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ABSTRACT
An existing one-parameter probability distribution can be very well generalized by adding an extra parameter in it and, in turn,
the two-parameter family of distributions, thus obtained, provides added flexibility in modeling real life data. In this article,
we propose and study a two-parameter generalization of xgamma distribution [1] and utilize it in modeling time-to-event data
sets. Along with the different structural and distributional properties of the proposed two-parameter xgamma distribution,
we concentrate in studying useful survival and reliability properties, such as hazard rate, reversed hazard rate, stress-strength
reliability etc. Twomethods of estimation, viz. maximum likelihood and method of moments, are been suggested for estimating
unknown parameters. Distributions of order statistics, stochastic order relationships are investigated for the proposed model. A
Monte-Carlo simulation study is carried out to observe the trends in estimation process. Two real life time-to-event data sets are
analyzed and the proposed model is compared with some other two-parameter lifetime models in the literature.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Adding extra parameters to an existing family of distributions is very common in the statistical distribution theory as the resulting family
of distributions, thus obtained, becomes richer and sometimes more flexible in modeling real life data sets. However, adding more param-
eters to an existing family of distributions may create complications in its basic structural properties and/or in methods of estimating the
additional parameters, see for more details Johnson et al. [2]. Nevertheless, adding an extra parameter to an existing probability distribution
generalizes the baseline distribution and provides flexibility in modeling or describing real life data.

Recently, Sen et al. [1] introduced and studied a one-parameter lifetime distribution, named as xgammadistribution, with probability density
function (PDF) as

f (x) = 𝜃2

(1 + 𝜃) (1 + 𝜃
2
x2) e−𝜃x, x > 0, 𝜃 > 0. (1)

The xgamma distribution has several interesting structural and survival properties that made it useful in modeling time-to-event data
sets. In another recent research paper, Sen and Chandra [3] introduced and studied different properties of a two-parameter extension or
generalization of xgamma density, named as quasi xgamma distribution (QXD), and applied it in modeling bladder cancer survival data.
QXD resembles closely with xgamma distribution in its density form and in other survival properties.

Our objective in this article is to introduce and study an another two-parameter generalization of xgamma distribution by adding an addi-
tional parameter α (> 0) to it. The beauty of this two-parameter extension is that it contains xgamma distribution as a special case. We have
studied different distributional, survival and/or reliability properties of this two-parameter xgamma distribution (TPXG) and demonstrated
its applicability in modeling lifetime data sets with potential flexibility over existing two-parameter lifetime models. The rest of the article
is organized as follows:

The TPXG along with its alternative form is introduced in section 2. Themoments and relatedmeasures are studied in section 3. Incomplete
moments are utilized in studying famous inequality curves and different entropy measures are studied in sections 4 and 5, respectively.
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In section 6, different survival properties are studied. Stress-strength reliability and distributions of order statistics are described in sections
7 and 8, respectively. Section 9 studies some stochastic ordering. Methods of estimating parameters are discussed in section 10. A sample
generation algorithm along with a Monte-Carlo simulation study is presented in section 11. In section 12, two real data sets are analyzed to
show the applicability of TPXG. Finally, section 13 concludes.

2. THE TPXG

In this section we introduce and study a two-parameter form of the xgamma distribution. We have the following definition.

Definition 2.1. A continuous random variable, X, will be said to follow a TPXG with parameters 𝛼 and 𝜃 if its PDF is of the form

f (x) = 𝜃2

(𝛼 + 𝜃) (1 + 𝛼𝜃
2
x2) e−𝜃x, x > 0, 𝜃 > 0, 𝛼 > 0. (2)

We denote it by X ∼ TPXG (𝛼, 𝜃).

Note.

1. When we put 𝛼 = 1 in (2), we obtain the xgamma distribution with parameter 𝜃 as a special case.

2. The TPXG as obtained in (2) is a special mixture of exponential(𝜃) and gamma (3, 𝜃) with mixing proportions 𝜃/ (𝛼 + 𝜃) and 𝛼/ (𝛼 + 𝜃),
respectively.

Alternative form:

An alternative form of the TPXG can be obtained by putting 𝛽 = 1/𝛼 in (2) and will have the form of the PDF as

f (x) = 𝜃2

(1 + 𝛽𝜃) (𝛽 + 𝜃
2
x2) e−𝜃x, x > 0, 𝜃 > 0, 𝛽 > 0. (3)

The cumulative distribution function (CDF) of X as given in 2 is given by

F (x) = 1 − (𝛼 + 𝜃 + 𝛼𝜃x + 1
2𝛼𝜃2x2)

(𝛼 + 𝜃)
e−𝜃x, x > 0, 𝜃 > 0, 𝛼 > 0. (4)

The characteristic function (CF) of X is derived as

𝜙X (t) = E [e
itX

] = 𝜃2

(𝛼 + 𝜃) [(𝜃 − it)−1 + 𝛼𝜃(𝜃 − it)−3] ; t ∈ ℝ, i = √−1. (5)

The plot of probability density curves for different values of 𝛼 and 𝜃 is shown in Figure 1.

3. MOMENTS AND RELATED MEASURES

In this section we study the moments and other related measures for the TPXG with parameters 𝛼 and 𝜃, i.e., TPXG (𝛼, 𝜃).

The rth order raw moments for X ∼ TPXG (𝛼, 𝜃) is obtained as

𝜇r′ = E (Xr) =
∞

∫
0

xr 𝜃2

(𝛼 + 𝜃) (1 + 𝛼𝜃
2
x2) e−𝜃xdx

= r!
2𝜃r (𝛼 + 𝜃)

[2𝜃 + 𝛼 (1 + r) (2 + r)] ; r = 1, 2, … .
(6)

In particular, we have,

𝜇1′ = E (X) = (𝜃 + 3𝛼)
𝜃 (𝛼 + 𝜃)

; 𝜇2′ = E (X
2
) = 2 (𝜃 + 6𝛼)

𝜃2 (𝛼 + 𝜃)
. (7)

So, we have the expression for second order central (about mean) moment or the population variance for X as

V (X) = 𝜇2 =
2 (𝜃2 + 8𝛼𝜃 + 3𝛼2)

𝜃2(𝛼 + 𝜃)2
(8)
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Figure 1 Probability density function of two-parameter xgamma distribution for different values of 𝛼
and 𝜃.

so that the coefficient of variation (CV) becomes

𝛾 =
√2 (𝜃2 + 8𝛼𝜃 + 3𝛼2)

(𝜃 + 3𝛼)
. (9)

The moment generating function (MGF) of X is derived as

MX (t) = E [e
tX

] = 𝜃2

(𝛼 + 𝜃) [(𝜃 − t)−1 + 𝛼𝜃(𝜃 − t)−3] ; t ∈ ℝ. (10)

The cumulant generating function (CGF) of X is obtained as

KX (t) = lnMX (t) = ln 𝜃2

(𝛼 + 𝜃) (𝜃 − t) + ln [1 + 𝛼𝜃
(𝜃 − t)2 ] ; t ∈ ℝ. (11)

The following theorem shows that TPXG (𝛼, 𝜃) is unimodal.

Theorem 3.1. For 𝜃 > 𝛼/2, the PDF, f (x) of X ∼ TPXG (𝛼, 𝜃), as given in (2), is decreasing in x.

Proof. We have from (2) the first derivative of f (x) with respect to x as

f ′(x) = 𝜃2

(𝛼 + 𝜃) (𝛼𝜃x − 𝜃 − 1
2𝛼𝜃2x2) e

−𝜃x.

f ′(x) is negative in x when 𝜃 > 𝛼/2, and hence the proof. □

So, we have from the theorem 3.1, for 𝜃 ≤ 𝛼/2, d
dx f (x) = 0 which implies that

(
1, +, √1 − 2 𝜃

𝛼 )
/𝜃 is the unique critical point at which

f (x) is maximized.Pdf_Folio:3
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Hence, the mode of TPXG (𝛼, 𝜃) is given by

Mode (X) =

⎧
⎪
⎨
⎪
⎩

1+ √1− 2𝜃
𝛼

𝜃
, if 0 < 𝜃 ≤ 𝛼/2.

0, otherwise.

(12)

4. INCOMPLETE MOMENTS AND INEQUALITY CURVES

The rth incomplete moment, 𝜇r (t) (say), for a random variable X with PDF f (x) is defined as

𝜇r (t) =
t

∫
0

xrf (x) dx

When X ∼ TPXG (𝛼, 𝜃), the rth incomplete moment is obtained as

𝜇r (t) = 𝜃2

(𝛼 + 𝜃)

t

∫
0

xr (1 + 𝛼𝜃
2
x2) e−𝜃xdx

= 𝜃2

(𝛼 + 𝜃) [𝛾 (r + 1, 𝜃t) + 𝛼𝜃
2

𝛾 (r + 3, 𝜃t)] ,
(13)

where 𝛾 (a, x) = ∫ x0 ua−1e−udu is lower incomplete gamma function.

Lorenz curve and Bonferroni curve are well known inequality curves (see for more details Kleiber and Kotz [4]) that have been extensively
applied in many fields such as economics, demography, insurance, medicine and reliability engineering.
When a non-negative continuous random variable X has PDF f (x) and CDF F (x), the Lorenz and Bonferroni curves are defined by

L (p) = 1
𝜇

q

∫
0

xf (x) dx

and

B (p) = 1
p𝜇

q

∫
0

xf (x) dx

respectively, where 𝜇 = E (X) and q = F−1 (p) for 0 < p < 1.

When X ∼ TPXG (𝛼, 𝜃), we use the first incomplete moment putting r = 1 in (14) to obtain Lorenz and Bonferroni curves as

L (p) = 𝜃3

(3𝛼 + 𝜃) [𝛾 (2, 𝜃q) + 𝛼𝜃
2

𝛾 (4, 𝜃q)] (14)

and

B (p) = 𝜃3

p (3𝛼 + 𝜃) [𝛾 (2, 𝜃q) + 𝛼𝜃
2

𝛾 (4, 𝜃q)] , (15)

respectively, where, for given p, 𝛼 and 𝜃, q is the solution of the equation, 𝛾 (1, 𝜃q) + 𝛼𝜃
2

𝛾 (3, 𝜃q) =
p (𝛼 + 𝜃)

𝜃2
that can easily be solved

numerically.

5. ENTROPY MEASURES

An entropy of a randomvariableX is ameasure of variation of the uncertainty. A popular entropymeasure is Rényi entropy. If a non-negative
continuous random variable, X, has the PDF f (x), then Rényi entropy is defined as

HR (𝛾) = 1
1 − 𝛾

ln
∞

∫
0

f 𝛾 (x) dx for 𝛾 > 0 (≠ 1) .
Pdf_Folio:4

“JSTA-17-4-9_print” — 2018/12/21 — 13:06 — page 677 — #4

S. Sen et al. / Journal of Statistical Theory and Applications 17(4) 674–685 677



When X ∼ TPXG (𝛼, 𝜃), one can derive
∞

∫
0

f 𝛾 (x) dx = 𝜃2𝛾

(𝛼 + 𝜃)𝛾

𝛾

∑
j=0

(
𝛾
j ) (

𝛼
2)

j Γ (2j + 1)
𝜃j+1𝛾2j+1

to obtain Rényi entropy as

HR (𝛾) = 1
1 − 𝛾 [2𝛾 ln 𝜃 − 𝛾 ln (𝛼 + 𝜃)] + 1

1 − 𝛾
ln

[

𝛾

∑
j=0

(
𝛾
j ) (

𝛼
2)

j Γ (2j + 1)
𝜃j+1𝛾2j+1 ]

. (16)

In physics, the Tsallis entropy[5] is a generalization of the standard Boltzmann-Gibbs entropy. For an absolutely continuous non-negative
random variable X with PDF f (x), Tsallis entropy (also called q-entropy) is definedas

Sq (X) = 1
q − 1

ln
⎡
⎢
⎢
⎣
1 −

∞

∫
0

f q (x) dx
⎤
⎥
⎥
⎦
for q > 0 (≠ 1)

When X ∼ TPXG (𝛼, 𝜃), Tsallis entropy can be derived as

Sq (X) = 1
q − 1

ln
[
1 − 𝜃2q

(𝛼 + 𝜃)q

q

∑
j=0 (

q
j )

( 𝛼
2

)j
Γ (2j + 1)
𝜃j+1q2j+1 ]

. (17)

Shannon measure of entropy is defined as

H (f) = E [− ln f (x)] = −
∞

∫
0

ln [f (x)] f (x) dx.

For X ∼ TPXG (𝛼, 𝜃), Shannon entropy is obtained as

H (f) = (
3𝛼 + 𝜃
𝛼 + 𝜃 ) − ln 𝜃2

(𝛼 + 𝜃)
− 𝜃2

(𝛼 + 𝜃)

∞

∑
j=1

(−1)j+1 (𝛼/2)j

𝜃j+1j [Γ (2j + 1) + 𝛼
2𝜃

Γ (2j + 3)] . (18)

6. SURVIVAL PROPERTIES

In this section we study different survival properties of the TPXG with parameters 𝛼 and 𝜃 given in (2).

The survival function (SF) of X is given by

S (x) = (𝛼 + 𝜃 + 𝛼𝜃x + 1
2𝛼𝜃2x2)

(𝛼 + 𝜃)
e−𝜃x; x > 0, 𝜃 > 0, 𝛼 > 0. (19)

The hazard rate (HR) function of X is obtained as

h (x) =
f (x)
S (x)

=
𝜃2 (1 + 𝛼𝜃

2 x
2)

(𝛼 + 𝜃 + 𝛼𝜃x + 1
2𝛼𝜃2x2)

; x > 0, 𝜃 > 0, 𝛼 > 0. (20)

Note.TheHR function, h (x), is increasing for x > √
2

𝛼𝜃
(see Figure 2 for HR plot for different values of 𝛼 and 𝜃) with the following bounds.

f (0) = 𝜃2

(𝛼 + 𝜃)
< h (x) < 𝜃

Theorem 6.1. The failure rate, h (x), as given in (21) is increasing failure rate (IFR) in distribution for x > √
2

𝛼𝜃
and is decreasing failure rate

(DFR) in distribution for x < √
2

𝛼𝜃
.

□Proof . The proof comes immediately as the PDF given in (2) is log-concave for x > √
2

𝛼𝜃
and log-convex for x < √

2
𝛼𝜃

.
Pdf_Folio:5
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Figure 2 Hazard rate function of two-parameter xgamma distribution for different values of 𝛼 and 𝜃.

The reversed hazard rate (RHR) function of X is obtained as

r (x) =
f (x)
F (x)

=
𝜃2 (1 + 𝛼𝜃

2 x
2) e−𝜃x

(𝛼 + 𝜃) (1 − e−𝜃x) − (1 + 𝜃x
2 ) 𝛼𝜃xe−𝜃x

; x > 0, 𝜃 > 0, 𝛼 > 0. (21)

The mean residual life (MRL) function of X is given by

m (x) = E [X − x|X > x] = 1
S (x)

∞

∫
x

S (t) dt

= 1
𝜃

+ 𝛼 (2 + 𝜃x)
𝜃 (𝛼 + 𝜃 + 𝛼𝜃x + 1

2𝛼𝜃2x2)
.

(22)

Note. The MRL function,m (x), is bounded with the following limits,

1
𝜃

< m (x) < (𝜃 + 3𝛼)
𝜃 (𝛼 + 𝜃)

= E (X) .

7. STRESS-STRENGTH RELIABILITY

Let X and Y be continuous random variables denote strength and stress, respectively, of an equipment or a system, then the stress-strength
reliability is defined as

R = Pr (X > Y) =
∞

∫
0

Pr (X > Y|Y = y) fY (y) dy =
∞

∫
0

SX (y) fY (y) dy,

where fY (.) is the PDF of Y and SX (.) is the SF of X.Pdf_Folio:6
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If X ∼ TPXG (𝛼1, 𝜃1) and Y ∼ TPXG (𝛼2, 𝜃2) independently, then stress-strength reliability is obtained as

R =
𝜃22

(𝛼1 + 𝜃1) (𝛼2 + 𝜃2) [(
𝛼1 + 𝜃1
𝜃1 + 𝜃2 ) +

𝛼1𝜃1
(𝜃1 + 𝜃2)2

+
𝛼1𝛼2𝜃2 + 𝛼2𝜃1𝜃2 + 𝛼1𝜃21

(𝜃1 + 𝜃2)3 ]

+
3𝛼1𝛼2𝜃1𝜃32

(𝛼1 + 𝜃1) (𝛼2 + 𝜃2) (𝜃1 + 𝜃2)4
+

6𝛼1𝛼2𝜃21𝜃
3
2

(𝛼1 + 𝜃1) (𝛼2 + 𝜃2) (𝜃1 + 𝜃2)5
. (23)

In particular, when X and Y are independently and identically distributed (IID) TPXG (𝛼, 𝜃), we have the expression for stress-strength
reliability as

R = 𝜃2

(𝛼 + 𝜃)2 [
𝛼
𝜃

+ 1
2 + 𝛼2

2𝜃2 ] (24)

Note. If we put 𝛼 = 1 in (25), we have R = 1/2, which is nothing but the stress-strength reliability when X and Y are IID x gamma (𝜃).

8. DISTRIBUTION OF ORDER STATISTICS

Distributions of order statistics for a lifetime random variable play important roles in computing system reliability in case of series or parallel
configurations with IID components.

Let X1,X2, … ,Xn be a random sample of size n drawn from X ∼ TPXG (𝛼, 𝜃).

Denote X(j) as the j
th order statistic. Then X(1) and X(n) denote the smallest and largest order statistics for a sample of size n drawn from

TPXG (𝛼, 𝜃), respectively.

The PDF of X(1) is derived as

fX(1) (x) = n [1 − F (x)]n−1 f (x)

= n𝜃2

(𝛼 + 𝜃)n (1 + 𝛼𝜃
2
x2) [𝛼 + 𝜃 + 𝛼𝜃x + 1

2𝛼𝜃2x2]
n−1 e−n𝜃x

(25)

for x > 0, 𝜃 > 0 and 𝛼 > 0.

Similarly, the PDF of X(n) is obtained as

fX(n) (x) = n[F (x)]n−1f (x)

= n𝜃2

(𝛼 + 𝜃)n (1 + 𝛼𝜃
2
x2) [(𝛼 + 𝜃) (1 − e−𝜃x) − (1 + 𝜃x

2 ) 𝛼𝜃xe−𝜃x
]

n−1

e−𝜃x
(26)

for x > 0, 𝜃 > 0 and 𝛼 > 0.

9. STOCHASTIC ORDERING

In this section we study stochastic ordering relations for random variables following TPXG (𝛼, 𝜃). Stochastic ordering is an important tool
for judging the comparative behavior. Recall some basic definitions.

Definition 9.1. A non-negative random variable X1 is said to be smaller than an another non-negative random variable X2 in the

i. stochastic order (X1 ≤ST X2) if FX1 (x) ≥ FX2 (x) for all x.

ii. HR order (X1 ≤HR X2) if hX1 (x) ≥ hX2 (x) for all x.

iii. MRL order (X1 ≤MRL X2) ifmX1 (x) ≤ mX2 (x) for all x.

iv. likelihood ratio order (X1 ≤LR X2) if fX1 (x)
fX2 (x)

decreases in x.
Pdf_Folio:7
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10. ESTIMATION OF PARAMETERS

10.1. Method of Moments Estimation

(28)

The following implications [6] are well justified:

X1 ≤LR X2 ⇒ X1 ≤HR X2 ⇒ X ≤MRL X2 and

X ≤HR X2 ⇒ X ≤ST X2. (27)

The following theorems shows that the TPXG is ordered with respect to the strongest likelihood ratio ordering and thereby the other
orderings as mentioned in definition 9.1.

Theorem 9.1. Let X1 ∼ TPXG (𝛼1, 𝜃1) and X2 ∼ TPXG (𝛼2, 𝜃2). If 𝛼1 = 𝛼2 and 𝜃1 ≥ 𝜃2 (or, if 𝜃1 = 𝜃2 and 𝛼1 ≤ 𝛼2), then X1 ≤LR X2 and
hence X1 ≤HR X2, X1 ≤MRL X2 and X1 ≤ST X2.

Proof . Let us denote the PDF of X1 as fX1 (x) and that of X2 be fX2 (x) for x > 0.

We have then the ratio

fX1 (x)
fX2 (x)

=
𝜃21 (𝛼2 + 𝜃2)
𝜃22 (𝛼1 + 𝜃1) (

1 + 𝛼1𝜃1
2 x2

1 + 𝛼2𝜃2
2 x2 )

e−(𝜃1−𝜃2)x

Taking logarithm both sides, we have

ln [
fX1 (x)
fX2 (x) ] = 2 ln(

𝜃1
𝜃2 ) + ln(

𝛼2 + 𝜃2
𝛼1 + 𝜃1 ) + ln

(
1 + 𝛼1𝜃1

2 x2

1 + 𝛼2𝜃2
2 x2 )

− (𝜃1 − 𝜃2) x.

The first derivative with respect to x gives

d
dx

ln [
fX1 (x)
fX2 (x) ] = (𝛼1𝜃1 − 𝛼2𝜃2) x

(1 + 𝛼1𝜃1
2 x2) (1 + 𝛼2𝜃2

2 x2)
− (𝜃1 − 𝜃2) ,

which is negative when 𝛼1 = 𝛼2 and 𝜃1 ≥ 𝜃2 (or, when 𝜃1 = 𝜃2 and 𝛼1 ≤ 𝛼2), i.e.,
fX1 (x)
fX2 (x)

decreases in x when 𝛼1 = 𝛼2 and 𝜃1 ≥ 𝜃2 (or, when

𝜃1 = 𝜃2 and 𝛼1 ≤ 𝛼2), so X1 ≤LR X2 and the other orderings follow automatically by (28). Hence the proof.

Now, we establish stochastic order relationships between two random variables, X and Y, when X ∼ TPXG (𝛼1, 𝜃1) and Y ∼ QXD (𝛼2, 𝜃2).
Note that the QXD with parameters 𝛼 and 𝜃 has the PDF

f (x) = 𝜃
(1 + 𝛼) (𝛼 + 𝜃2

2
x2) e−𝜃x; x > 0, 𝛼, 𝜃 > 0

We have the following theorem.

Theorem 9.2. Let X ∼ TPXG (𝛼1, 𝜃1) and Y ∼ QXD (𝛼2, 𝜃2). If 𝛼1 = 𝛼2 = 𝛼(say), then X ≤LR Y whenever (𝜃1 − 𝜃2) + 𝜃22
𝜃1

≥ 𝛼2 and

𝜃1 > 𝜃2. Again, if 𝜃1 = 𝜃2 = 𝜃(say), then X ≤LR Y whenever 𝛼1 ≤ 𝜃
𝛼2

.

Proof . The proof comes immediately following the similar arguments as followed in the proof of theorem 9.1. Hence is omitted.

In this section we propose method of moments and maximum likelihood estimators (MLEs) for and 𝜃 when X ∼ TPXG (𝛼, 𝜃).

Let X1,X2, … ,Xn be a random sample of size n drawn from TPXG (𝛼, 𝜃). Denote X as sample mean.

Using the first two raw moments given in (7), we have

𝜇
′2
2

𝜇1′
= 2 (𝜃 + 6𝛼) (𝛼 + 𝜃)

(𝜃 + 3𝛼)2
= k (say) (28)

Pdf_Folio:8
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Taking = c 𝛼, we have

𝜇 2
2

𝜇1′
= 2 (c + 6) (c + 1)

(c + 3)2
= k

which give a quadratic equation in c as

(2 − k) c2 + (14 − 6k) c + (12 − 9k) = 0 (29)

An estimate of k is easily obtained by replacing 𝜇1 ′ and 𝜇2 ′ by sample moments X andm2 ′, respectively, in equation (29). This estimate can
then be utilized to solve (30) to obtain an estimate of c. Again, from the first moment equation, we have

X = (c + 3)
𝛼c (c + 1)

and thus moment estimator of 𝛼, �̃� (say), is given by

�̃� = [
(c + 3)
c (c + 1) ]

1
X

. (30)

Finally, the moment estimator, �̃� (say), of 𝜃 is obtained as

�̃� = (
c + 3
c + 1)

1
X

. (31)

10.2. Maximum Likelihood Estimation

Let x = (x1, x2, … , xn) be n observations or realizations on a random sample X1,X2, … ,Xn of size n drawn from X ∼ TPXG (𝛼, 𝜃). We have
the likelihood function as

L (𝛼, 𝜃|X) =
n

∏
i=1

𝜃2

(𝛼 + 𝜃) (1 + 𝛼𝜃
2
x2i ) e−𝜃xi = 𝜃2n

(𝛼 + 𝜃)n
e−𝜃∑n

i=1 xi
n

∏
i=1

(1 + 𝛼𝜃
2
x2i ) . (32)

The log-likelihood function is given by

ln L (𝛼, 𝜃|x) = 2n ln 𝜃 − n ln (𝛼 + 𝜃) − 𝜃
(

n

∑
i=1

xi
)

+
n

∑
i=1

In(1 + 𝛼𝜃
2
x2i ) . (33)

To find out the MLEs, �̂� and �̂�, of 𝛼 and 𝜃, we have two log-likelihood equations as

𝜕 ln L (𝛼, 𝜃|x)
𝜕𝛼

=
n

∑
i=1 (

𝜃
2x

2
i

1 + 𝛼𝜃
2 x

2
i )

− n
(𝛼 + 𝜃)

= 0 (34)

and

𝜕 ln L (𝛼, 𝜃|x)
𝜕𝜃

= 2n
𝜃

− n
(𝛼 + 𝜃)

+
n

∑
i=1 (

𝛼
2x

2
i

1 + 𝛼𝜃
2 x

2
i )

−
n

∑
i=1

xi = 0, (35)

respectively.

Though the log-likelihood equations cannot be solved analytically, we can utilize numerical method for solving (3 3
MLEs, �̂� and �̂�, respectively.Pdf_Folio:9

′
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11. SAMPLE GENERATION AND SIMULATION STUDY

This section deals with the random sample generation algorithm for generating random samples of specific size from the TPXG. We make
use of the fact that the distribution as given in (2), is a special mixtures of exponential (𝜃) and gamma (3, 𝜃) for describing sample generation
algorithm. To generate a random sample of size n from TPXG (𝛼, 0a), we have the following simulation algorithm:

i. Generate Ui ∼ uniform (0, 1) , i = 1, 2, ... , n.

ii. Generate Vi ∼ exponential (𝜃) , i = 1, 2, ... , n.

iii. GenerateWi ∼ gamma (3, 𝜃) , i = 1, 2, ... , n.

iv. If Ui ≤ 𝜃
𝛼 + 𝜃

, then set Xi = Vi, otherwise, set Xi = Wi.

A Monte-Carlo simulation study was carried out considering N = 10000 times for selected values of n, 𝛼 and 𝜃. Samples of sizes 20, 30, 50,
80 and 100 were considered and values of (𝛼, 𝜃) were taken as (0.5, 0.5), (1.5, 2.0) and (3.0, 4.0).

The following measures were computed:

(a) Average mean square error (MSE) of the simulated estimates �̂�i, i = 1, 2, … ,N:

�̂� = 1
N

N

∑
i=1

(�̂�i − 𝛼)2

(b) Average MSE of the simulated estimates �̂�i, i = 1, 2, … ,N:

�̂� = 1
N

N

∑
i=1

(�̂�i − 𝜃)2

The results of the simulation study are shown in Table 1. The following observations are made from the simulation study:

i. The estimates of 𝛼 and 𝜃 get closer to the corresponding true values as the sample size, n, increases.

ii. The average MSEs for estimates of 𝛼 and estimates 𝜃 decrease with increasing sample size.

12. APPLICATION WITH REAL LIFE DATA ILLUSTRATION

In this section we analyze two different time-to-event data sets for illustrating the applicability of TPXG. For comparison purpose, besides
TPXG, we consider five other two parameter lifetime distributions, viz., gamma distribution with shape 𝛼 and rate 𝜃, weibull distribution
with shape 𝛼 and scale 𝛽, log-normal distribution with parameters 𝜇 and 𝜎, two-parameter Lindley distribution (TPLD) with parameters
alpha and 𝜆(Shanker et al. [7] and QXD with parameters 𝛼 and 𝜃 [3].

In order to compare the two distribution models, we consider criteria like, -log-likelihood, AIC (Akaike information criterion, see [8]) and
BIC (Bayesian information criterion, see [9]), for the data sets. The better distribution corresponds to smaller -log-likelihood, AIC and BIC
values. MLE is used for estimating the model parameters for both the data sets.

Illustration I:As a first illustrationwe consider a data set on the failure times of an electronic device reported inWang [10]. Table 2 represents
the data of 18 failure times of an electronic device. Table 3.

shows the estimates of the model parameter(s) with standard error(s) of estimates in parenthesis and model selection criteria for the first
data set.

Illustration II:As a second illustration we consider a data set on the lifetimes of a device reported in Aarset [11]. Table 4. represents the data
of 50 lifetimes of a device.

Table 5 shows the estimates of the model parameter(s) with standard error(s) of estimates in parenthesis and model selection criteria for
the data set represented in Table 4.

In each of the above illustration, TPXG (𝛼, 𝜃) provides better fit (in view of -log-likelihood, AIC and BIC values) as compared to the well-
known lifetime models for the considered data set. Hence, the two-parameter extension of xgamma distribution provides flexibility in
modeling real life data sets in comparison with other two-parameter lifetime distributions in the literature.Pdf_Folio:10
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Table 1 Estimates and average MSEs of 𝛼 and 𝜃 for different sample sizes.

 𝛼 = 0.1, 𝜃 = 0.5 

n �̂� MSE of �̂� �̂� MSE of �̂�
20 0.3621 1.3402 0.6597 0.8742
50 0.2106 1.2201 0.5892 0.6420
80 0.1976 1.1046 0.5108 0.5602
100 0.1691 1.0042 0.5032 0.4763

 𝛼 = 0.1, 𝜃 = 1.5 
n �̂� MSE of �̂� �̂� MSE of �̂�
20 0.3986 1.8756 1.6942 0.8966
50 0.2654 1.4320 1.5730 0.7021
80 0.1976 1.2205 1.5107 0.4503
100 0.1430 0.9986 1.5002 0.3064

 𝛼 = 1.5, 𝜃 = 0.5
n �̂� MSE of �̂� �̂� MSE of �̂�
20 2.0166 2.3106 0.6879 0.9845
50 1.9822 1.9658 0.5983 0.6650
80 1.7043 1.4576 0.5127 0.4501
100 1.6503 1.1212 0.5026 0.3326

 𝛼 = 1.5, 𝜃 = 2.5
n �̂� MSE of �̂� �̂� MSE of �̂�
20 2.1551 3.2249 2.6158 0.5344
50 1.9256 1.8867 2.5310 0.2776
80 1.8282 1.4404 2.5100 0.2047
100 1.7675 1.2444 2.5004 0.1753

 𝛼 = 3.0, 𝜃 = 5.0
n �̂� MSE of �̂� �̂� MSE of �̂�
20 4.6542 2.4328 5.7643 1.2376
50 4.1035 2.0122 5.3066 1.0544
80 3.6479 1.8768 5.1006 0.8790
100 3.4509 1.0256 5.0016 0.6504

Table 2 Time to failure of 18 electronic devices.

5 11 21 31 46 75 98 122 145 165 196 224 245 293 321

330 350 420

Table 3 MLEs of model parameters and model selection criteria for failure times data of 18 electronic devices.

Distributions Estimate(Std. Error) -Log-likelihood AIC BIC

Gamma(𝛼, 𝜃)  �̂� = 1.1131 (0.3206)
 �̂� = 0.0064 (0.0022) 2110.60 2225.21 2226.99

Weibull(𝛼, 𝛽) �̂� = 1.1458 (0.2287)
�̂� = 179.69 (38.6837)  2110.45 2224.89 2226.67

Log-normal(𝜇, 𝜎) �̂� = 4.6358 (0.2952)
�̂� = 1.2523 (0.2087)  2113.03 2230.07 2231.85

TPLD(𝛼, 𝜆) �̂� = 0.0090 (0.0134)
�̂� = 0.0087 (0.0024)  2110.30 2224.59 2226.37

QXD(𝛼, 𝜃) �̂� = 0.7251 (0.5740)
�̂� = 0.0125 (0.0027)  2110.24 2224.48 2226.26

TPXG(𝛼, 𝜃) �̂� = 0.0173 (0.0158)
�̂� = 0.0125 (0.0027)  2109.62 2223.25 2225.03

Table 4 Lifetimes of 50 devices.

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18

18 18 18 21 32 36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83 84 84 84 85 85
85 85 85 86 86

13. CONCLUDING REMARKS

An extra non-negative parameter is added to an existing distribution, the xgamma distribution, for studying the different properties and
applications of the extended distribution, named as TPXG. There are several other standard and well established procedures in the literature
for obtaining generalized two-parameter family of distributions that include baseline distribution as a special case. This article reflects one
such alternative in adding extra parameter to the xgamma distribution for the purpose of generalizing the baseline density and to study
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Table 5 MLEs of model parameters and model selection criteria for data on lifetimes of 50 devices.

Distributions Estimate(Std. Error) -Log-likelihood AIC BIC

Gamma(𝛼, 𝜃) �̂� = 0.7990 (0.1375)
�̂� = 0.0175 (0.0041)   2240.19 2484.38 2488.20

Weibull(𝛼, 𝛽) �̂� = 0.9492 (0.1196)
�̂� = 44.9194 (6.9458)  2241.00 2486.00 2489.83

Log-normal(𝜇, 𝜎) �̂� = 3.0790 (0.2472)
�̂� = 1.7481 (0.1748)  2252.82 2509.65 2513.47

TPLD(𝛼, 𝜆) �̂� = 0.0256 (0.0224)
�̂� = 0.0317 (0.0053)  2240.16 2484.33 2488.15

QXD(𝛼, 𝜃) �̂� = 0.7022 (0.2984)
�̂� = 0.0476 (0.0056)  2237.12 2478.24 2482.06

TPXG(𝛼, 𝜃) �̂� = 0.0677 (0.0330)
�̂� = 0.0476 (0.0056)  2236.73 2477.47 2481.29

the general fact of added flexibility in modeling real life data sets without sacrificing much in standard estimation process. Although the
article focuses in observing additional flexibility of the proposed two-parameter xgamma model over the standard two-parameter models
in modeling time-to-event data sets, the proposed model might also be useful and potential in describing data sets coming from diverse
areas of application owing to the fact of its lucrative structural and/or distributional properties and easy standard estimation aspects.
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