The UMVUE in the multivariate case of

k

∏
i=1

paii (1 − pi)bi =
k

∏
i=1

(
si − si−1 − bi − ai − 1
si − si−1 − bi − n )

(
si − si−1 − 1
si − si−1 − n )

; si =
n

∑
j=1

Xij , s0 = 0 (18)

Proof is similar to proof of Theorem 2.1

3. MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

In the earlier section we have obtained an estimator based on the criteria of unbiasedness and minimum variance. We now look at another
very popular principle used namely method of maximum likelihood to obtain the estimators of the functions of the parameters. These shall
be compared with the corresponding estimators obtained by UMVUE in order to study their efficiency. The likelihood function based on
n systems put on test strictly under the same conditions will be

L =
n

∏
i=1

(1 − p1)x1i−1p1(1 − p2)x2i−x1i−1p2 … (1 − pk)xki−xki−1−1pk

= (1 − p1)s1−npn1(1 − p2)s2−s1−npn2 … (1 − pk)sk−sk−1−npnk

(19)

Taking log and differentiating w.r.t. pi, i = 1,2 ..., k, the MLEs are obtained as

The MLE of pi; i = 1,2,...., k is

p̂i = n
si − si−1

; s0 = 0 (20)

By invariance property, MLE of ∏k
i=1 p

ai
i (1 − pi)bi is

k

∏
i=1

̂paii (1 − pi)bi =
k

∏
i=1

(
n

si − si−1 )

ai

(
si − si−1 − n
si − si−1 )

bi
(21)

4. MODIFIED MAXIMUM LIKELIHOOD ESTIMATOR (MODIFIED MLE)

In the earlier two sections we have applied two procedures to obtain the estimators and either of them could be good.We now try to improve
on the MLE by reducing the bias and thus derive a modified estimator namely modified MLE. We have further shown that this modified
MLE is better than the UMVUE. Hence to derive a modification that reduces the bias and the MSE of the MLE of pi, i = 1,2,3 ..., k, we apply
the Taylor Series two-parameter expansion to

p̂i = 𝜙 (si−1, si) = n
si − si−1

; s0 = 0, i = 1, 2, ..., k. (22)
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𝜙 (si−1, si) = 𝜙 (𝜇si−1 , 𝜇si) + (si−1 − 𝜇siâ‵1)
d𝜙
dsi−1

| (sj = 𝜇sj) + (si − 𝜇si)
d𝜙
dsi

| (sj = 𝜇sj)

+
((si−1 − 𝜇si−1 ))

2

2!
d2𝜙
ds2i−1

| (sj = 𝜇sj) +
(si − 𝜇si )

2

2!
d2𝜙
ds2i

|sj = 𝜇sj

+
2 (si−1 − 𝜇si−1) (si − 𝜇si)

2!
d2𝜙

dsi−1dsi
| (sj = 𝜇sj) + ...

(23)

where j = 1,2, ..., k and

𝜇si = E (Si) =
n

∑
i=1

n
pi

, i = 1, 2, ⋅ ⋅ ⋅, k. (24)

On substition of Eqs. (21) in (22) we obtain

p̂i = pi +
(
si−1 −

i−1

∑
j=1

n
pj )

p2i
n +

(
si −

i

∑
j=1

n
pj )

−p2i
n +

(si−1 −
i−1

∑
j=1

n
pj )

2

2!
2p3i
n2

+

(si −
i

∑
j=1

n
pj )

2

2!
2p3j
n2

+
(
si −

i

∑
j=1

n
pj ) (

si−1 −
i−1

∑
j=1

n
pj )

2!
−2p3i
n2

+ O(
1
n) .

(25)

On taking expectaion of Eq. (24) we obtain

E (p̂i) = pi (1 + 1
n) −

p2i
n + O(

1
n) (26)

We observe that

p̂i is an asymptotically unbiased estimator of pi

Consider a linear function of the MLE of pi given as

p̃i = 𝛼p̂i + 𝛽, 𝛼 and 𝛽 are constants

Hence E(p̃i) = 𝛼.E(p̂i) + 𝛽

= 𝛼 [pi (1 + 1
n) −

p2i
n + O(

1
n)] + 𝛽 (2 )

If the coefficient of pi is set equal to 1 and the constant term set equal to zero, we obtain aproximate equality between E(p̃i) and pi.

This gives us 𝛼 = n
n + 1

and 𝛽 = 0.

Therefore we obtain a modified MLE of pi

p̃i = n2

(n + 1) (si − si−1)
; i = 1, 2, 3, ⋅ ⋅ ⋅, k, s0 = 0. (28)
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Since

p̃i = n
n + 1

p̂i (29)

E(p̃i − pi)2 = ( n
n + 1

)2
(
E(p̂i − pi)2 +

p2i
n2

−
2piE (p̂i − pi)

n + O(
1
n))

E(p̃i − pi)2 = (
n

n + 1)
2

(E(p̂i − pi)2 −
p2i
n2 )

Thus

E (p̃i − pi)2 < (E(p̂i − pi)2 (30)

Thus the MSE of modified MLE of pi namely p̃i is less than the of the corresponding MLE of pi i.e. p̂i, i = 1,2, ..., k.

5. CONSISTENCY OF MODIFIED MLE

If we collect a large number of observations, then we can obtain a lot of information about the unknown parameter. We can thus construct
an estimator T(X) with a small MSE and we can call it a consistent estimator if limn→∞ MSE (T (X)) = 0.

Theorem 5.1. p̂1, p̂2, ..., p̂k are consistent estimators where p̂i is the MLE of pi, i = 1,2, ..., k.

where

p̂i = n
si − si−1

; s0 = 0 (31)

Proof. From Eq. (26) it is clear that E (p̂i) tends to pi as n tends to ∞, i = 1,2, ..., k. We shall prove by method of induction that V (p̂i) tends to 0
as n tends to ∞.

Let k = 1

p̂1 = n
s1

(32)

Applying the Taylor series expansion

p̂1 = p1 + (s1 − n
p1 )

−p21
n +

(s1 − n
p1 )

2

2!
2p31
n2

+ O(
1
n) (33)

On taking expectaion of (p̂1 − p1)2 we obtain

E ((p̂1 − p1)2) = E(s1 − n
p1 )

2 p41
n2 + E(s1 − n

p1 )

4 p61
n4 + O(

1
n) (34)

E ((p̂1 − p1)2) =
n (1 − p1)

p21
p41
n2 +

n (1 − p1) [p21 − 3p1 (n + 2) + 3 (n + 2)]
p41

p61
n4 + O(

1
n) (35)

Hence V (p̂1) = E((p̂1 − p1)2) tends to 0 as n tends to ∞.

Thus p̂1 is a consistent estimator of p1

Consider k = 2

Here

p̂2 = n
s2 − s1

(3 )
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Applying Taylor Series two parameter expansion we obtain

E((p̂2 − p2)
2
) = E(s1 − n

p1 )

2 p42
n2 + E(s2 − n

p1
− n

p2 )

2 p42
n2 + E(s1 − n

p1 )

4 p62
n4

+ E(s2 − n
p1

− n
p2 )

4 p62
n4 + E [(s1 − n

p1 )
2

(s2 − n
p1 − n

p2 )
2

]
4p62
n4 + O(

1
n)

(37)

E((p̂2 − p2)
2
) = (

n
p21

− n
p1 )

p42
n2 + (

n
p21

+ n
p22

− n
p1

− n
p2 )

p42
n2

+
n (1 − p1) [p21 − 3p1 (n + 2) + 3 (n + 2)]

p41
p61
n4 + O(

1
n)

(38)

Hence V (p̂2) = E((p̂2 − p2)2) tends to 0 as n tends to ∞. Thus p̂2 is a consistent estimator of p2.

Assume p̂i−1 is a consistent estimator of pi−1.

To prove that p̂i is a consistent estimator of pi.

We need to prove that V (p̂i) tends to 0 as n tends to ∞, i = 2,3, ..., k.

p̂i = p̂i−1 + n [2si−1 − si − si−2]
[si − si−1] [si−1 − si−2]

(39)

To obtain E((p̂i − p̂i−1)2) we apply the Taylor series expansion to (
n [2si−1 − si − si−2]

[si − si−1] [si−1 − si−2] )

2

and then take the expectation. Hence

E(
n [2si−1 − si − si−2]

[si − si−1] [si−1 − si−2] )

2

= (pi − pi−1)2 + O(
1
n)

E ((p̂i − p̂i−1)2) = (pi − pi−1)2 + O(
1
n)

Thus as n tends to ∞, E((p̂i − p̂i−1)2) tends to (pi − pi−1)2

We now consider

V (p̂i − p̂i−1) = E(p̂i − p̂i−1)2 − (E (p̂i − p̂i−1))2

V (p̂i − p̂i−1) = E(p̂i − p̂i−1)2 − (E (p̂i) − E (p̂i−1))2

Thus from Eq. ( p̂i is asymptotically unbiased from Eq. (26) we can conclude that V p( î − p̂i−1) tends to 0 as n tends to ∞.

But

V (p̂i − p̂i−1) = V (p̂i) + V (p̂i−1) − 2Cov (p̂i−1, p̂i) (40)

The Cov (p̂i−1, p̂i) can also be shown as tending to 0 as n tends to ∞ by applying the Taylor series expansion.

Hence p̂i, the MLE of pi, is a consistent estimator of pi, i = 1, 2, ⋅ ⋅ ⋅, k.

Note: The MSE of modified MLE is less than MSE of MLE from Eq. (

From Eq. (2 p̃i is a consistent estimator of pi, i = 1, 2, ⋅ ⋅ ⋅, k. □Pdf_Folio:56 8) we can conclude that the modified MLE,

).29

39) and since

Thus, since V (p̂i − p̂i−1), Cov (p̂i−1, p̂i) andV (p̂i−1) all tend to 0 as n tends to ∞, we conclude that V (p̂i) also tends to 0 as n tends to ∞.
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6. CONCLUSION AND COMPARISION OF ESTIMATORS

We have observed in the earlier section that an improvement over the MLE is the modified MLE.We now have two estimators the UMVUE
and the modified MLE. Our objective is to compare both the estimators with respect to efficiency. We make a comparative study of the two
based on the determinant of the variance covariance matrix also called as the generalised variance (GV). We consider the trivariate case
namely k = 3. The variances and covariances of the UMVUE and modified MLE of the parameters can be obtained as below. Consider the
case when k = 3.

Variance of UMVUE of pi, i = 1, 2, 3 where s0 = 0 is

∞

∑
s1=n

∞

∑
s2=s1+n

∞
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s3=s2+n
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⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
⎠

2

P (s1s2s3)

⎤
⎥
⎥
⎥
⎥
⎦

− (pi)
2 (41)

Covariance of the UMVUEs of pi and pj, i, j = 1, 2, 3 and s0 = 0 is

∞

∑
s1=n

∞

∑
s2=s1+n

∞

∑
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⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

(
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(
si − si−1 − 1
si − si−1 − n )

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

(
sj − sj−1 − 2
sj − n )

(
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⎟
⎟
⎟
⎟
⎠

P (s1s2s3)

⎤
⎥
⎥
⎥
⎥
⎦

− (pi.pj) ; (42)

Variance of modified MLE of pi when k = 3 is

∞

∑
s1=n

∞

∑
s2=s1+n

∞

∑
s3=s2+n

(
n2
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2
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2
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2 (4 )

where s0 = 0; i = 1, 2, 3

Covariance of modified MLE of pi and pj, i, j = 1, 2, 3 and s0 = 0 is

∞

∑
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∞
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∞
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2
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2

The determinant of the variance covariance matrix is calculated and are compared for the two estimators in the graphs below for a range of
values of the parameters p1, p2 and p3.

It can be observed from the graphs in Figs. 1 and 2 that the generalised variance of the modified MLE is less than the corresponding GV of
the UMVUE for numerical values of p1, p2 and p3 ranging from 0.1 to 0.9. Thus we obtain a new and better estimator called modified MLE
which is consistent. It is an improvement over the MLE and is also more efficient than the UMVUE.

7. AN EXAMPLE FOR K = 3

A game of cricket has been considered. When a batsman is out he is replaced by another batsman in the next ball and the game continues.
When the replaced batsman is declared out another replacement is sent forth and the game continues. Consider the 2016 season of Cricket’s
Indian Premium League’ IPL 2016’. A total of 17 matches were played by the winning team, Sunrisers Hyderabad, of which 15 were suitable
for our study. We have recorded the following details.

Let

Xi denote the ball at which the first player becomes out in the ithmatch.

Yi denote the ball at which the player who replaces the first batsman becomes out in the ithmatch.

Zi denote the ball at which the player who replaces the second batsman becomes out in the ithmatch, i = 1,2, ...., 15.Pdf_Folio:57

3
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Figure 1

Pdf_Folio:58

The generalised variance of the modified MLE
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Figure 2

Pdf_Folio:59

The generalised variance of the modified MLE
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Table 1 IPL 2016: Team Hyderabad Sunrisers

Match No i Xi Yi Zi

1 25 29 35
2 7 16 27
3 4 26 38
4 31 32 52
5 4 18 20
6 11 49 52
7 17 26 42
8 33 38 61
9 14 51 56
10 30 54 56
11 8 9 20
12 16 41 50
13 10 31 61
14 4 10 23
15 25 30 53

Hence p1 = P(First player is out), p2 = P (Second player is out) and p3 = P (Third player is out).

Thus for n = 15, we obtain s1 = 239, s2 = 460 and s3 = 646. The MLE, UMVUE and modified MLE for the following parameters are as
shown in Table 2.

From the example of IPL2016, it is observed that the UMVUE, MLE and modified MLE estimates calculated for p1, p2 and p3 are very close
to each other.
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