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ABSTRACT
The weighted entropymeasure is a germane dynamic measure of uncertainty in reliability and survival studies. In this paper, the
new results of weighted entropies with some characterizations are provided. Furthermore, we have presented some results for
weighted entropy residual and weighted past residual of order statistics with some application of some reliability systems such as
a series structure and a parallel structure. In addition, we introduced the lower bound for the weighted residual (past) entropy.
Moreover, the stochastic orders based on weighted entropy are presented. Finally, we illustrate the usefulness of the proposed
non-parametric estimators of weighted entropy by application to real data.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Theweighted distributions have been utilized inmany applications such as distributions theory, reliability, probability, ecology, bio-statistics
and applied.

Consider the distribution function G (.) for a random variable Y ≥ 0 with density function g (.). Suppose

lY = inf {y ∈ ℝ1 ∶ G (y) > 0} , uY = sup {y ∈ ℝ1 ∶ G (y) < 1} , SY = (lY, uY) and w (.) ∈ R+ be a weighted function. The weighted
random variable YW, having probability density function as:

gw (y) = w (y) g (y)/E [w (y)] , −∞ ≤ y ≤ ∞, (1)

where E [w (y)] ∈ ℝ+. LetY represents the life length of a “unit” in reliability studies, and life distribution, with survival functionGY, hazard
rate function 𝜑G (.) = gY (.) /GY (.), reversed hazard rate 𝜑G (.) = gY (.) /GY (.), the geometric vitality function 𝜗 (Y) = E (ln Y |Y > 0) and
mean revered residual lifetime as

𝜃 (t) = 𝔼 [𝜅 − Y |Y ≤ 𝜅] = ∫
𝜅

0

GY (u) du
GY (𝜅)

, 𝜅 ∈ ℝ+. (2)

As reported by Ebrahimi and Pellery [1] and Asha and Rejeesh [2], the differential entropy (HY) demonstrate the expected uncertainty of
g (y). In addition, it measures how the distribution spreads over its domain, where there is an inverse relationship between the value ofHY
and concentration of the probability mass of Y. HY sometimes called a dynamic measure of uncertainty or Shannon information measure.

The differential entropy of random variable Y can be defined in the continuous case as follows:

HY = E [− ln gY (Y)] = − ∫
∞

0
gY (u) ln gY (u) du. (3)
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Khinchin (1957) generalized Eq. (3) as

H𝜙
Y = E [𝜙 (gY (y))] = ∫

∞

0
gY (u) 𝜙 (gY (u)) du.

Di Crescenzo and Longobardi [4] developed the following convex entropy measure:

Hw (Y) = − ∫
∞

0
vgY (v) ln gY (v) dv,

or equivalently:

Hw (Y) = − ∫
∞

0
dy ∫

∞

y
gY (v) ln gY (v) dv. (4)

The uncertainty of the residual lifetime is discussed in Di Crescenzo and Longobardi [5], with the following measure:

H (Y, 𝜅) = 1 − E [ln 𝜑G (Y) |Y > 𝜅] = − ∫
∞

𝜅

gY (v)
G (v)

ln gY (v)
G (v)

dv, 𝜅 ∈ ℝ+,

where 𝜅 ∈ A = {y ∈ ℝ+ |
||GY (y) > 0} . In addition, the past entropy has been widely researched. We can measure it as follows:

HG (Y, 𝜅) = 1 − E [ln 𝜑G (Y) |Y < 𝜅] = − ∫
𝜅

0

gY (v)
G (v)

ln gY (v)
G (v)

dv, 𝜅 ∈ ℝ+.

Di Crescenzo and Longobardi [4] defined the convex residual entropy as

Hw (Y, 𝜅) = − ∫
∞

𝜅
y
gY (y)
G (𝜅)

ln
ygY (y)
G (𝜅)

dy, 𝜅 ∈ ℝ+.

Furthermore, let Y1 and Y2 be two random variables with distribution functions G1 (.) and G2 (.), densities functions gY1 (.) and gY2 (.) and
survival functions G1 (.) and G2 (.) respectively. Kullback and Leibler [6] introduced an information distance between two distributions G1
and G2 as follows:

IY1,Y2 = ∫
∞

0
gY1 (u) ln gY1 (u)

gY2 (u)
du.

In addition, Ebrahimi and Kirmani [7] have demonstrated that the Kullback-Leibler discrimination information of Y1 and Y2 at time 𝜅 can
be presented as

IRY1,Y2 (𝜅) = ∫
∞

𝜅

gY1 (u)
G1 (𝜅)

ln
gY1 (u) /G1 (𝜅)

gY (u) /G2 (𝜅)
du. (5)

We can use Eq. (5) to distinguish between two residual lifetimes those have both survived up to time 𝜅, where IRY1 ,Y2 (𝜅) identifies with the
relative entropy of [Y1 − 𝜅 |Y1⟩𝜅] and [Y2 − 𝜅 |Y2⟩𝜅].

The purpose of this study is to develop and add more properties, characterizations, order statistics, some inequalities and stochastic orders
of weighted differential entropies measures. In Section 2, definitions, notation, basic properties and characterizations are illustrated. The
weighted entropy (residual and past residual) of order statistics with some application of reliability systems such as a series structure and a
parallel structure are given in Section 3. In addition, we provided the lower bound for the weighted residual (past) entropy. The stochastic
orders based onweighted entropy are developed in Section 4. Lastly, in Section 5, the suggested estimators of weighted entropy are presented.
Furthermore, we illustrate the usefulness of the proposed non-parametric estimators of weighted entropy by application to real data.

Throughout this article, the term entropy is used instead of differential entropy and using abbreviationPL for past lifetime,WPE forweighted
past residual entropy,WRE for weighted residual entropy, SS for the series system, PS for the parallel system, SE for small than or equal.Pdf_Folio:2
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2. THE WEIGHTED DIFFERENTIAL ENTROPY

The weighted differential entropy (WDE) defined by Das [8] for random variable Y with weighted function w (x) = x as:

𝜉w (Y) = −
𝜗w (Y) + ∫ xfY (x) ln fY (x) dx − 𝔼 [Y] ln𝔼 [Y]

𝔼 [Y]
, (6)

= Hw (Y)
𝔼 [Y]

+ ln 𝔼 [Y] − 𝜗w (Y)
𝔼 [Y]

,
where

𝜗w (Y) = ∫ xfY (x) ln xdx =∶ 𝔼 (Y lnY) . (7)

whenever the integral ∫ (u
𝜃fY (u) /𝔼 (Y

𝜃
)) (1 ∨ | ln (u

𝜃fY (u) /𝔼 (Y
𝜃
)) |) du < ∞.

As a general case, we can be defined the generalized the WDE as the following definition:

Definition 2.1. Given a function y ∈  ↦ w (y) ≥ 0, and an RV Y:  → , with a probability density function gY (.), survival function G (.)
and mean 𝔼 (Y) . Therefore, the weighted differential entropy with weighted function w (y) = y𝜃 is defined as

𝜉w (Y) = 𝔼 [− ln gwY (Y)] = ∫ g
w
Y (u) ln 1

gwY (u)
du,

= − ∫
u𝜃gY (u)
𝔼 (Y𝜃)

ln u𝜃gY (u)
𝔼 (Y𝜃)

du,

= − 1
𝔼 (Y𝜃) [𝜃 ∫ u

𝜃gY (u) ln udu + ∫ u
𝜃gY (u) ln gY (u) du − 𝔼 (Y

𝜃
) ln 𝔼 (Y

𝜃
)] .

Now, let Y1,Y2, ...,Yn be a sample from the distribution F and n ≥ 3. By using Vasicek [9], express Eq. (2.1) can be rewritten as

𝜉w (Y) = ∫
1

0
ln{

𝜕
𝜕uF

−1 (u)} du. (8)

In addition, Das [8] have defined the weighted residual entropy as

𝜉w (Y, 𝜅) = − ∫
∞

𝜅

gwY (v)
Gw (𝜅)

ln
gwY (v)
Gw (𝜅)

dv,

= − 1
E [Y|Y > 𝜅] ∫

∞

𝜅
v
gY (v)
G (𝜅)

ln
vgY (v)

E [Y |Y > 𝜅]G (𝜅)
dv, 𝜅 ∈ ℝ+.

If fX (x) is the actual density function of random variable X and gY (x) is the density function determined by the researcher. Therefore, the
weighted inaccuracy measure can be defined as

ℝw (X,Y) = − ∫ xfX (x) ln gY (x) dx. (9)

Next, we define the relative WDE of two densities.

Definition 2.2. Let X and Y be two random variables with density function, s ∈  ↦ fwX (s) ≥ 0 and s ∈  ↦ gY (s) ≥ 0, and mean values
𝔼X (.) and 𝔼Y (.), respectively. Therefore, the relative weighted differential entropy of gY (x) relative to fw (x) can be defined as

ℝ (X
w ∥ Y) = 𝔼 [ln

sfX (s)
𝔼X (s) gY (s) ] ,

= ∫
vfX (v)
𝔼X (X)

ln vfX (v)
𝔼X (v) gY (v)

dv.

By using Eq. (4), we can define an alternative formulas of ℝ (Xw ∥ Y) as follows

ℝ (X
w ∥ Y) = ln 1

𝔼X (X)
− Hw (X)

𝔼X (X)
− ∫

xfX (x)
𝔼X (x)

ln xgY (x) dx.
Pdf_Folio:3
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Note that when gY (x) ≡ fX (x) , then we have

ℝ (Xw ∥ X) = ln 1
𝔼X (X)

− Hw (X)
𝔼X (X)

− ∫
xfX (x)
𝔼X (x)

ln xfX (x) dx,

= ln (exp (− 𝜗w (X) + 2Hw (X)
𝔼X (X) ) /𝔼X (X)) .

Remark 2.1. By using Eqs. (8) and (9) we get the following relation

ℝ (X
w ∥ Yw

) = ln 𝔼Y (X)
𝔼X (X)

− Hw (X)
𝔼X (X)

+
ℝw

X (X,Y)
𝔼X (X)

.

Furthermore, we can define the divergence between fw (x) and gY (x) as follows

𝕂 (X
w,Y) = ℝ (X

w ∥ Y) + ℝw (Y ∥ X) , = ∫ (f
w
X (x) − gY (x)) ln

fwX (x)
gY (x)

dx,

it is a measure of the difficulty of discrimination between them.

Now, let X be RV with beta distribution as follows:

fX (s) = s𝛼−1 (1 − s)𝛽−1
/B (𝛼, 𝛽) , s ∈  ∈ (0, 1) .

By using Eq. (3), we get that HX satisfy the following equation:

HX = ln(
B (𝛼, b) exp ((𝛼 + 𝛽 − 2) Ψ (𝛼 + 𝛽))
exp ((𝛼 − 1) Ψ (𝛼) + (𝛽 − 1) Ψ (𝛽)) ) , (10)

where B (., .) is beta function and Ψ (.) is psi function.

The following theorem states that this relationship actually characterizes the beta distribution.

Characterization Theorem 2.1: Any random variable Y with distribution function 𝕂, density function fY (x), mean 𝔼 [Y], mode Γ𝕂 (Y),
geometric mean 𝔾 [Y] , entropy function HY and weighted differential entropy 𝜉w (Y) satisfying the following relationship:

𝜉w (Y) = HY − (𝛼 − 1) [
Γ𝕂 (Y) + 𝔼 [Y]

Γ𝕂 (Y) ] + ln 𝔼 [Y] − ln (𝔾 [Y]) + ((𝔼 [Y] − 1) /𝛼) ,

is either degenerate or Y has a beta distribution. Indeed, the degenerate case should be subsumed in the beta distribution with (𝛼, 𝛽) ∈ R+.

Proof. By using the following integral formula which is taken from Gradshteyn and Ryzhik ([10], formula 4.253(1), pp. 538):

∫ y
𝜃−1

(1 − yc)
𝜆−1 ln ydy = 1

c2
B(

𝜃
c , 𝜆) (Ψ (

𝜃
c) − Ψ (

𝜃
c + 𝜆)) ,

provided that Re (𝜃) > 0, Re (𝜆) > 0, c > 0. We denote the beta function with the symbol B(⋅, ⋅) and the digamma function with Ψ(·).
Therefore, we have

𝜗w (Y) = ∫ xfX (x) ln xdx,

= 1
B (𝛼, 𝛽)

[B (𝛼 + 1, 𝛽) (Ψ (𝛼 + 1) − Ψ (𝛼 + 𝛽 + 1))] ,

= 𝔼 [Y] (Ψ (𝛼 + 1) − Ψ (𝛼 + 𝛽 + 1)) .

By using Example 2.3 in Di Crescenzo and Longobard ([4], pp.682), Eq. (4) and the recurrence relation of the digamma function, we can
rewrite Hw (Y) as follows:

Hw (Y) = 𝔼 [Y]

⎡
⎢
⎢
⎢
⎣

lnB (𝛼, 𝛽) + (1 − 𝛼) (Ψ (𝛼) + 1
𝛼 )

+ (𝛼 + 𝛽 − 2) (Ψ (𝛼 + 𝛽) + 1
𝛼 + 𝛽 ) + Ψ (𝛽) (1 − 𝛽)

⎤
⎥
⎥
⎥
⎦

. (11)

We can reduce Eq. (11) as,

Hw (Y) = 𝔼 [Y] [HY + (1 − 𝛼) 1
𝛼

+
(𝛼 + 𝛽 − 2)

(𝛼 + 𝛽) ] , = 𝔼 [Y] [HY − (𝛼 − 1) [
Γ𝕂 (Y) + 𝔼 [Y]

Γ𝕂 (Y) ]] .
Pdf_Folio:4
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This is true for f (Γ𝕂 (.)) = max
−∞<x<∞

fX (.) . Furthermore by Eqs. (6) and (10) we have

𝜉w (Y) = HY − (𝛼 − 1) [
Γ𝕂 (Y) + 𝔼 [Y]

Γ𝕂 (Y) ] + ln 𝔼 [Y] − (Ψ (𝛼 + 1) − Ψ (𝛼 + 𝛽 + 1)) ,

= HY − (𝛼 − 1) [
Γ𝕂 (Y) + 𝔼 [Y]

Γ𝕂 (Y) ] + ln 𝔼 [Y] − ln (𝔾 [Y]) + 1
𝛼

(𝔼 [Y] − 1) .

In next results we study the closure transformation property of the weighted entropy.We can now proceed analogously to Di Crescenzo and
Longobardi [4] and introduce the following theorem.

Theorem 2.2. Suppose U is RV with density function fU (.) and 𝜓 (U) is strongly convex, strictly increasing, continuous and differentiable

function with derivative d
du𝜓 (u). Then

𝜉w (𝜓 (U)) = 𝜉w1 (U | 𝜓−1 (0) ≤ U ≤ 𝜓−1 (∞)) + 𝔼w
[ln

|
||
d
dx𝜓 (x) |𝜓−1 (0) ≤ U ≤ 𝜓−1 (∞)|||]

where Ew (U) = ∫
∞

0
vfwU (v) dv.

Proof. From Eq. (6) we have

𝜉w (𝜓 (U)) = − ∫
∞

0
fwU (𝜓−1 (u)) | d

du
𝜓−1 (u) | ln fwU (𝜓−1 (u)) | d

du
𝜓−1 (u) |du.

We will make the following assumptions:

1. 𝜓 (u) is monotonically increasing in u.

2. v = 𝜓 (u),

Therefore, it clear that

𝜉w (𝜓 (U)) = − ∫
𝜓−1(∞)

𝜓−1(0)
fwU (v) ln (fwU (v) | d

dv
𝜓 (v) |−1) dv.

= ∫
𝜓−1(∞)

𝜓−1(0)
fwU (v) ln |

||
d
dv𝜓 (v)|||

dv + 𝜉w (U | 𝜓−1 (0) ≤ U ≤ 𝜓−1 (∞)) .

Hence the proof is completed.

Proposition 2.3. Let 𝜙 (U) = 𝛼U𝛽 whereas 𝛼, 𝛽 > 0. From this we deduce that

𝜉w (𝜙 (U)) = ln 𝛼𝛽 +
(𝛽 − 1) 𝜗w (U)

𝔼 (U)
+ 𝜉w (U) .

Proof. From Eq. (6) we have

𝜉w (𝜙 (U)) = ∫
∞

0
fw (v) ln ||𝛼𝛽v𝛽−1|| dv − ∫

∞

0
fw (v) ln fw (v) dv,

= ln 𝛼𝛽 + (𝛽 − 1) ∫
∞

0
fw (v) ln vdv + 𝜉w (U) .

By using Eq. (7), we get the required results.

From Definitions (2.1), it is easy to obtain the following characterizations:

Example 2.1: Suppose U be a random variable having Log-Normal with the following density function

fU (u) = 1
√2𝜋𝜎u

exp (− (ln u − ln 𝜇)2 /2𝜎2) , 𝜇, 𝜎, u > 0,

with parameter 𝜇, 𝜎 > 0. From Eq. (7) we get,

𝜗w (U) = ∫
∞

0
v 1

√2𝜋𝜎v
exp (− (ln v − ln 𝜇)2 /2𝜎2) ln vdv.

Pdf_Folio:5
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Set u = ln v − ln𝜇, then we have

𝜗w (U) = 2
√2𝜋𝜎

exp (2 ln 𝜇) ∫
∞

0
exp (2u − u2

2𝜎2 ) du.

It is follows from Gradshteyn and Ryzhik ([10], formula 3.322(1)) that

∫
∞

a
exp (− x2

4𝜇
− bx) dx = √𝜋𝜇 exp (𝜇b2) (

1 − Φ
(
b√𝜇 + a

2√𝜇 ))
, [Re𝜇 > 0, a ≥ 0] .

Therefore,

𝜗w (U) = exp (2 (ln 𝜇 + 𝜎2)) (1 − Φ (−2√1/2𝜎)) .

In addition,

Hw (U) = − ∫
∞

0
v 1

√2𝜋𝜎 v
exp

(
− (ln v − ln 𝜇)2/2𝜎2) [

− ln√2𝜋𝜎 − ln v − (ln v − ln 𝜇)2

2𝜎2 ]
dv,

= ln √2𝜋𝜎𝔼 [U] + 𝜗w (U) + ∫
∞

0
v 1

√2𝜋𝜎v
exp (− (ln v − ln 𝜇)2 /2𝜎2)

(ln v − ln 𝜇)2

2𝜎2 dv,

with the same way, set u = ln v − ln 𝜇 and by using formula 3.462(1) in Gradshteyn and Ryzhik [10] we have

∫
∞

0
v 1

√2𝜋𝜎v
exp (− (ln v − ln 𝜇)2 /2𝜎2)

(ln v − ln 𝜇)2

2𝜎2 dv,

= (
1
𝜎2 )

(−3/2)+3 2𝜇

√2𝜋
exp (

𝜎2

4 )D−3 (−𝜎) .

Therefore,

Hw (X) = ln (√2𝜋𝜎) 𝜇 exp (𝜎2/2) + exp (2 (ln 𝜇 + 𝜎2)) (1 − Φ (−2√1/2𝜎))

+ (
1
𝜎2 )

(−3/2)+3 2𝜇

√2𝜋
exp (

𝜎2

4 )D−3 (−𝜎) ,

= ln(√2𝜋𝜎) 𝔼 [X] + 𝜗w (X) + 𝜎−3 2𝜇

√2𝜋
exp(

𝜎2

4 )D−3 (−𝜎) ,

where Φ (.) is Error function, 𝜛 (𝜇, 𝜎) = (𝜇 exp (𝜎2/2))
−1 and Dx (y) = 2x/2 exp (−y2/4) F(

−x
2

, 1
2 ,

y2

2 ) is Parabolic cylinder function.

We denote a confluent hypergeometric function of the first kind with the symbol F (., ., .) . Further,

𝜉w (U) = 𝜛 (𝜇, 𝜎) 𝛼 (𝜇, 𝜎) − ln 𝜛 (𝜇, 𝜎) − 𝜛 (𝜇, 𝜎) exp (2 (ln 𝜇 + 𝜎2)) (1 − Φ (−2√1/2𝜎)) ,

where 𝛼 (𝜇, 𝜎) = ln √2𝜋𝜎𝜇 exp (𝜎2/2) + exp (2 (ln 𝜇 + 𝜎2)) (1 − Φ (−2√1/2𝜎)) + (
1
𝜎2 )

(−3/2)+3 2𝜇

√2𝜋
exp (

𝜎2

4 )D−3 (−𝜎) .

Furthermore,

ℝ (X
w ∥ X) = ln (exp (−𝛽1 (𝜇, 𝜎) + 2𝛽2 (𝜇, 𝜎) 𝜛 (𝜇, 𝜎)) /𝜛 (𝜇, 𝜎)) ,

where:

1. 𝛽1 (𝜇, 𝜎) = exp (2 (ln 𝜇 + 𝜎2)) (1 − Φ (−2√1/2𝜎)) ;

2. 𝛽2 (𝜇, 𝜎) = ln (√2𝜋𝜎) 𝔼 [X] + 𝜗w (X) + (
1
𝜎2 )

(−3/2)+3 2𝜇

√2𝜋
exp (

𝜎2

4 )D−3 (−𝜎)
Pdf_Folio:6
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Example 2.2: Let X be random variable having Chi distribution with density function

fX (x) = 2 (𝜋/2)𝜋/2

𝛾𝜋Γ (𝜋/2)
x𝜋−1 exp (−x2 (𝜋/ (2𝛾2))), 𝛾, x > 0, 𝜋 is a positive integer,with parameter 𝜇, 𝛾 > 0. From Eq. (7) we have

𝜗w (X) = 2 (𝜋/2)𝜋/2

𝛾𝜋Γ (𝜋/2) ∫
∞

0
x𝜋 exp (−x2 (𝜋/ (2𝛾2))) ln xdx,

take u = x2

/

(2𝛾2) , then we get

𝜗w (X) =
𝛾 (1/2𝜋)1/2

Γ (𝜋/2) ∫
∞

0
u

𝜋
2 −0.5 exp (−u) ln ((u/ ( 𝜋 (2𝛾2)))

1/2
) du.

By using Gradshteyn and Ryzhik ([10], 4.352(1)) for evaluate the below formula, we have the following result:

𝜗w (X) =
𝛾 (1/2𝜋)1/2

Γ (𝜋/2)
Γ (

𝜋 + 1
2 ) [(𝜓 (

𝜋 + 1
2 )) − ln ( 𝜋 (2𝛾2))] .

In addition, by Eq. (4) we have

Hw (X) = − ∫
∞

0
x2 (𝜋/2)𝜋/2

𝛾𝜋Γ (𝜋/2)
x𝜋−1 exp (−x2 (𝜋/ (2𝛾2))) [ln

2 (𝜋/2)𝜋/2

𝛾𝜋Γ (𝜋/2)
+ (𝜋 − 1) ln x − x2𝜋

2𝛾2 ] dx,

since 𝔼 (X) = 𝛾√
2
𝜋

Γ ( 𝜋+1
2 )

Γ ( 𝜋
2 )

.With this substitution we obtain

Hw (X) =
𝜋2 − 𝜋1 (𝜋 − 1) ∫

∞

0
v𝜋 exp (−v2 (𝜋/ (2𝛾2))) ln vdv

+𝜋3 ∫
∞

0
v𝜋+2 exp (−v2 (𝜋/ (2𝛾2))) dv,

where 𝜋1 = 2 (𝜋/2)𝜋/2 / (𝛾𝜋Γ (𝜋/2)), 𝜋2 = − ln (𝜋1) 𝛾 (Γ (
𝜋 + 1
2 ) /Γ (

𝜋
2) ) √2/𝜋, 𝜋3 = 𝜋/ (2𝛾2) 𝜋1. Direct calculations give

Hw (X) =
𝛾 (𝜋 + 1) Γ ( 𝜋+1

2 )
2 (𝜋/2)1/2 Γ (𝜋/2)

− ln (
2 (𝜋/2)𝜋/2

𝛾𝜋Γ (𝜋/2) )
𝛾√

2
𝜋 Γ ( 𝜋+1

2 )
Γ ( 𝜋

2 )
−2 (𝜋/2)𝜋/2 (𝜋 − 1)

𝛾𝜋Γ (𝜋/2) ∫
∞

0
x𝜋 exp (−x2 (𝜋/ (2𝛾2))) ln xdx.

Again, we the same way and continuing the simplification, we can conclude that

Hw (X) = − (𝛾Γ (
𝜋 + 1
2 ) /Γ (𝜋/2))

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ln (
2 (𝜋/2)𝜋/2

𝛾𝜋Γ (𝜋/2) ) √
2
𝜋

+2 (𝜋 − 1)
4√(𝜋/2) [𝜓 (

𝜋 + 1
2 ) − ln (𝜋/ (2𝛾2))] − (𝜋 + 1)

2 (𝜋/2)1/2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore,

𝜉w (X) = − ln (2/𝛾𝜋) − 2 (𝜋 − 1)
4 [𝜓 (

𝜋 + 1
2 ) − ln (𝜋/ (2𝛾2))] + (𝜋 + 1)

2
(1 − ln (𝜋/2))

+ ln (𝛾Γ (
𝜋 + 1
2 )) − 𝜓 (

𝜋 + 1
2 ) + ln 𝜋/ (2𝛾2) .

Continuing the simplification

𝜉w (X) = ln (
𝜋𝛾𝜋−1

4 ) − 2 (𝜋 − 1)
4 [𝜓 (

𝜋 + 1
2 ) − ln (𝜋/ (2𝛾2))]

+ (𝜋 + 1)
2

(1 − ln (𝜋/2)) + ln Γ (
𝜋 + 1
2 ) − 𝜓 (

𝜋 + 1
2 ) .
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Moreover,

ℝ (X
w ∥ X) = −

𝜋𝛼1 [(𝜓 ( 𝜋+1
2 )) − ln (𝜋/ (2𝛾2))] + 2Hw (X)

𝛼1
− ln (𝛼1) ,

where 𝛼1 = 𝛾Γ (
𝜋 + 1
2 ) /Γ (

𝜋
2) √2/𝜋. Continuing the simplification

ℝw (X
w ∥ X) = (

4𝜋 + 1
2 ) ln (𝜋/ (2𝛾2)) + 2 ln 2 + 𝜓 (

𝜋 + 1
2 ) (𝜋 − 2) − (𝜋 + 1) − ln (Γ (

𝜋 + 1
2 ) Γ (

𝜋
2)) .

Example 2.3: A random variable U has a Laplace (𝛼), if it has density function as follows

fU (u) = 1
2𝛼 exp (−𝛼|u|) , 𝛼, ∞ > u > −∞,

with parameter 𝛼 > 0. From Eq. (7) we obtain,

𝜗w (U) = ∫
∞

−∞
v 1
2𝛼 exp (−𝛼|v|) ln vdv = (𝜓 (2) − ln 𝛼) /𝛼,

Furthermore, direct calculations give

Hw (U) = − ∫
∞

0
x𝛼 exp (−𝛼x) (ln

𝛼
2

− 𝛼x) dx,

= 2 − ln 𝛼 + ln 2
𝛼

nats = 1 + HU
𝛼

nats.

Since 𝔼 [U] = 0, we get that 𝜉w1 (U) and ℝw
1 (Uw ∥ U) can not be found.

3. CONNECTION TO RELIABILITY THEORY

SupposeU1,U2, ...,Un be i.i.d. lifetimes with probability density function g (.), distribution𝕂 (.) , survival function𝕂 (.) and reversed hazard
rate 𝜑𝕂 (.). Therefore, the probability that any two (or more) observation in random sample take the same magnitude (the same value is
equal to zero). Therefore, there exists a unique ordered arrangement of the sample observation according to magnitude. Let 0 ≤ U(1) ≤
U(2) ≤ ... ≤ U(n) < ∞ be the corresponding order statistics. Therefore,U(r) defines the lifetime of an (n− r+1)out of n system.Write g(r) (.) ,
𝕂(r) (.), 𝜑(r) (.) and 𝜑(r) (.) as the distribution function, the probability density function, the RHR function of U(r) and the hazard rate of U(r)
respectively. Then we have

g(r) (𝜅) = Cr[𝕂(𝜅)]r−1[𝕂(𝜅)]n−rg (𝜅) , 𝜅 ∈ ℝ+,

𝕂(r) (𝜅) = ∑n
i=r (

n
i )

[𝕂(𝜅)]i[𝕂(𝜅)]n−i,

𝜑(r) (𝜅) = Cr𝜑𝕂 (𝜅) 𝛽r/ (
∑n

i=r (
n
i )

𝛽i
)

,

(12)

and

𝜑(r) (𝜅) = g(r) (𝜅)/ 𝕂(r) (𝜅) ,

where Cr = n!
(r − 1) ! (n − r) !

and 𝛽x = (𝕂 (𝜅) /𝕂 (𝜅))
x

. The weighted residual entropy of order statistics Ur is given by

𝜉w1 (U(r), 𝜅) = − ∫
∞

𝜅

gw(r) (u)
𝕂w

(r) (𝜅)
ln

gw(r) (u)
𝕂w

(r) (𝜅)
du, = −1

𝔼 [U(r)|U(r) > 𝜅] ∫
∞

𝜅

yg(r) (y)
𝕂(r) (𝜅)

× ln
yg(r) (y)

𝔼 [U(r)|U(r) > 𝜅] 𝕂(r) (𝜅)
dy.
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Alternatively,

𝜉w1 (U(r), 𝜅) = −1
𝔼 [U(r)|U(r) > 𝜅]

(13)

× ∫
∞

𝜅

yg(r) (y)
𝕂(r) (𝜅)

ln
y𝜑(r) (y) 𝕂(r) (y)

𝔼 [U(r)|U(r) > 𝜅] 𝕂(r) (𝜅)
dy,

= ln [𝔼 [U(r)|U(r) > 𝜅] 𝕂(r) (𝜅)]

− 1
𝔼 [U(r)|U(r) > 𝜅] ∫

∞

𝜅

yg(r) (y)
𝕂(r) (𝜅)

ln (y𝜑(r) (y) 𝕂(r) (y)) dy.

Now, we can proceed analogously to treatment of the weighted entropy of the order statistics of PL as follows

𝜉w2 (U(r), 𝜅) = − ∫
𝜅

0

gw(r) (v)
𝕂w

(r) (𝜅)
ln

gw(r) (v)
𝕂w

(r) (𝜅)
dv,

= −1
𝔼 [U(r)|U(r) < 𝜅] ∫

𝜅

0

vg(r) (v)
𝕂(r) (𝜅)

ln
vg(r) (v)

𝔼 [U(r)|U(r) < 𝜅] 𝕂w
(r) (𝜅)

dv,

which is equivalent to

𝜉w2 (U(r), 𝜅) = −1
𝔼 [U(r)|U(r) < 𝜅] ∫

𝜅

0

xg(r) (x)
𝕂(r) (𝜅)

ln
x𝜑(r) (x) 𝕂(r) (x)

𝔼 [U(r)|U(r) < 𝜅] 𝕂w
(r) (𝜅)

dx.

Direct calculations give

𝜉w2 (U(r), 𝜅) = ln [𝔼 [U(r)|U(r) < 𝜅] 𝕂(r) (𝜅)] (14)

− 1
𝔼 [U(r)|U(r) < 𝜅] ∫

𝜅

0

vg(r) (v)
𝕂w

(r) (𝜅) (𝜅)
ln (v𝜑(r) (v) 𝕂(r) (v)) dv,

for all 𝜅 ≥ 0.

3.1. A Series Structure

It is to be noted thatU(1) represents an age of the series system. By using Eq. (13), with simple calculation, we have the weighted the residual
entropy of U(1) as

𝜉w1 (U(1), 𝜅) = ln [𝔼 [U(1)|U(1) > 𝜅] 𝕂(1) (𝜅)]

− 1
𝔼 [U(1)|U(1) > 𝜅] ∫

∞

𝜅

vg(1) (v)
𝕂(1) (𝜅)

ln (v𝜑(1) (v) 𝕂(1) (v)) dv, (15)

= ln [𝔼 [U(1)|U(1) > 𝜅] 𝕂(1) (𝜅)]

It follows from Proposition 1 in Bairamov et al. [11], and definition of mean residual lifetime of (n − k + 1)-out-of-n system in Asadi and
Bayramoglu [12] that

𝔼 [U(1)|U(1) > 𝜅] =
∫

∞

𝜅
𝕂1 (v) dv

𝕂1 (𝜅)
= 𝕄1 (𝜅) say,

Pdf_Folio:9
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and

𝕂 (𝜅) = (
𝕄1 (0)
𝕄1 (𝜅)

exp (− ∫
𝜅

0
𝕄−1

1 (𝜅)))

1/n
,

Then, Eq. (15) can be written in the following form

𝜉w1 (U(1), 𝜅) = ln (𝕄1 (0) exp (− ∫
𝜅

0
𝕄−1

1 (𝜅))) +
∫

∞

𝜅

vn[𝕂(v)]
n−1g(v)

[𝕂(𝜅)]
n ln (v𝜑(1) (v) [𝕂 (v)]

n
) dv

𝕄1 (0) exp (− ∫
𝜅

0
𝕄−1

1 (𝜅))

.

Similarly, by Eq. (14), the WPE of U(1) follows

𝜉w2 (U(1), 𝜅) = ln [𝔼 [U(1)|U(1) < 𝜅] 𝕂(1) (𝜅)]

− 1
𝔼 [U(1)|U(1) < 𝜅] ∫

𝜅

0

vg(1) (v)
𝕂(1) (𝜅)

ln (v𝜑(1) (v) 𝕂(1) (v)) dv,

= ln [𝔼 [U(1)|U(1) < 𝜅] 𝕂(1) (𝜅)]

− 1
𝔼 [U(1)|U(1) < 𝜅] ∫

𝜅

0

vn [𝕂 (v)]
n−1 g (v)

1 − [𝕂 (𝜅)]
n ln (v𝜑(1) (v) [1 − 𝕂n (v)]) dv.

Eq. (12) implies that

𝜉w2 (U(1), 𝜅) = ln(𝔼 [U(1)|U(1) < 𝜅] (1 − 𝕂n (𝜅))) (16)

 +
∫

𝕂(𝜅)

0
𝕂−1 (u) n [u]n−1) ln (n𝕂−1 (u)

g(𝕂−1(u))
u((u)−n−1) (1 − un)) du

𝔼 [U(1)|U(1) > 𝜅] (1 − 𝕂n (𝜅))
.

According to Eqs. (4–5) in Tavangar and Asadi [13], the mean PL of series system can be obtained as follows:

P1 (𝜅) = 𝔼 [𝜅 − U(1)|U(1) < 𝜅] , (17)

=

n

∑
l=1

(
n
l ) 𝛼l

𝜅Sl (𝜅)

n

∑
l=1

(
n
l ) 𝛼l

𝜅

,

where 𝛼 (.) = 𝕂 (.) /𝕂 (.) and

S𝜋 (𝜅) = ∫
𝜅

0

𝜋

∑
l=1

(
𝜋
l ) (

𝕂 (𝜅 − v)
𝕂 (𝜅) )

l

(1 − 𝕂 (𝜅 − v)
𝕂 (𝜅) )

𝜋−l
dv, 3.7 (18)

Equations (17) and (18) demonstrate that

𝜉w2 (U(1), 𝜅) = ln ((𝜅 − P1 (𝜅)) (1 − 𝕂n (𝜅)))

 +
∫

𝕂(𝜅)

0
𝕂−1 (u) n [u]n−1) ln (n𝕂−1 (u)

g(𝕂−1(u))
u((u)−n−1) (1 − un)) du

(𝜅 − P1 (𝜅)) (1 − 𝕂n (𝜅))
.
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It is to be noted thatU(n) refers to the lifetime of PSwith survival function𝕂(n) (.) = 1−𝕂n (.). Based on Eq. (13), we can define the weighted
the residual entropy of U(n) as

𝜉w1 (U(n), 𝜅) = ln [𝔼 [U(n)|U(n) > 𝜅] [1 − 𝕂n (𝜅)]]

− 1
𝔼 [U(n)|U(n) > 𝜅] [1 − 𝕂n (𝜅)] ∫

∞

𝜅
vn𝕂n−1 (v) g (v) ln (vn𝕂n−1 (v) g (v)) dv.

Applying Theorem 2.1, pp. 477 in Asadi and Bayramoglu [14] and Eq. (18), it obtains that,

𝔼 [U(n)|U(n) > 𝜅] = 𝔹(n) (𝜅) + 𝜅,

where 𝔹(n) (𝜅) is mean residual lifetime of PS, it can be found as follows

𝔹(n) (𝜅) =

n−1

∑
l=1

(
n
l ) 𝛼l (𝜅)

n

∑
s=1

(−1)s−1 (
n − l
s ) 𝛽s (𝜅)

n−1

∑
l=1

(
n
l ) 𝛼l (𝜅)

,

and 𝛽j (𝜅) = ∫
∞

𝜅

𝕂j (v) dv
𝕂j (𝜅)

. Now, it is evident that

𝜉w1 (U(n), 𝜅) = ln [(𝔹(n) (𝜅) + 𝜅) [1 − 𝕂n (𝜅)]]

− n
(𝔹(n) (𝜅) + 𝜅) [1 − 𝕂n (𝜅)] ∫

∞

𝜅
v𝕂n−1 (v) g (v) ln (vn𝕂n−1 (v) g (v)) dv.

By using Eq. (4) in Asadi (2006, pp. 1200), we have the mean PL of the components of PS as follows

𝜃n (𝜅) = 𝔼 [𝜅 − U(n)|U(n) ≤ 𝜅] = ∫
𝜅

0

𝕂n (v) dv
𝕂n (𝜅)

. (19)

Putting r = n in Eq. (14) and using Eqs. (12 and 14), we get the WPE of U(n) as follows

𝜉w2 (U(n), 𝜅) = ln [(𝜅 − 𝜃n (𝜅)) 𝕂(n) (𝜅)] − 1
𝜅 − 𝜃n (𝜅) ∫

𝜅

0

vg(n) (v)
𝕂w

(n) (𝜅)
ln (v𝜑(n) (v) 𝕂(n) (v)) dv,

= ln [(𝜅 − 𝜃n (𝜅)) 𝕂(n) (𝜅)] − 1
𝜅 − 𝜃n (𝜅) ∫

𝜅

0

vg(n) (v)
𝕂(n) (𝜅) 𝔼 [U(n)|U(n) < 𝜅]

ln (vn𝜑𝕂 (v) 𝕂n (v)) dv,

which is equivalent to,

𝜉w2 (U(n), 𝜅) = ln [(𝜅 − 𝜃n (𝜅)) 𝕂(n) (𝜅)]

− n
(𝜅 − 𝜃n (𝜅)) (𝕂n (𝜅) (𝜅 − 𝜃n (𝜅))) ∫

𝜅

0
v𝕂n−1 (v) g (v) ln (vn𝜑𝕂 (v) 𝕂n (v)) dv,

for all 𝜅 ≥ 0.Pdf_Folio:11
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3.3. Some inequalities

Next, we derive the upper bound ofWRE of U(r).It is obvious that

𝜉w1 (U(r), 𝜅) = ln 𝔼 [U(r)|U(r) > 𝜅] + ln 𝕂(r) (𝜅)

− 1
𝔼 [U(r)|U(r) > 𝜅] ∫

∞

𝜅

vg(r) (v)
𝕂(r) (𝜅)

ln (v𝜑(r) (v) 𝕂(r) (v)) dv,

since ln 𝔼 [U(r)|U(r) > 𝜅] ≥ 0 and

𝜅 ≥ 0 ⇒ ln [𝕂(r) (𝜅)] ≤ 0,

by using Gupta et al. [16], we can deduce that

𝜉w1 (U(r), 𝜅) ≤ ln 𝔼 [U(r)|U(r) > 𝜅] .

For r = 1, we have

𝜉w1 (U(1), 𝜅) ≤ ln 𝕄1 (𝜅) .

In addition, we know that ln [(𝔹(n) (𝜅) + 𝜅) [1 − 𝕂n (𝜅)]] ≤ 0. Hence, we have

𝜉w1 (U(n), 𝜅) ≤ ln [(𝔹(n) (𝜅) + 𝜅) [1 − 𝕂n (𝜅)]] .

In next result, we derive the lower bound forWPE of U(n).

Proposition 3.1: Suppose U ≥ 0 be a random variable with distribution function 𝕂 (v). Then

𝜉w2 (U(n), 𝜅) ≥
−n2E [u2𝕂2n−2 (u) g (u) |U ≤ 𝜅]

(𝜅 − 𝜃n (𝜅))
2 𝕂n−1 (𝜅)

.

Proof. Using Eq.(2), inequality − ln y ≥ 1 − y, for y ≥ 0, and since

∫
𝜅

0
v𝕂n−1 (v) g (v) dv ≤ ∫

𝜅

0
nv2𝕂2n−2 (v) g2 (v) dv.

The result follows.

4. STOCHASTIC ORDERS BASED ON WEIGHTED ENTROPY

In this section, we explore the possibility of application of stochastic orders.

Definition 4.1. Assume U1 ≥ 0 and U2 ≥ 0 be two random variables with density functions g1 and g2, distribution functions 𝔾U1
and 𝔾U2

,
reliability functions𝔾U1

= 1− 𝔾U1
and 𝔾U2

= 1−𝔾U2
, the weighted entropy functions 𝜉wg1 (.) and 𝜉wg2 (.), the convex residual entropy functions

Hw
g1 (U1, t) and Hw

g2 (U2, t) and the weighted inaccuracy measures ℝ (Uw
1 ∥ U1) and ℝ (Uw

2 ∥ U2), respectively. We say that U1 is 𝕊𝔼 to U2
in the:

• weighted entropy ordering (U1 ≤𝜉w U2 ) if 𝜉wg1 (x) ≤ 𝜉wg2 (x) , for all x ≥ 0.

• weighted inaccuracy ordering (U1 ≤ℝw U2 ) if ℝ (Uw
1 ∥ U1) ≤ ℝ (Uw

2 ∥ U2) .

• convex residual entropy ordering (U1 ≤cw U2 ) if Hw
g1 (U1, t) ≤ Hw

g2 (U2, t) .

• less uncertainty ordering (U1 ≤𝕌 U2 ) if H (U1) ≤ H (U2) .

Definition 4.2. Let U1 and U2 be two random variables, then U1 is said to be 𝕊𝔼 to U2 in the convex order (U1 ≤cx U2). If

E [𝜙 (U1)] ≤ E [𝜙 (U2)] ,

This is true for any convex functions 𝜙.Pdf_Folio:12

“JSTA-17-4-11_print” — 2018/12/21 — 13:22 — page 714 — #12

714 M. Mahdy / Journal of Statistical Theory and Applications 17( ) 703–7184



Definition 4.3. The random variable U1 is said to be increasing hazard rate, IHR, if, and only if,

𝔾U1
(u + v) /𝔾U1

(u) is decreasing in u ≥ 0, for all v ≥ 0.

Next result discusses the closure under increasing linear transformation of ≤𝜉w :

Theorem 4.1. Suppose U1 and U2 are to be two random variables, let we define new functions as

V1 = 𝛼1U
𝛽1
1 andV2 = 𝛼2U

𝛽2
2 , for all 𝛼1, 𝛼2 ∈ ℝ+and 𝛽1, 𝛽2 ∈ ℝ+.

Let (i) U1 ≤𝜉w U2, (ii) 𝛼1 ≤ 𝛼2, (iii) 𝛽1 ≤ 𝛽2. Then V1 ≤𝜉w V2 if U1 ≤cx U2.

Proof. Due to fact that 𝜑 (x) = x ln x is convex function, and when U1 ≤cx U2 we get that E [U1] = E [U2], if we suppose that 𝜉wU1
(u) is

decreasing in u, and let U1 ≤𝜉w U2, 𝛼1 ≤ 𝛼2 and 𝛽1 ≤ 𝛽2. By apply Eq. (7) and Proposition 2.3, we have V1 ≤𝜉w V2.

Corollary 4.1. Suppose the relationship between two random variables U1 and U2 as follows:

U1 ≤𝜉w U2.

Define V1 = 𝛼U𝛽
1 and V2 = 𝛼U𝛽

2, 𝛼, 𝛽 ∈ ℝ+. Then U1 ≤𝜉w U2 if U1 ≤cx U2.

In next theorem, we explain preservation properties and application of ≤𝜉w , ≤ℝw and ≤𝕌 between two exponential RV’s if their scale param-
eters are ordered.

Theorem 4.2. Let two absolutely continuous random variables U1 and U2 with density function

fi (x) = 𝛼i exp (−𝛼ix) , 𝛼i, x > 0 and i = 1, 2.

• If 𝛼1 ≥ 𝛼2, then U1 ≤𝜉w U2.

• If 𝛼1 ≤ 𝛼2, then U1 ≤ℝw U2.

• If X ≤ℝw Y then HU2 ≤𝕌 HU1 .

Proof. The result is obtained immediately from Remark 2.1.

Many studies explain the properties of repairable systems such as minimal repair. If the system has the virtual age 𝕌n−1 immediately after
the (n − 1)th repair, the functioning system obtained has the nth failure-time 𝕐n distributed as

Pr [𝕐n ≤ y|𝕌n−1 = u] =
G (y + u) − G (u)

G (u)
, (20)

whereG (y) is the failure time distribution of a new system (𝕌0 = 0) . Let nth repair cannot remove the damages incurred before the (n−1)th

repair and 𝛼n be the degree of the nth repair, now the time between (n − 1)th failure and nth failure reduce from 𝕐n to 𝛼n𝕐n. If 𝛼n = 1 for all
n ≥ 1 then it agrees with a minimal repair model.

Suppose 𝕍n =
n

∑
i=1

𝕐i (n ≧ 1)with 𝕍0 = 0 which represents the time elapsed since the systemwas put in operation, or the associated counting

process ℕ (t) = sup {n ≧ 1 ∶ 𝕍n−1 ≦ t} . Kijima [17] proved that ℕ (t) ( or {𝕍n}
∞
0 ) is a non-homogeneous Poisson process when 𝛼n = 1

for all n ≥ 1. Ebrahimi and Pellerey [1] defined the following definition:

Definition 4.4. A point process {ℕ (t) , t ≥ 0} consisting of interarrival times 𝕐1, 𝕐2, ... is increasing (decreasing) in the

1. convex residual entropy order if

Hw
(𝔹i, t) ≤ (≥)Hw

(𝔹j, t) , for all t ∈ R+.

2. weighted entropy order if

𝜉w (𝔹i, t) ≤ (≥) 𝜉w (𝔹j, t)

and 1 ≤ i ≤ j ≤ n,where fk is the conditional probability density function of 𝕐k = 𝕍k−𝕍k−1 for all k = 1, 2, ..., given 𝕍k−1 = vk−1, ..., 𝕍1 = v1,
and

𝔹k
st
= [𝕐k|𝕍k−1 = vk−1, ..., 𝕍1 = v1] .

Pdf_Folio:13

“JSTA-17-4-11_print” — 2018/12/21 — 13:22 — page 715 — #13

715M. Mahdy / Journal of Statistical Theory and Applications 17( ) 703–7184



From Definition 5.3, we can note that if a point process is increasing (decreasing) means the uncertainty of the distribution is increasing
(decreasing), i.e., the process is deterioration (improving).

Lemma 4.1. Let 𝔹k be as defined in Definition 5.3. Then, for k = 1, 2, ...,

1. Hw (𝔹k, t) = Hw (X, t + vk−1) ;

2. 𝜉w (𝔹k, t) = 𝜉w (X, t + vk−1) .

Proof. Refer to Ebrahimi and Pellery [1], Theorem 2.5.

Theorem 4.3. The stochastic point process ℕ (t) = sup {n ≧ 1 ∶ 𝕍n −1 ≦ t} consisting of the time of nth failure 𝕍k−1, k = 1, 2, ...generated
by a minimal repair policy is increasing (decreasing) in

1. convex residual entropy order if G (.) is IHR,

2. weighted entropy order if 𝜉w (U) is increasing for all u ≥ 0.

Proof. Similarly to lemma 5.1, we haveHw (𝔹k+1, t) = Hw (U, t + vk). In addition, by Theorem 3.1 in Di Crescenzo and Longobardi [4] we
conclude that

Hw (U, t + vk) = (t + vk) [1 − ln 𝜆 (t + vk)] + t + vk
𝜆 (t + vk)

d
dtH (U, t + vk) + 1

G (t + vk)
I (t + vk) , 4.2 (21)

where

I (t) = ∫
∞

t
G (u)H (U, u) du − ∫

∞

t
G (u) ln G (u)

G (t)
du,

and by Theorem 2.1 in Ebrahimi and Pellery [1] we have

Hw (U, t + vk) = (t + vk)H (U, t + vk) + 1
G (t + vk)

I (t + vk) .4.3 (22)

By Theorem 2.5 in Ebrahimi and Pellery [1] we conclude thatH (U, t + vn−1) ≤ H (U, t + vn) . By using Eqs. (20–22), and when a continuous
distribution G (.) is IHR. It is obvious that

G (t + vk) ≤ G (t + vk−1) ,

and

I (t + vk) ≥ I (t + vk−1) .

Then, we get Hw (U, t + vk) ≥ Hw (U, t + vk−1) . This complete the proof.

5. ENTROPY ESTIMATION

In this section, we introduce four the non-parametric estimators of Eq. (6) by using the same idea in Vasicek [9], Van Es [18], Ebrahimi et
al. [19] and Al-Omari [20].

Let Z1,Z2, ..., Zn is a sequence of the random sample with the distribution G and let Z(1),Z(2), ..., Z(n) be the corresponding order statistics.

Besides the sample distribution function Gn (z) = n−1
n

∑
i=1

1Zk≤z,1≤k≤n. Then, the on-parametric estimators can be expressed as:

1. Weighted Vasicek Entropy (V𝜉w(𝛿,n) (Z)): We can estimate of Eq. (8) by replacing Gw (t) by the empirical distribution Gw
n (t), and using

a difference operator in place of the differential operator. Thus, V𝜉w(m,n) (Z) estimator of Eq. (8) can be represented as follows

V𝜉w(𝛿,n) (Z) = n−1
n

∑
i=1

ln

⎧
⎪
⎪
⎨
⎪
⎪
⎩

n
n

∑
k=1

w (Z(k))

i

∑
j=1

w(Z(j)) 2𝛿

(Z(i+𝛿) − Z(i−𝛿))

⎫
⎪
⎪
⎬
⎪
⎪
⎭

, (23)
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where 𝛿 ∈ ℕ+ know as a window size, 𝛿 < n/2, Z(s) = Z(1) if s < 1 and Z(s) = Z(n) if s > n.

 

2. Weighted 𝛿-spacings Entropy (SE𝜉w(𝛿,n) (Z)): Estimates of weighted entropy based on sample 𝛿-spacings which introduced by Van
Es [18], we can provide VE𝜉w(𝛿,n) (Z) estimator of Eq. (6) as

SE𝜉w(𝛿,n) (Z) = n−1
n−𝛿

∑
i=1

ln

⎧
⎪
⎪
⎨
⎪
⎪
⎩

n
i

∑
j=1

Z(j)

n

∑
k=1

Z(k)𝛿
(Z(i+𝛿) − Z(i))

⎫
⎪
⎪
⎬
⎪
⎪
⎭

− 𝜓 (𝛿) + ln 𝛿 + E [Z] , (24)

where 𝜓 (.) is the digamma function and ln 𝛿 − 𝜓 (𝛿) corrected bias entropy estimator.

3. Weighted Small weights Entropy (WS𝜉w(𝛿,n) (Z)): As assign smaller weights in Vasicek [9], we obtain

WS𝜉w(𝛿,n) (Z) = n−1
n

∑
i=1

ln

⎧
⎪
⎪
⎨
⎪
⎪
⎩

n
n

∑
k=1

Z(k)

i

∑
j=1

Z(j)𝛼i𝛿

(Z(i+𝛿) − Z(i−𝛿))

⎫
⎪
⎪
⎬
⎪
⎪
⎭

, (25)

where

𝛼k =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝛿 + k − 1
𝛿

, 1 ≤ k ≤ 𝛿

2, 𝛿 + 1 ≤ k ≤ n − 𝛿
𝛿 + n − k

𝛿
, n − 𝛿 + 1 ≤ k ≤ n

.

4. Modified Small weights Entropy (MS𝜉w(𝛿,n) (Z)): As assign smaller weights in Ibrahimi et al. [21] we get

MS𝜉w(𝛿,n) (Z) = n−1
n

∑
i=1

ln

⎧
⎪
⎪
⎨
⎪
⎪
⎩

n
n

∑
k=1

w (Z(k))

i

∑
j=1

w(Z(j)) 𝛽i𝛿

(Z(i+𝛿) − Z(i−𝛿))

⎫
⎪
⎪
⎬
⎪
⎪
⎭

, (26)

where

𝛽i =

⎧⎪⎪
⎨
⎪⎪⎩

3
2 , 1 ≤ i ≤ 𝛿,

2, 𝛿 + 1 ≤ i ≤ n − 𝛿,
1
2 , n − 𝛿 + 1 ≤ i ≤ n.

.

Example 5.1: Let Z be random variable having exponential distribution with density function fZ (x) = 𝛼 exp (−𝛼z) , 𝛼, z > 0 with parameter
𝛼 > 0. From Eq. (7) we obtain,

𝜗w (Z) = 1
𝛼

(𝜓 (2) − ln 𝛼) ,

where 𝜓 (.) is Euler’s psi function. By Example (2.1, a) in Di Crescenzo and Longobardi [4] we get,

Hw (Z) = 2 − ln 𝛼
𝛼

and 𝜉w1 (Z) = 2 − ln 𝛼 − 𝜓 (2) .
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Therefore,

ℝ (Z
w ∥ Z) = −4 (1 − ln 𝛼) − 𝜓 (2) = −4HZ − 𝜓 (2) .

Suppose 𝛼 ∈ [0, 100]. Hw (Z) , 𝜉w (Z) and ℝ (Zw ∥ Z) with weighted function w (z) = z is evaluated in Table 1.

Table 1 Measures of weighted entropies of exponential distribution.

 𝛼 Ĥw (Z) ̂𝜉w (Z) ℝ̂w (Zw ∥ Z)

0.25 13.5452 2.9635 –9.9680
0.5 5.3863 2.2704 –7.1954
1 2 1.5772 –4.4228
5 0.0781 –0.0322 2.0150
10 -0.0303 –0.7254 4.7876

Now, a real data is illustrated to investigate the performance of suggested estimators.

Data Set: The following data set which is taken from Smith and Naylor [22], it represents the strength of 1.5 cm glass fibers measured at the
National Physical Laboratory, England.

Data Set: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,
1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77,
1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89

Shanker et al. [23] show the exponential density function (Exp (0.663647)) provided a better fit for this data. We compute the exact value
of the weight entropy measure by the real data and compare this measure with V𝜉w(𝛿,n) (Z) , SE𝜉w(𝛿,n) (Z) , WS𝜉w(𝛿,n) (Z) andMS𝜉w(𝛿,n) (Z) which
shows in Table 2.

Table 2 Weighted entropy measure for exponential distribution (0.663647).

𝛿 𝜉w(𝛿,n) (Z) V𝜉w(𝛿,n) (Z) SE𝜉w(𝛿,n) (Z) WS𝜉w(𝛿,n) (Z) MS𝜉w(𝛿,n) (Z)

1 1.9872 1.210967749 1.244680937583 1.232972422 1.237538804
2 1.9872 1.200196229 1.231653171583 1.943017269 1.298445816
3 1.9872 1.245455104 1.462350850583 2.308545839 1.323498873
4 1.9872 1.279410563 1.650373401583 2.537544185 1.337842382
5 1.9872 1.282220574 1.820823663583 2.721711858 1.415075846
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