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1.  INTRODUCTION 

At the present, the government encourages entrepreneurs used 
the innovation and digital technology for enhanced the com-
petitiveness and increased the productivity. To success with the 
mention above, the entrepreneurs need to adopt the intelligence 
of the computer in the business. As well as the manufacturing 
industry, the one important in the manufacturing is to sched-
ule the job plan or the scheduling plan. Nowadays, the indus-
try applied the computer to calculate the schedule and hold the 
machine balancing in the manufacturing process. The Flexible 
Job Shop Scheduling Problem (FJSP) is the complex problem 
which is found in the manufacturing processes. This problem 
occurs when the staff cannot maintain a balance between the jobs 
and the machines. In recent years, the researcher in the operation 
research areas attends to create the metaheuristic algorithm for 
solving the FJSP. The differential evolution (DE) algorithm is one 
of the computational algorithms which used to solve the opera-
tion research optimization problem. There are several research 
works which have been proposed; for instance. Mohamed et al. [1]  
applied the DE algorithm for solving unconstrained global 
optimization problems. In this algorithm, their proposed a new 
directed mutation rule based on the weighted difference vector 
between the best and the worse solution. The local search is uti-
lized to enhance the search capability and to increase the conver-
gence rate. Furthermore, a dynamic non-linear increased crossover 
probability scheme is proposed balance between the diversity  
and the convergence rate or between global exploration ability  

and local exploitation. The result of their algorithm indicates 
that the improved algorithm outperforms and is superior to 
other existing algorithms. Salehpour et al. [2] developed the 
new version of the DE algorithm with the fuzzy logic infer-
ence system. This paper uses a fuzzy logic inference system to 
dynamically tune the mutation factor of DE and improve its 
exploration and exploitation. A fuzzy system used to consid-
ering the variation, namely, number of generation and pop-
ulation. The results obtained show the really good behavior of 
the proposed method and comparison. Zou et al. [3] presented 
a Novel Modified Differential Evolution (NMDE) algorithm to 
solve constrained optimization problems. This algorithm modi-
fies the scale factor of the original DE algorithm by an adaptive 
strategy. In the crossover operation of this paper, they use the 
uniform distribution when the stagnation happens to the solu-
tion. Moreover, a common penalty function method adopted to 
balance objective and constraint violations. Experimental results 
show that the NMDE algorithm has higher efficiency than the 
other methods in term of finding better feasible solutions of most 
constrained problems. Huang and Huang [4] proposed the DE 
algorithm with the ant system for solving the Optimal Reactive 
Power Dispatch (ORPD) problem. The purpose of ORPD is to 
reduce active power transmission losses and improve the volt-
age profile in the power systems. The step of this paper follows 
the original of DE algorithm. In the mutation process, this paper 
avoids falling into local minima and save more computational 
time by using the variable scaling mutation. They test the per-
formance of the proposed algorithm on the IEEE 30-bus system. 
The experiment shown that, this paper obtains better results with 
lower active power transmission losses and faster convergence 
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A B S T R AC T
 The objective of the research is to solve the flexible job shop scheduling problem (FJSP). In this paper, the new algorithm is 
proposed mainly based on discrete concepts of the differential evolution (DE) algorithm with the new idea called the fuzzy 
machine selection approach. In the first step, the initial population is created by using a set of the population generation rules. 
The second step, the arithmetic swapping operation is applied to search for the new operation sequence. In addition, the fuzzy 
machine selection is utilized to select the proper machine according to the number of operation load and the machine processing 
time load. Next, the precedence preserving order-based crossover (POX) and the uniform crossover operation are used to enhance 
the exploitation capability in the third step. The fuzzy machine selection approach embedded the new criteria is used in the local 
search process to explore the neighbor solution in the surrounding areas of the best 10% of all solutions. The comparative result 
shows the best performance of the proposed algorithm when compared with the other comparison algorithms. 
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performance than the basic DE methods. Wu and Che [5] pro-
posed a Memetic Differential Evolution (MDE) algorithm for 
solving the unrelated parallel speed scaling machine scheduling 
problem. The MDE algorithm improves the basic DE algorithm 
by using the adaptive meta-Lamarckian learning strategy to inte-
grate the speed adjusting heuristic and job-machine swap heuris-
tics as the local search. The incorporate of these two approaches 
is to balance the global exploration and local exploitation. The 
computational results have shown that, their proposed algorithm 
can significantly improve the basic DE algorithm. Zhang et al. [6] 
solved a distributed blocking flow shop scheduling problem by 
introducing the novel hybrid Discrete Differential Evolution 
(DDE) algorithm. In this paper, they use the heuristic for pro-
viding better initial solutions. The mutation and crossover are 
redesigned to adjust the DDE to the discrete permutations. Last, 
an effective speedup technique is designed to enhance the algo-
rithmic efficiency. The comparison with the existing algorithms 
shows their performance.

In our research, a DDE algorithm with the new idea called the 
fuzzy machine selection is proposed. First, the initial popula-
tion is generated by the population generation rules. Second, the 
arithmetic swapping operation and the fuzzy machine selection 
with the machine load criteria is utilized in the mutation process. 
Third, we applied the crossover operation to search for the prom-
ise solution in the neighboring areas of the target solution. At last, 
the fuzzy machine selection with the free time criteria is used. The 
performance of the proposed algorithm is tested with the standard 
data set.

The remainder of this paper is organized as follows. In Section 2, 
the FJSP is briefly presented. The original of the DE algorithm is 
explained in Section 3. In Section 4, the proposed algorithm is 
demonstrated. Section 5 shows the results, and the final part is the 
conclusion.

2. � FLEXIBLE JOB SHOP SCHEDULING 
PROBLEM

The FJSP is categorized into the non-deterministic polynomial 
time hardness problem (NP-hard problem). This problem is found 
in the manufacturing planning process, for example, the auto parts 
assembly industries which consist of the precedence jobs and lots 
of machines that work similarly.

Hence, the objective of the FJSP is to schedule a set of N jobs J = {J1, 
J2, J3 … JN} on a set of K similarly machines M = {M1, M2, M3 … MK}. 
The details of the FJSP are, each job may have a different number of 
operations and each operation can operate with only one machine 
from the candidate set.

In addition, the processing time of each operation may be different 
when processed by the different machine. To accomplish solving 
the FJSP, the following rules are taken into account: (a) each job is 
independent with others; (b) the operation sequence of each job is 
arranged according to their precedence; (c) each operation of each 
job can be processed with only one machine.
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The objective function of this problem is to minimize the completion 
time (C) as shown in Equation (1), where j is the number of job, i is the 
number of operations of the job j and m is the selected machine.

Table 1 shows the example of the FJSP. The job J1 contains the 
three operations as follows, O11 instance represents the first 
operation of job number one which allowed to be processed by 
the machine number 1 (M1) and the machine number 3 (M3). 
The completion time of O11 with the machine M1 is 5 units of 
the processing time and the completion time of O11 with the 
machine M3 is 4 units of the processing time. The second oper-
ation is O12, to be processed by the machine M1, M2 and M3. 
The completion tine of the operation O12 on each machine is 
4, 2 and 3 units of the processing time respectively. The third 
operation of job J1 represented by O13 instance, can be processed 
by all machines; each machine requires a different amount of 
processing time as follows: the completion time of O13 with the 
machine M1 is 4 units of processing time. The completion time 
of O13 with the machine M2 is 2 units of processing time. When 
applied the O13 to the machine M3 used the 3 units of processing 
time. Similarly details with the other jobs.

3. � THEORY BACKGROUND OF THE  
PROPOSED ALGORITHM 

Some aspects of theory background are described below in detail. 

3.1.  Differential Evolution Algorithm 

The DE algorithm is an effective-based evolution algorithm devel-
oped by Storn and Price [7] for solving discrete and continuous 
optimization problem. DE is one of the best genetic type algo-
rithms. The DE is solving a problem by creating new candidate 
solutions. According to its functionality, the new one is produced 
by changing the existing ones. At the same time, keep whichever 
the candidate solution which the best fitness on hand. This algo-
rithm consists of four stages of the procedure: initial population, 
mutation, reproduction and selection.

At the beginning of the DE algorithm, randomly created the ini-
tial population vector. Then, the mutation operation is used as a 
primary search mechanism in the feasible region surrounding the 
initial population vector area. The mutation process can be mathe-
matically expressed as Equation (2).

	 V X F X Xi c a b= + −( )   	 (2) 

Table 1 | The example of the FJSP 

Job Operation
Machines

M1 M2 M3

J1 O11 5 – 4
O12 2 2 5
O13 4 2 3

J2 O21 3 – –
O22 – 2 1

J3 O31 3 1 –
O32 3 – 2
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A vector Vi is created by randomly chosen three constant members 
of Xa, Xb and Xc, while Xa − Xb defined a vector differential value [8]. 
The weighting, factor F is a random instant in the optimal positive 
range <1 [9]. The Vi vector will accept when optimized than the 
initial vector. Next, the reproduction process is started by defin-
ing a crossover probability PC Î [0, 1]. The PC used to control the 
fraction of the parameter that is copied from a pair of the vector 
Vi. Then the random value is picked by a random number between 
0 and 1. When the random value is less than the PC, the crossover 
operation adopted as the extended search mechanism. The cross-
over is used to generate the target vector solutions. In contrast, if 
the random instant is more than the PC, the parameter value will be 
directly inherited from the Vi vector. In final stage, DE uses simple 
one-to-one survivor selection where the Vi vector competes against 
with the target vector. The vector with the lowest objective function 
value will survive for the next iteration. The DE algorithm is ter-
minated when a predetermined number of iterations are reached. 

3.2.  Fuzzy Set 

Fuzzy set was suggested by Bai and Wang [10]. The fuzzy set is an 
extended version of a classic (crisp) set. It can be discrete or con-
tinuous. In the classical set theory, a crisp set is defined by a two-
condition function which only handles the values 0 and 1. Therefore, 
it fails to give the answers on the paradoxes. The fuzzy set, used to 
define a membership degree of an element to have partial member-
ship in fuzzy set or multiple memberships in several different fuzzy 
sets. In addition, fuzzy set handles all the values between 0 and 1.

Figure 1 presents the triangular fuzzy set, a fuzzy number A = (a, b, c)  
which a, b and c be real numbers with a < b < c.

4.  PROPOSED ALGORITHM 

4.1.  Solution Representation 

Because, the FJSP consists of two sub-problems need to be solved. 
Therefore, the solution is encoded into two parts. First part rep-
resents the sequence of operations and the second part contains 
the machine which is allocated to each operation in the first part.

In Figure 2, the first part gives the precedence constrained of the 
operations. The second part presents the machine number which 
matches to each operation in the first part. The pairing sequence of 
both parts can be explained as follows.

The first of the number 1 in the operation sequence part represent 
the first operation of the first job, is to be processed by the machine 
M3. The first of the number 2 represent the first operation of the 

second job, is to be processed by the machine M1. The second of 
the number 1 represent the second operation of the first job, is to 
be processed by the machine M2. The third of the number 1 rep-
resent the third operation of the first job, is to be processed by the 
machine M2. The second of the number 2 represent the second 
operation of the second job, is to be processed by the machine M2. 
The first of the number 3 represent the first operation of the third 
job, is to be processed by the machine M1 and the second of the 
number 3 represent the second operation of the third job, is to be 
processed by the machine M1. 

To measure the quality of the solution presented in Figure 2, the 
makespan is computed as demonstrated in Figure 3. 

4.2.  Generate the Initial Population 

The initial population of N solutions is randomly initialized by 
using a set of the population generation rules as follows:

	 •	 To create the operation sequence part of the initial population, 
randomly chosen a number among 1, 2 or 3. When a random 
number equal to a number 1, the operation sequence part is cre-
ated by using the random rule. While the random number is 2, 
the most work remaining rule is used. The most number of oper-
ation remaining rules is used when the random number is 3.

	 •	 This research generates the machine assignment part of the ini-
tial population by randomly picked one rule from a set of sev-
eral rules. This process can be explained step-by-step as follows:

 	(a)	 Randomly chosen a number between 1 and 2. 

 	(b)	 If the random number equal to 1, using the random rule to 
produce the machine assignment part. The local minimum 
processing time rule is used to generate the machine assign-
ment part when the random number is 2.  

This process repeats until the amount of the initial population is 
equal to the predefined number. 

Figure 1 | The example of the triangular fuzzy set 

Figure 2 | The example of the solution representation

Figure 3 | The example of the computation of the makespan 
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4.3.  Mutation Process 

In the proposed algorithm, the mutation process is used as the 
search mechanism for the promise answer. Because, the solution is 
divided into two parts. Therefore, the mutation process is split into 
two stages as follows:

	 •	 The operation sequence part of the trial mutant solution 
is produced by applying the arithmetic swapping operation 
to each of the initial population. The procedure is listed as 
follows: First, randomly pick the K numbers in the range of 
0 and 1. Second, match each of the random number with 
each operation of the initial population then constructed it 
into the identical set respectively from left to right. Third, 
sort the identical set in descending order. At last, defined 
the identical set as the operation sequence part of the trial 
mutant solution as indicated in Figure 4.

	 •	 There are several methods used as the machine selection 
mechanism such as the operation minimum processing time 
rule and the random rule. All above methods met the lack of 
the diversity, as a result, the algorithm is stuck in the local area. 
Hence, this paper proposed a new idea to choose the proper 
machine called the fuzzy machine selection. The main con-
cept of the fuzzy machine selection approach is to elect the 
appropriate machine by considering the machine loads, both 
the loads of operation number and the loads of machine pro-
cessing time. In detail, when the machine is overloaded the 
boundary of fuzzy membership function is small. In con-
trast, when the machine is independent the size of member-
ship function is large. This gives the available machine higher 
chance to select. To complete the fuzzy machine selection, the 
following steps are performed. 

 	 L
M W M Wmi

O O d d

=
⋅( ) ⋅( )

1 	 (3)

First, we choose one operation in the operation sequence part of the 
trial mutant solution. After that, record the candidate machine which 
can assign to the chosen operation as the temporary table. In Figure 5a, 
the chosen operation is the third operation of the first job.

Second, calculate the loads on each of the candidate machine in 
the temporary table according to Equation (3), where MO denote 

Figure 4 | The arithmetic swapping operation Figure 5 | The example of the fuzzy machine selection procedure

(a)

Candidate 
machines MO MD Machine load Machine  

boundary

M1 3 9 1/(3*0.6) (9*0.4) 0.15 0.15/1.71 = 0.087
M2 2 4 1/(2*0.6) (4*0.4) 0.52 0.52/1.71 = 0.304
M3 1 4 1/(1*0.6) (4*0.4) 1.04 1.04/1.71 = 0.608

1.71

(b)

(c)

Random value Condition Membership degree

X = 0.35 x <= a, x > c 0
a < x <= b x − a/b − a

x = b 1
b < x <= c c − x/c − b

(d)

Machine Condition Function Membership 
degree

M1 x > 0.09 0 0
M2 0.21 < x < 0.36 0.36–0.35/0.36–0.21 0.07
M3 0.31 < x < 0.61 0.35–0.31/0.61–0.31 0.13

(e)
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mutant solution 2 that parallel with the number ‘1’ of the uniform 
solution will copy to the target solution. 

4.5.  Local Search Process 

In the proposed algorithm, the local search process is utilized to 
the best 10% of the target solution. We divided it into two modes. 
First mode, the best 5% of the target solution is improved by the 
local search based on the critical path method. Second mode, 
the remaining 5% is adjusted by the fuzzy machine selection 
approach. To complete the local search process the following are 
performed.

	 •	 The local search based on the critical path method is applied to 
search for the operation sequence part of the new solution in 
neighboring areas of the best 5% of the target solution. The crit-
ical path is the sequence of the critical operations that defined 
the duration of the project. It is a longest sequence of the job 
tasks which must be completed on time to meet the deadline 
or the minimize duration. When any of the operations in the 
critical path is late, the project will be delayed. The local search 
based on the critical path method is proposed to enhance the 
local exploitation. Mean that, increasing chances of meeting the 
shorter path. The procedure is explained as follows:

First step: Calculate the critical path as shown in Table 2.

In this table, the column labeled with “Operation sequence” con-
tains the sequence of tasks.

The column label with “Machine” displays the machine number 
which assigned to each task.

The column label with “Duration” contains the duration time of 
each task on selected machine.

The column label “Precedence/Operation” show priority in impor-
tance of each task. For example, task O21, task O11 and task O31 are 
performed on the similar machine (M1). Therefore, task O11 can 
start after task O21 is completed and task O32 can operate after task 
O11 is finished.

The column label “Precedence/Time” displays the precedence 
duration related to the “Precedence/Operation” column. The pre-
ceding time of the each task is calculated by adding the duration 
of the preceding operation with the preceding time of the preced-
ing operation. For instance, the preceding operation of O32 has two 
operations, so, the preceding time has two values.

Figure 7 | The uniform crossover operation 

Figure 6 | The POX crossover operation

the amount of operations loads of each of the candidate machine. 
MD stated as the accumulated processing time loads of the candi-
date machine. WO and WD are the defined weight value of MO and 
MD respectively. The smallest of the Lmi instance appear when the 
machine heavy load. The computation processes of the candidate 
machine boundary is shown in Figure 5b.

Third, in Figure 5c, each machine is represented by the triangular 
membership function. Each of the triangular set represents each of 
the candidate machines. The size of overlapping between the can-
didate machine boundaries depends on the load amount of oper-
ation. Mean that, if the machine has similar amount of operation 
loads, then the overlapping size is big.

Fourth, when we created the triangular fuzzy member completely, 
a random number between 0 and the right corner position of the 
rightmost membership areas is picked. In Figure 5c, we pick the 
random number between [0, 0.91].

Fifth, Figure 5d shows the example of the membership degree 
when a random number is x. The membership degree belongs to 
each machine is executed according to the triangular membership 
function which is shown in Figure 5e. The machine with the high-
est membership degree is selected. This process repeats until the 
machine assignment part is fulfilled.

4.4.   Recombination Process

In this process, we randomly match the pair of the trial mutant 
solutions. After that, the POX crossover and the uniform crossover 
operation are performed for each pair of solutions to generate the 
operation sequence part and the machine assignment part of the 
target solution. The detailed procedure of the POX crossover and 
the uniform crossover is described as follows:

Figure 6 is an example for the POX crossover operation. To create 
the operation sequence part of the target solution, the member of 
the subset is randomly selected. When the subset is completely cre-
ated, some operation in the trial mutant solution 1 which matched 
by the member in the subset will transfer to the target solution. At 
the same time, the rest of the target solution will inherit from the 
trial mutant solution 2.

The example of the uniform crossover operation is present in 
Figure 7. The procedure of this process is started by randomly 
generating the uniform solution. Then copy the machine of the 
trial mutant solution 1 that corresponds to the number ‘0’ of the 
uniform solution to the target solution. The machine of the trial 
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Figure 8 | The example of the critical operations

Figure 9 | The example of moving the critical operations

Table 2 | The example of the critical path operation calculation 

Operation 
sequence Machine Duration

Precedence
ES EF LS

Successor
LF TS

Operation Time Operation Time

O21 M1 3 – 0 1 3 1 O11, O22 4, 11 3 0
O11 M1 5 O21 3 4 8 4 O32, O12 9, 9 8 0
O31 M2 1 – 0 1 1 8 O32, O12 9, 9 8 7
O32 M1 3 O11, O31 8, 1 9 11 9 – – 11 0
O12 M2 2 O11, O31 8, 1 9 10 10 O22, O13 12, 13 11 1
O22 M2 2 O21, O12 3, 10 11 12 11 – – 12 0
O13 M3 3 O12 10 11 13 11 – – 13 0

The value 8 is calculated by adding the duration of task O11 (value 5) 
with the preceding time (value 3).

The column label “ES” contains the early start time of each task. 
The early start time is computed by adding the maximum of the 
preceding time with number 1 [ES = max (precedence time) + 1]. 
For any task without a predecessor, its early start time will be 1.

The column label “EF” presents the early finish time of the task. 
This label is calculated by adding the ES with the duration, then 
subtracting number 1 [EF = (ES + Duration) − 1].

The column label “LF” shows the late finish time, this label is cal-
culated from backward. The last task’s late finish time is same as 
its early finish time. In addition, the task which last of each job 
and last of each machine have the late finish time equal to its early 
finish time. For any task with a single successor, calculate the late 
finish time by subtracting 1 from its successor’s late start time  
(LS – 1). Otherwise, calculate its late finish by subtracting 1 from 
the minimum of its successors.

The column label “LS” displays the late start time of all tasks.  
The LS is executed by using the following equation: LS = (LF – 
duration) + 1.

The label “TS” contains the total slack of all tasks. It is calculated 
by bringing the late start time minus the early start time (LS − ES).

The critical operation is the operation which its total slack equal to 
0. In the example, the critical operation is O21, O11, O32, O22 and O13 
as shown in Figure 8.

Second step: Move each of the critical operations and insert it at the 
feasible position. Moving any of the critical operations will obtain 
the new solution as shown in Figure 9.

Third step: This process repeats until all critical operations moved.

Final step: Replace the target solution by the new solution when the 
new solution is better.

	 •	 The fuzzy machine selection is applied to the target solution 
in the second mode. This mechanism is use to search for the 
machine assignment part of the new solution. The rationale 
behind this concept is to enhance the ability to handle the free 
time of the machine and increase the load balancing among 
the machines. It is utilized by the following steps.

First step: Calculate to the overall free time of the machine and 
called as the O time. The O time is the duration which the machine 
is available. Meanwhile, retrieve to the maximum gap of the free 
time of each machine and denoted as the GF time. The calculation 
example of this process is shown in Figure 10.
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Figure 10 | The example of calculating the free time

Figure 11 | The example of the membership degree execution

Candidate 
machines O GF Machine load Machine 

boundary

M2 6 4 (6*4)/100 0.24 0.24/0.80 = 0.30
M3 8 7 (8*7)/100 0.56 0.56/0.80 = 0.70

0.80

4.6.  Selection Process 

In the final step, sort all solutions according to the fitness value in 
descending order. The solutions which their fitness value is in the 
top N number are defined as the initial population for the next iter-
ation. Then, repeat stage 4.3 through 4.6 until the stopping criteria 
is met. The proposed algorithm is stopped when the numbers of 
iteration equal to the predefine number.

5.  EXPERIMENTAL RESULTS

To test the performance of the proposed algorithm, the benchmark 
test sets called the Brandimarte, the Fattahi and the Dauzere Peres 
Data which obtained from the library of FJSP (FJSPLIB) are used. 
The effectiveness of the proposed algorithm is compared with the 
others state-of-the-art algorithm in terms of the average percentage 
deviation from the lower bound (Avg. Dev. LB (%)).

The Brandimarte data set consists of 10 standard data sets, 
MK01 to MK10. The MK01 and MK02 consist of 10 jobs with 
six machines. The MK03 and MK04 contain 15 jobs with eight 
machines. The MK05 includes 15 jobs with four machines. The 
MK06 comprises of 10 jobs with fifteen machines. The MK07 
consists of 20 jobs with five machines. The MK08–MK10 contain 
20 jobs with ten machines.

The Fattahi data set consists of 20 data sets, SFJS1–SFJS10 and 
MFJS1–MFJS10. Each dataset contains a different number of jobs 
with distinct a machine number, as follows. The SFJS1 and SFJS2 
contain 2 jobs with two machines. The SFJS3–SFJS5 consist of 
3 jobs with two machines. The SFJS6–SFJS9 include 3 jobs with 
three, five, four and three machines respectively. The SFJS10 con-
tains 4 jobs with five machines. The MFJS1–MFJS7 include seven 
machines with 5, 5, 6, 7, 7, 8 and 8 jobs respectively. The MFJS8–
MFJS10 contain eight machines with 9, 11 and 12 jobs respectively.

The Dauzere Peres and Paulli data set contains 18 standard data 
sets named 01a–18a. The 01a–06a consist of 10 jobs with five 
machines. The 07a–12a provide 15 jobs with eight machines. The 
last, 13a–18a include 20 jobs with ten machines.

Tables 3–5 illustrates the comparative results of the proposed algo-
rithm with the three related algorithms. The column labeled with 
“LB” displays the minimum boundary of each problem data set. 
The followings are present the comparative results.

Second step: Use the fuzzy machine selection to select the 
machine which proper the free time. According to the procedure 
of the fuzzy machine selection, the machine which the maximum 
of the O time and the GF time has a large boundary. Therefore, it 
has more opportunity to be chosen as shown in Figure 11. We call 
the machine with the highest membership degree as the available 
machine.

Third step: Search for the critical operation which the process-
ing time is minimized when assigned to the available machine. 
Then, assign the above critical operation to the available 
machine. 

Forth step: The new solution will accept when it has a shorter path 
than the old one. 

Table 3 | The comparative result of the Brandimarte data 

Problem LB Proposed 
algorithm

QPSO  
[11]

SSPR  
[12]

HDE  
[13]

MK01 36 39 37 40 40
MK02 24 26 26 26 26
MK03 204 204 204 204 204
MK04 48 59 60 60 60
MK05 168 172 173 172 172
MK06 33 57 64 57 57
MK07 133 139 139 139 139
MK08 523 523 523 523 523
MK09 299 307 307 307 307
MK10 165 197 205 196 198
Avg. Dev. LB (%) 14.127 16.446 14.553 14.674
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Table 5 | The comparative result of the Dauzere Peres and Paulli data 

Problem LB Proposed 
algorithm

QPSO  
[11]

SSPR  
[12]

HHS/LNS 
[17]

01a 2505 2505 2505 2505 2505
02a 2228 2230 2230 2229 2230
03a 2228 2228 2229 2228 2228
04a 2503 2503 2498 2503 2506
05a 2189 2211 2207 2211 2212
06a 2162 2180 2170 2183 2187
07a 2187 2220 2264 2274 2288
08a 2061 2066 2073 2064 2067
09a 2061 2064 2066 2062 2069
10a 2178 2210 2205 2269 2297
11a 2017 2058 2050 2051 2061
12a 1969 2020 2019 2018 2027
13a 2161 2198 2253 2248 2263
14a 2161 2163 2167 2163 2164
15a 2161 2153 2165 2162 2163
16a 2148 2213 2252 2244 2259
17a 2088 2130 2134 2130 2137
18a 2057 2123 2123 2119 2124
Avg. Dev. LB (%) 1.089 1.437 1.567 1.890

the proposed algorithm and the AISA obtain the best of minimum 
results. The proposed algorithm, the AIA and the AISA come for 
first place for MFJS7. For the MFJS8 problem, the proposed algo-
rithm and the AIA met the best answer and followed by the AISA. 
The proposed algorithm outperforms than the other comparison 
algorithm with the hardest data set MFJS9 and MFJS10. When 
looking at all datasets together found that, the average percentage 
deviation from the lower bound of the proposed algorithm is the 
most performance among the comparison algorithm at 13.205% 
mean relative error. 

Table 5 illustrates the comparative result of the proposed algorithm 
and the current state-of-the-art meta-heuristic algorithms tested 
with the Dauzere Peres and Paulli data set. For 01a, all compari-
son algorithms achieved the best results. For 02a, the SSPR met the 
best result followed by the other comparison. For 03a, the proposed 
algorithm is in line with the SSPR and the HHS/LNS. The proposed 
algorithm and the SSPR met the best result of the 04a, 05a, 14a and 
17a. The QPSO founded the best minimum answer of the 06a and 10a 
and followed by the proposed algorithm. For 07a, 13a, 15a and 16a 
the proposed algorithm has the smallest difference when compared 
with the LB answer. For 08a, 09a and 18a, the SSPR comes in first 
place and followed by the proposed algorithm. For the 11a and 12a 
problem, the QPSO and the SSPR contain the best result and the 
proposed algorithm comes in second place. As the Avg. Dev. LB 
(%) results, the proposed algorithm is the best competitor. 

6.  CONCLUSION 

This paper presents the new algorithm which is based on the step of 
DE algorithm. In the proposed algorithm, the new mechanism called 
the fuzzy machine selection is presented to create the machine mem-
bership function used to select the proper machine. In the muta-
tion process, the arithmetic swap operation and the fuzzy machine 
selection mechanism embedded the loads balancing criteria is used. 
Then, the local search based on the critical path method and the 
fuzzy machine selection embedded the free time criteria are utilized 
in the local search process. The proposed algorithm is tested with 48 
datasets. The result indicates that the proposed algorithm is outper-
forming than the other comparison algorithms. 
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