
International Journal of Networked and Distributed Computing
Vol. 7(1); December (2018), pp. 11–19

DOI: 10.2991/ijndc.2018.7.1.2; ISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

Email: ajchara.p@chandra.ac.th

Discrete Differential Evolution Algorithm with the Fuzzy
Machine Selection for Solving the Flexible Job Shop
Scheduling Problem

Ajchara Phu-ang

Information Technology Department, Chandrakasem Rajabhat University, 39/1 Ratchadaphisek Rd, Khwaeng Chan Kasem, Bangkok 10900, Thailand

1.  INTRODUCTION

At the present, the government encourages entrepreneurs used
the innovation and digital technology for enhanced the com-
petitiveness and increased the productivity. To success with the
mention above, the entrepreneurs need to adopt the intelligence
of the computer in the business. As well as the manufacturing
industry, the one important in the manufacturing is to sched-
ule the job plan or the scheduling plan. Nowadays, the indus-
try applied the computer to calculate the schedule and hold the
machine balancing in the manufacturing process. The Flexible
Job Shop Scheduling Problem (FJSP) is the complex problem
which is found in the manufacturing processes. This problem
occurs when the staff cannot maintain a balance between the jobs
and the machines. In recent years, the researcher in the operation
research areas attends to create the metaheuristic algorithm for
solving the FJSP. The differential evolution (DE) algorithm is one
of the computational algorithms which used to solve the opera-
tion research optimization problem. There are several research
works which have been proposed; for instance. Mohamed et al. [1]
applied the DE algorithm for solving unconstrained global
optimization problems. In this algorithm, their proposed a new
directed mutation rule based on the weighted difference vector
between the best and the worse solution. The local search is uti-
lized to enhance the search capability and to increase the conver-
gence rate. Furthermore, a dynamic non-linear increased crossover
probability scheme is proposed balance between the diversity
and the convergence rate or between global exploration ability

and local exploitation. The result of their algorithm indicates
that the improved algorithm outperforms and is superior to
other existing algorithms. Salehpour et al. [2] developed the
new version of the DE algorithm with the fuzzy logic infer-
ence system. This paper uses a fuzzy logic inference system to
dynamically tune the mutation factor of DE and improve its
exploration and exploitation. A fuzzy system used to consid-
ering the variation, namely, number of generation and pop-
ulation. The results obtained show the really good behavior of
the proposed method and comparison. Zou et al. [3] presented
a Novel Modified Differential Evolution (NMDE) algorithm to
solve constrained optimization problems. This algorithm modi-
fies the scale factor of the original DE algorithm by an adaptive
strategy. In the crossover operation of this paper, they use the
uniform distribution when the stagnation happens to the solu-
tion. Moreover, a common penalty function method adopted to
balance objective and constraint violations. Experimental results
show that the NMDE algorithm has higher efficiency than the
other methods in term of finding better feasible solutions of most
constrained problems. Huang and Huang [4] proposed the DE
algorithm with the ant system for solving the Optimal Reactive
Power Dispatch (ORPD) problem. The purpose of ORPD is to
reduce active power transmission losses and improve the volt-
age profile in the power systems. The step of this paper follows
the original of DE algorithm. In the mutation process, this paper
avoids falling into local minima and save more computational
time by using the variable scaling mutation. They test the per-
formance of the proposed algorithm on the IEEE 30-bus system.
The experiment shown that, this paper obtains better results with
lower active power transmission losses and faster convergence

A RT I C L E I N F O
Article History

Received 9 October 2018
Accepted 10 November 2018

Keywords

Fuzzy set
fuzzy selection
flexible job shop
differential evolution
scheduling

A B S T R AC T
 The objective of the research is to solve the flexible job shop scheduling problem (FJSP). In this paper, the new algorithm is
proposed mainly based on discrete concepts of the differential evolution (DE) algorithm with the new idea called the fuzzy
machine selection approach. In the first step, the initial population is created by using a set of the population generation rules.
The second step, the arithmetic swapping operation is applied to search for the new operation sequence. In addition, the fuzzy
machine selection is utilized to select the proper machine according to the number of operation load and the machine processing
time load. Next, the precedence preserving order-based crossover (POX) and the uniform crossover operation are used to enhance
the exploitation capability in the third step. The fuzzy machine selection approach embedded the new criteria is used in the local
search process to explore the neighbor solution in the surrounding areas of the best 10% of all solutions. The comparative result
shows the best performance of the proposed algorithm when compared with the other comparison algorithms.

© 2018 The Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://www.atlantis-press.com/journals/ijndc
mailto:ajchara.p%40chandra.ac.th?subject=
http://creativecommons.org/licenses/by-nc/4.0/

12	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19

performance than the basic DE methods. Wu and Che [5] pro-
posed a Memetic Differential Evolution (MDE) algorithm for
solving the unrelated parallel speed scaling machine scheduling
problem. The MDE algorithm improves the basic DE algorithm
by using the adaptive meta-Lamarckian learning strategy to inte-
grate the speed adjusting heuristic and job-machine swap heuris-
tics as the local search. The incorporate of these two approaches
is to balance the global exploration and local exploitation. The
computational results have shown that, their proposed algorithm
can significantly improve the basic DE algorithm. Zhang et al. [6]
solved a distributed blocking flow shop scheduling problem by
introducing the novel hybrid Discrete Differential Evolution
(DDE) algorithm. In this paper, they use the heuristic for pro-
viding better initial solutions. The mutation and crossover are
redesigned to adjust the DDE to the discrete permutations. Last,
an effective speedup technique is designed to enhance the algo-
rithmic efficiency. The comparison with the existing algorithms
shows their performance.

In our research, a DDE algorithm with the new idea called the
fuzzy machine selection is proposed. First, the initial popula-
tion is generated by the population generation rules. Second, the
arithmetic swapping operation and the fuzzy machine selection
with the machine load criteria is utilized in the mutation process.
Third, we applied the crossover operation to search for the prom-
ise solution in the neighboring areas of the target solution. At last,
the fuzzy machine selection with the free time criteria is used. The
performance of the proposed algorithm is tested with the standard
data set.

The remainder of this paper is organized as follows. In Section 2,
the FJSP is briefly presented. The original of the DE algorithm is
explained in Section 3. In Section 4, the proposed algorithm is
demonstrated. Section 5 shows the results, and the final part is the
conclusion.

2. � FLEXIBLE JOB SHOP SCHEDULING
PROBLEM

The FJSP is categorized into the non-deterministic polynomial
time hardness problem (NP-hard problem). This problem is found
in the manufacturing planning process, for example, the auto parts
assembly industries which consist of the precedence jobs and lots
of machines that work similarly.

Hence, the objective of the FJSP is to schedule a set of N jobs J = {J1,
J2, J3 … JN} on a set of K similarly machines M = {M1, M2, M3 … MK}.
The details of the FJSP are, each job may have a different number of
operations and each operation can operate with only one machine
from the candidate set.

In addition, the processing time of each operation may be different
when processed by the different machine. To accomplish solving
the FJSP, the following rules are taken into account: (a) each job is
independent with others; (b) the operation sequence of each job is
arranged according to their precedence; (c) each operation of each
job can be processed with only one machine.

 	 C O
j

J

i

N

ijm=





= =
∑∑min

1 1
 	 (1)

The objective function of this problem is to minimize the completion
time (C) as shown in Equation (1), where j is the number of job, i is the
number of operations of the job j and m is the selected machine.

Table 1 shows the example of the FJSP. The job J1 contains the
three operations as follows, O11 instance represents the first
operation of job number one which allowed to be processed by
the machine number 1 (M1) and the machine number 3 (M3).
The completion time of O11 with the machine M1 is 5 units of
the processing time and the completion time of O11 with the
machine M3 is 4 units of the processing time. The second oper-
ation is O12, to be processed by the machine M1, M2 and M3.
The completion tine of the operation O12 on each machine is
4, 2 and 3 units of the processing time respectively. The third
operation of job J1 represented by O13 instance, can be processed
by all machines; each machine requires a different amount of
processing time as follows: the completion time of O13 with the
machine M1 is 4 units of processing time. The completion time
of O13 with the machine M2 is 2 units of processing time. When
applied the O13 to the machine M3 used the 3 units of processing
time. Similarly details with the other jobs.

3. � THEORY BACKGROUND OF THE
PROPOSED ALGORITHM

Some aspects of theory background are described below in detail.

3.1.  Differential Evolution Algorithm

The DE algorithm is an effective-based evolution algorithm devel-
oped by Storn and Price [7] for solving discrete and continuous
optimization problem. DE is one of the best genetic type algo-
rithms. The DE is solving a problem by creating new candidate
solutions. According to its functionality, the new one is produced
by changing the existing ones. At the same time, keep whichever
the candidate solution which the best fitness on hand. This algo-
rithm consists of four stages of the procedure: initial population,
mutation, reproduction and selection.

At the beginning of the DE algorithm, randomly created the ini-
tial population vector. Then, the mutation operation is used as a
primary search mechanism in the feasible region surrounding the
initial population vector area. The mutation process can be mathe-
matically expressed as Equation (2).

	 V X F X Xi c a b= + −() 	 (2)

Table 1 | The example of the FJSP

Job Operation
Machines

M1 M2 M3

J1 O11 5 – 4
O12 2 2 5
O13 4 2 3

J2 O21 3 – –
O22 – 2 1

J3 O31 3 1 –
O32 3 – 2

	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19	 13

A vector Vi is created by randomly chosen three constant members
of Xa, Xb and Xc, while Xa − Xb defined a vector differential value [8].
The weighting, factor F is a random instant in the optimal positive
range <1 [9]. The Vi vector will accept when optimized than the
initial vector. Next, the reproduction process is started by defin-
ing a crossover probability PC Î [0, 1]. The PC used to control the
fraction of the parameter that is copied from a pair of the vector
Vi. Then the random value is picked by a random number between
0 and 1. When the random value is less than the PC, the crossover
operation adopted as the extended search mechanism. The cross-
over is used to generate the target vector solutions. In contrast, if
the random instant is more than the PC, the parameter value will be
directly inherited from the Vi vector. In final stage, DE uses simple
one-to-one survivor selection where the Vi vector competes against
with the target vector. The vector with the lowest objective function
value will survive for the next iteration. The DE algorithm is ter-
minated when a predetermined number of iterations are reached.

3.2.  Fuzzy Set

Fuzzy set was suggested by Bai and Wang [10]. The fuzzy set is an
extended version of a classic (crisp) set. It can be discrete or con-
tinuous. In the classical set theory, a crisp set is defined by a two-
condition function which only handles the values 0 and 1. Therefore,
it fails to give the answers on the paradoxes. The fuzzy set, used to
define a membership degree of an element to have partial member-
ship in fuzzy set or multiple memberships in several different fuzzy
sets. In addition, fuzzy set handles all the values between 0 and 1.

Figure 1 presents the triangular fuzzy set, a fuzzy number A = (a, b, c)
which a, b and c be real numbers with a < b < c.

4.  PROPOSED ALGORITHM

4.1.  Solution Representation

Because, the FJSP consists of two sub-problems need to be solved.
Therefore, the solution is encoded into two parts. First part rep-
resents the sequence of operations and the second part contains
the machine which is allocated to each operation in the first part.

In Figure 2, the first part gives the precedence constrained of the
operations. The second part presents the machine number which
matches to each operation in the first part. The pairing sequence of
both parts can be explained as follows.

The first of the number 1 in the operation sequence part represent
the first operation of the first job, is to be processed by the machine
M3. The first of the number 2 represent the first operation of the

second job, is to be processed by the machine M1. The second of
the number 1 represent the second operation of the first job, is to
be processed by the machine M2. The third of the number 1 rep-
resent the third operation of the first job, is to be processed by the
machine M2. The second of the number 2 represent the second
operation of the second job, is to be processed by the machine M2.
The first of the number 3 represent the first operation of the third
job, is to be processed by the machine M1 and the second of the
number 3 represent the second operation of the third job, is to be
processed by the machine M1.

To measure the quality of the solution presented in Figure 2, the
makespan is computed as demonstrated in Figure 3.

4.2.  Generate the Initial Population

The initial population of N solutions is randomly initialized by
using a set of the population generation rules as follows:

	 •	 To create the operation sequence part of the initial population,
randomly chosen a number among 1, 2 or 3. When a random
number equal to a number 1, the operation sequence part is cre-
ated by using the random rule. While the random number is 2,
the most work remaining rule is used. The most number of oper-
ation remaining rules is used when the random number is 3.

	 •	 This research generates the machine assignment part of the ini-
tial population by randomly picked one rule from a set of sev-
eral rules. This process can be explained step-by-step as follows:

 	(a)	 Randomly chosen a number between 1 and 2.

 	(b)	 If the random number equal to 1, using the random rule to
produce the machine assignment part. The local minimum
processing time rule is used to generate the machine assign-
ment part when the random number is 2.

This process repeats until the amount of the initial population is
equal to the predefined number.

Figure 1 | The example of the triangular fuzzy set

Figure 2 | The example of the solution representation

Figure 3 | The example of the computation of the makespan

14	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19

4.3.  Mutation Process

In the proposed algorithm, the mutation process is used as the
search mechanism for the promise answer. Because, the solution is
divided into two parts. Therefore, the mutation process is split into
two stages as follows:

	 •	 The operation sequence part of the trial mutant solution
is produced by applying the arithmetic swapping operation
to each of the initial population. The procedure is listed as
follows: First, randomly pick the K numbers in the range of
0 and 1. Second, match each of the random number with
each operation of the initial population then constructed it
into the identical set respectively from left to right. Third,
sort the identical set in descending order. At last, defined
the identical set as the operation sequence part of the trial
mutant solution as indicated in Figure 4.

	 •	 There are several methods used as the machine selection
mechanism such as the operation minimum processing time
rule and the random rule. All above methods met the lack of
the diversity, as a result, the algorithm is stuck in the local area.
Hence, this paper proposed a new idea to choose the proper
machine called the fuzzy machine selection. The main con-
cept of the fuzzy machine selection approach is to elect the
appropriate machine by considering the machine loads, both
the loads of operation number and the loads of machine pro-
cessing time. In detail, when the machine is overloaded the
boundary of fuzzy membership function is small. In con-
trast, when the machine is independent the size of member-
ship function is large. This gives the available machine higher
chance to select. To complete the fuzzy machine selection, the
following steps are performed.

 	 L
M W M Wmi

O O d d

=
⋅() ⋅()

1 	 (3)

First, we choose one operation in the operation sequence part of the
trial mutant solution. After that, record the candidate machine which
can assign to the chosen operation as the temporary table. In Figure 5a,
the chosen operation is the third operation of the first job.

Second, calculate the loads on each of the candidate machine in
the temporary table according to Equation (3), where MO denote

Figure 4 | The arithmetic swapping operation Figure 5 | The example of the fuzzy machine selection procedure

(a)

Candidate
machines MO MD Machine load Machine

boundary

M1 3 9 1/(3*0.6) (9*0.4) 0.15 0.15/1.71 = 0.087
M2 2 4 1/(2*0.6) (4*0.4) 0.52 0.52/1.71 = 0.304
M3 1 4 1/(1*0.6) (4*0.4) 1.04 1.04/1.71 = 0.608

1.71

(b)

(c)

Random value Condition Membership degree

X = 0.35 x <= a, x > c 0
a < x <= b x − a/b − a

x = b 1
b < x <= c c − x/c − b

(d)

Machine Condition Function Membership
degree

M1 x > 0.09 0 0
M2 0.21 < x < 0.36 0.36–0.35/0.36–0.21 0.07
M3 0.31 < x < 0.61 0.35–0.31/0.61–0.31 0.13

(e)

	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19	 15

mutant solution 2 that parallel with the number ‘1’ of the uniform
solution will copy to the target solution.

4.5.  Local Search Process

In the proposed algorithm, the local search process is utilized to
the best 10% of the target solution. We divided it into two modes.
First mode, the best 5% of the target solution is improved by the
local search based on the critical path method. Second mode,
the remaining 5% is adjusted by the fuzzy machine selection
approach. To complete the local search process the following are
performed.

	 •	 The local search based on the critical path method is applied to
search for the operation sequence part of the new solution in
neighboring areas of the best 5% of the target solution. The crit-
ical path is the sequence of the critical operations that defined
the duration of the project. It is a longest sequence of the job
tasks which must be completed on time to meet the deadline
or the minimize duration. When any of the operations in the
critical path is late, the project will be delayed. The local search
based on the critical path method is proposed to enhance the
local exploitation. Mean that, increasing chances of meeting the
shorter path. The procedure is explained as follows:

First step: Calculate the critical path as shown in Table 2.

In this table, the column labeled with “Operation sequence” con-
tains the sequence of tasks.

The column label with “Machine” displays the machine number
which assigned to each task.

The column label with “Duration” contains the duration time of
each task on selected machine.

The column label “Precedence/Operation” show priority in impor-
tance of each task. For example, task O21, task O11 and task O31 are
performed on the similar machine (M1). Therefore, task O11 can
start after task O21 is completed and task O32 can operate after task
O11 is finished.

The column label “Precedence/Time” displays the precedence
duration related to the “Precedence/Operation” column. The pre-
ceding time of the each task is calculated by adding the duration
of the preceding operation with the preceding time of the preced-
ing operation. For instance, the preceding operation of O32 has two
operations, so, the preceding time has two values.

Figure 7 | The uniform crossover operation

Figure 6 | The POX crossover operation

the amount of operations loads of each of the candidate machine.
MD stated as the accumulated processing time loads of the candi-
date machine. WO and WD are the defined weight value of MO and
MD respectively. The smallest of the Lmi instance appear when the
machine heavy load. The computation processes of the candidate
machine boundary is shown in Figure 5b.

Third, in Figure 5c, each machine is represented by the triangular
membership function. Each of the triangular set represents each of
the candidate machines. The size of overlapping between the can-
didate machine boundaries depends on the load amount of oper-
ation. Mean that, if the machine has similar amount of operation
loads, then the overlapping size is big.

Fourth, when we created the triangular fuzzy member completely,
a random number between 0 and the right corner position of the
rightmost membership areas is picked. In Figure 5c, we pick the
random number between [0, 0.91].

Fifth, Figure 5d shows the example of the membership degree
when a random number is x. The membership degree belongs to
each machine is executed according to the triangular membership
function which is shown in Figure 5e. The machine with the high-
est membership degree is selected. This process repeats until the
machine assignment part is fulfilled.

4.4.  Recombination Process

In this process, we randomly match the pair of the trial mutant
solutions. After that, the POX crossover and the uniform crossover
operation are performed for each pair of solutions to generate the
operation sequence part and the machine assignment part of the
target solution. The detailed procedure of the POX crossover and
the uniform crossover is described as follows:

Figure 6 is an example for the POX crossover operation. To create
the operation sequence part of the target solution, the member of
the subset is randomly selected. When the subset is completely cre-
ated, some operation in the trial mutant solution 1 which matched
by the member in the subset will transfer to the target solution. At
the same time, the rest of the target solution will inherit from the
trial mutant solution 2.

The example of the uniform crossover operation is present in
Figure 7. The procedure of this process is started by randomly
generating the uniform solution. Then copy the machine of the
trial mutant solution 1 that corresponds to the number ‘0’ of the
uniform solution to the target solution. The machine of the trial

16	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19

Figure 8 | The example of the critical operations

Figure 9 | The example of moving the critical operations

Table 2 | The example of the critical path operation calculation

Operation
sequence Machine Duration

Precedence
ES EF LS

Successor
LF TS

Operation Time Operation Time

O21 M1 3 – 0 1 3 1 O11, O22 4, 11 3 0
O11 M1 5 O21 3 4 8 4 O32, O12 9, 9 8 0
O31 M2 1 – 0 1 1 8 O32, O12 9, 9 8 7
O32 M1 3 O11, O31 8, 1 9 11 9 – – 11 0
O12 M2 2 O11, O31 8, 1 9 10 10 O22, O13 12, 13 11 1
O22 M2 2 O21, O12 3, 10 11 12 11 – – 12 0
O13 M3 3 O12 10 11 13 11 – – 13 0

The value 8 is calculated by adding the duration of task O11 (value 5)
with the preceding time (value 3).

The column label “ES” contains the early start time of each task.
The early start time is computed by adding the maximum of the
preceding time with number 1 [ES = max (precedence time) + 1].
For any task without a predecessor, its early start time will be 1.

The column label “EF” presents the early finish time of the task.
This label is calculated by adding the ES with the duration, then
subtracting number 1 [EF = (ES + Duration) − 1].

The column label “LF” shows the late finish time, this label is cal-
culated from backward. The last task’s late finish time is same as
its early finish time. In addition, the task which last of each job
and last of each machine have the late finish time equal to its early
finish time. For any task with a single successor, calculate the late
finish time by subtracting 1 from its successor’s late start time
(LS – 1). Otherwise, calculate its late finish by subtracting 1 from
the minimum of its successors.

The column label “LS” displays the late start time of all tasks.
The LS is executed by using the following equation: LS = (LF –
duration) + 1.

The label “TS” contains the total slack of all tasks. It is calculated
by bringing the late start time minus the early start time (LS − ES).

The critical operation is the operation which its total slack equal to
0. In the example, the critical operation is O21, O11, O32, O22 and O13
as shown in Figure 8.

Second step: Move each of the critical operations and insert it at the
feasible position. Moving any of the critical operations will obtain
the new solution as shown in Figure 9.

Third step: This process repeats until all critical operations moved.

Final step: Replace the target solution by the new solution when the
new solution is better.

	 •	 The fuzzy machine selection is applied to the target solution
in the second mode. This mechanism is use to search for the
machine assignment part of the new solution. The rationale
behind this concept is to enhance the ability to handle the free
time of the machine and increase the load balancing among
the machines. It is utilized by the following steps.

First step: Calculate to the overall free time of the machine and
called as the O time. The O time is the duration which the machine
is available. Meanwhile, retrieve to the maximum gap of the free
time of each machine and denoted as the GF time. The calculation
example of this process is shown in Figure 10.

	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19	 17

Figure 10 | The example of calculating the free time

Figure 11 | The example of the membership degree execution

Candidate
machines O GF Machine load Machine

boundary

M2 6 4 (6*4)/100 0.24 0.24/0.80 = 0.30
M3 8 7 (8*7)/100 0.56 0.56/0.80 = 0.70

0.80

4.6.  Selection Process

In the final step, sort all solutions according to the fitness value in
descending order. The solutions which their fitness value is in the
top N number are defined as the initial population for the next iter-
ation. Then, repeat stage 4.3 through 4.6 until the stopping criteria
is met. The proposed algorithm is stopped when the numbers of
iteration equal to the predefine number.

5.  EXPERIMENTAL RESULTS

To test the performance of the proposed algorithm, the benchmark
test sets called the Brandimarte, the Fattahi and the Dauzere Peres
Data which obtained from the library of FJSP (FJSPLIB) are used.
The effectiveness of the proposed algorithm is compared with the
others state-of-the-art algorithm in terms of the average percentage
deviation from the lower bound (Avg. Dev. LB (%)).

The Brandimarte data set consists of 10 standard data sets,
MK01 to MK10. The MK01 and MK02 consist of 10 jobs with
six machines. The MK03 and MK04 contain 15 jobs with eight
machines. The MK05 includes 15 jobs with four machines. The
MK06 comprises of 10 jobs with fifteen machines. The MK07
consists of 20 jobs with five machines. The MK08–MK10 contain
20 jobs with ten machines.

The Fattahi data set consists of 20 data sets, SFJS1–SFJS10 and
MFJS1–MFJS10. Each dataset contains a different number of jobs
with distinct a machine number, as follows. The SFJS1 and SFJS2
contain 2 jobs with two machines. The SFJS3–SFJS5 consist of
3 jobs with two machines. The SFJS6–SFJS9 include 3 jobs with
three, five, four and three machines respectively. The SFJS10 con-
tains 4 jobs with five machines. The MFJS1–MFJS7 include seven
machines with 5, 5, 6, 7, 7, 8 and 8 jobs respectively. The MFJS8–
MFJS10 contain eight machines with 9, 11 and 12 jobs respectively.

The Dauzere Peres and Paulli data set contains 18 standard data
sets named 01a–18a. The 01a–06a consist of 10 jobs with five
machines. The 07a–12a provide 15 jobs with eight machines. The
last, 13a–18a include 20 jobs with ten machines.

Tables 3–5 illustrates the comparative results of the proposed algo-
rithm with the three related algorithms. The column labeled with
“LB” displays the minimum boundary of each problem data set.
The followings are present the comparative results.

Second step: Use the fuzzy machine selection to select the
machine which proper the free time. According to the procedure
of the fuzzy machine selection, the machine which the maximum
of the O time and the GF time has a large boundary. Therefore, it
has more opportunity to be chosen as shown in Figure 11. We call
the machine with the highest membership degree as the available
machine.

Third step: Search for the critical operation which the process-
ing time is minimized when assigned to the available machine.
Then, assign the above critical operation to the available
machine.

Forth step: The new solution will accept when it has a shorter path
than the old one.

Table 3 | The comparative result of the Brandimarte data

Problem LB Proposed
algorithm

QPSO
[11]

SSPR
[12]

HDE
[13]

MK01 36 39 37 40 40
MK02 24 26 26 26 26
MK03 204 204 204 204 204
MK04 48 59 60 60 60
MK05 168 172 173 172 172
MK06 33 57 64 57 57
MK07 133 139 139 139 139
MK08 523 523 523 523 523
MK09 299 307 307 307 307
MK10 165 197 205 196 198
Avg. Dev. LB (%) 14.127 16.446 14.553 14.674

18	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19

Table 5 | The comparative result of the Dauzere Peres and Paulli data

Problem LB Proposed
algorithm

QPSO
[11]

SSPR
[12]

HHS/LNS
[17]

01a 2505 2505 2505 2505 2505
02a 2228 2230 2230 2229 2230
03a 2228 2228 2229 2228 2228
04a 2503 2503 2498 2503 2506
05a 2189 2211 2207 2211 2212
06a 2162 2180 2170 2183 2187
07a 2187 2220 2264 2274 2288
08a 2061 2066 2073 2064 2067
09a 2061 2064 2066 2062 2069
10a 2178 2210 2205 2269 2297
11a 2017 2058 2050 2051 2061
12a 1969 2020 2019 2018 2027
13a 2161 2198 2253 2248 2263
14a 2161 2163 2167 2163 2164
15a 2161 2153 2165 2162 2163
16a 2148 2213 2252 2244 2259
17a 2088 2130 2134 2130 2137
18a 2057 2123 2123 2119 2124
Avg. Dev. LB (%) 1.089 1.437 1.567 1.890

the proposed algorithm and the AISA obtain the best of minimum
results. The proposed algorithm, the AIA and the AISA come for
first place for MFJS7. For the MFJS8 problem, the proposed algo-
rithm and the AIA met the best answer and followed by the AISA.
The proposed algorithm outperforms than the other comparison
algorithm with the hardest data set MFJS9 and MFJS10. When
looking at all datasets together found that, the average percentage
deviation from the lower bound of the proposed algorithm is the
most performance among the comparison algorithm at 13.205%
mean relative error.

Table 5 illustrates the comparative result of the proposed algorithm
and the current state-of-the-art meta-heuristic algorithms tested
with the Dauzere Peres and Paulli data set. For 01a, all compari-
son algorithms achieved the best results. For 02a, the SSPR met the
best result followed by the other comparison. For 03a, the proposed
algorithm is in line with the SSPR and the HHS/LNS. The proposed
algorithm and the SSPR met the best result of the 04a, 05a, 14a and
17a. The QPSO founded the best minimum answer of the 06a and 10a
and followed by the proposed algorithm. For 07a, 13a, 15a and 16a
the proposed algorithm has the smallest difference when compared
with the LB answer. For 08a, 09a and 18a, the SSPR comes in first
place and followed by the proposed algorithm. For the 11a and 12a
problem, the QPSO and the SSPR contain the best result and the
proposed algorithm comes in second place. As the Avg. Dev. LB
(%) results, the proposed algorithm is the best competitor.

6.  CONCLUSION

This paper presents the new algorithm which is based on the step of
DE algorithm. In the proposed algorithm, the new mechanism called
the fuzzy machine selection is presented to create the machine mem-
bership function used to select the proper machine. In the muta-
tion process, the arithmetic swap operation and the fuzzy machine
selection mechanism embedded the loads balancing criteria is used.
Then, the local search based on the critical path method and the
fuzzy machine selection embedded the free time criteria are utilized
in the local search process. The proposed algorithm is tested with 48
datasets. The result indicates that the proposed algorithm is outper-
forming than the other comparison algorithms.

REFERENCES

  [1]	 A.W. Mohamed, H.Z. Sabry, M. Khorshid, An alternative differ-
ential evolution algorithm for global optimization, J. Adv. Res. 3
(2012), 149–165.

  [2]	 M. Salehpour, A. Jamali, A. Bagheri, N. Nariman-zadeh, A new
adaptive differential evolution optimization algorithm based
on fuzzy inference system, Int. J. Eng. Sci. Technol. 20 (2017),
587–597.

  [3]	 D. Zou, H. Liu, L. Gao, S. Li, A novel modified differential evolu-
tion algorithm for constrained optimization problems, Comput.
Math. Appl. 61 (2011), 1608–1623.

  [4]	 C-M. Huang, Y-C. Huang, Combined differential evolution algo-
rithm and ant system for optimal reactive power dispatch, Energy
Procedia 14 (2012), 1238–1243.

  [5]	 X. Wu, A. Che, A memetic differential evolution algorithm for
energy-efficient parallel machine scheduling, Omega 82 (2019),
155–165.

Table 4 | The comparative result of the Fattahi data

Problem LB Proposed
algorithm AIA [14] AISA [15] SA [16]

SFJS1 66 66 66 66 66
SFJS2 107 107 107 107 107
SFJS3 221 221 221 221 221
SFJS4 355 355 355 355 355
SFJS5 119 119 119 119 119
SFJS6 320 320 320 320 320
SFJS7 397 397 397 397 397
SFJS8 253 253 253 253 253
SFJS9 210 210 210 210 210
SFJS10 516 516 516 516 516
MFJS1 396 468 468 468 468
MFJS2 396 446 448 446 448
MFJS3 396 466 468 466 468
MFJS4 496 554 554 554 561
MFJS5 414 514 527 514 514
MFJS6 469 608 635 608 634
MFJS7 619 879 879 879 899
MFJS8 619 884 884 894 897
MFJS9 764 1055 1088 1088 1101
MFJS10 944 1201 1267 1196 1258
Avg. Dev. LB (%) 13.205 14.27 13.475 14.473

In Table 3, the Brandimarte data set, all comparison algorithms
successfully found the optimum results of MK03 and MK08. For
MK02, MK05, MK07–MK09, the proposed algorithm, the SSPR
and the HDE reach the best path. In MK06, the proposed algo-
rithm, the SSPR and the HDE met the best answer. The MK04, the
proposed algorithm is outperforming. The QPSO comes in first
place with MK01 and followed by the proposed algorithm. Likewise
the MK10, the SSPR comes in first place and a second place is the
proposed algorithm. When considering all instances together, our
proposed algorithm found solutions that nearest lower bounds, at
14.127% mean relative error.

Table 4, the fattahi data set, shows that all algorithms accomplished
found the best result of SFJS1 through MFJS1. For MFJS2–MFJS6,

http://dx.doi.org/10.1016/j.jare.2011.06.004
http://dx.doi.org/10.1016/j.jare.2011.06.004
http://dx.doi.org/10.1016/j.jare.2011.06.004
http://dx.doi.org/10.1016/j.jestch.2017.01.004
http://dx.doi.org/10.1016/j.jestch.2017.01.004
http://dx.doi.org/10.1016/j.jestch.2017.01.004
http://dx.doi.org/10.1016/j.jestch.2017.01.004
http://dx.doi.org/10.1016/j.camwa.2011.01.029
http://dx.doi.org/10.1016/j.camwa.2011.01.029
http://dx.doi.org/10.1016/j.camwa.2011.01.029
https://doi.org/10.1016/j.egypro.2011.12.1082
https://doi.org/10.1016/j.egypro.2011.12.1082
https://doi.org/10.1016/j.egypro.2011.12.1082
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1016/j.omega.2018.01.001

	 A. Phu-ang / International Journal of Networked and Distributed Computing 7(1) 11–19	 19

  [6]	 G. Zhang, K. Xing, F. Cao, Discrete differential evolution algo-
rithm for distributed blocking flowshop scheduling with
makespan criterion, Eng. Appl. Artif. Intell. 76 (2018), 96–107.

  [7]	 R. Storn, K. Price, Differential evolution – a simple and effi-
cient heuristic for global optimization over continuous spaces,
J. Global Optim. 11 (1997), 341–359.

  [8]	 Storn R, Differential Evolution Research – Trends and Open
Questions, in: U.K. Chakraborty (eds.) Advances in Differential
Evolution. Studies in Computational Intelligence, Springer,
Berlin, Heidelberg, 2008, pp. 1–31.

  [9]	 K.M. Mullen, D. Ardia, D.L. Gil, D. Windover, J. Cline, DEoptim:
an R package for global optimization by differential evolution,
J. Stat. Software 40 (2011), 1–26.

[10]	 Y. Bai, D. Wang, Fundamentals of fuzzy logic control – fuzzy sets,
fuzzy rules and defuzzifications, in: Y. Bai, H. Zhuang, D. Wang (eds.),
Advanced Fuzzy Logic Technologies in Industrial Applications,
Advances in Industrial Control, Springer, London, 2006, pp. 17–36.

[11]	 M.R. Singh, S.S. Mahapatra, A quantum behaved particle swarm
optimization for flexible job shop scheduling, Comput. Ind. Eng.
93 (2016), 36–44.

[12]	 M.A. González, C.R. Vela, R. Varela, Scatter search with path
relinking for the flexible job shop scheduling problem, Eur. J.
Oper. Res. 245 (2015), 35–45.

[13]	 Y. Yuan, H. Xu, Flexible job shop scheduling using hybrid
differential evolution algorithms, Comput. Ind. Eng. 65 (2013),
246–260.

[14]	 A. Bagheri, M. Zandieh, I. Mahdavi, M. Yazdani, An artificial
immune algorithm for the flexible job-shop scheduling problem,
Future Gener. Comput. Syst. 26 (2010), 533–541.

[15]	 V. Roshanaei, Mathematical modelling and optimization
of flexible job shops scheduling problem, Electronic Theses
and Dissertations 157, 2012, https://scholar.uwindsor.ca/
etd/157

[16]	 M. Yazdani, M. Gholami, M. Zandieh, M. Mousakhani, A simu-
lated annealing algorithm for flexible job-shop scheduling problem,
J. Appl. Sci. 9 (2009), 662–670.

[17]	 Y. Yuan, H. Xu, HHS/LNS: an integrated search method
for flexible job shop scheduling, 2012 IEEE Congress on
Evolutionary Computation, IEEE, Brisbane, QLD, Australia,
2012, pp. 1–8.

http://dx.doi.org/10.1016/j.engappai.2018.09.005
http://dx.doi.org/10.1016/j.engappai.2018.09.005
http://dx.doi.org/10.1016/j.engappai.2018.09.005
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.18637/jss.v040.i06
http://dx.doi.org/10.18637/jss.v040.i06
http://dx.doi.org/10.18637/jss.v040.i06
http://dx.doi.org/10.1007/978-1-84628-469-4_2
http://dx.doi.org/10.1007/978-1-84628-469-4_2
http://dx.doi.org/10.1007/978-1-84628-469-4_2
http://dx.doi.org/10.1007/978-1-84628-469-4_2
http://dx.doi.org/10.1016/j.cie.2015.12.004
http://dx.doi.org/10.1016/j.cie.2015.12.004
http://dx.doi.org/10.1016/j.cie.2015.12.004
http://dx.doi.org/10.1016/j.ejor.2015.02.052
http://dx.doi.org/10.1016/j.ejor.2015.02.052
http://dx.doi.org/10.1016/j.ejor.2015.02.052
http://dx.doi.org/10.1016/j.cie.2013.02.022
http://dx.doi.org/10.1016/j.cie.2013.02.022
http://dx.doi.org/10.1016/j.cie.2013.02.022
http://dx.doi.org/10.1016/j.future.2009.10.004
http://dx.doi.org/10.1016/j.future.2009.10.004
http://dx.doi.org/10.1016/j.future.2009.10.004
https://scholar.uwindsor.ca/etd/157
https://scholar.uwindsor.ca/etd/157
https://scholar.uwindsor.ca/etd/157
https://scholar.uwindsor.ca/etd/157
http://dx.doi.org/10.3923/jas.2009.662.670
http://dx.doi.org/10.3923/jas.2009.662.670
http://dx.doi.org/10.3923/jas.2009.662.670
https://dx.doi.org./10.1109/CEC.2012.6256609
https://dx.doi.org./10.1109/CEC.2012.6256609
https://dx.doi.org./10.1109/CEC.2012.6256609
https://dx.doi.org./10.1109/CEC.2012.6256609

