
International Journal of Computational Intelligence Systems
Vol. XX(Z); Month (Year), pp. xx–yy

DOI: 10.1080/XXXXXXXXXXXXXX; ISSN XXXX–XXXX online
page 7

International Journal of Networked and Distributed Computing
Vol. 7(1); December (2018), pp. 20–28

DOI: 10.2991/ijndc.2018.7.1.3; ISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

Email: katoh@yonsei.ac.kr

Kernel and Range Approach to Analytic Network Learning

Kar-Ann Toh

 School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea

1.  INTRODUCTION

The problem of machine learning has been traditionally formu-
lated as an optimization task where an error metric is minimized.
In terms of solving the system of linear equations, an approxima-
tion is often sought-after according to a least error metric because it
is difficult to have an exact match between the sample size and the
number of model parameters. Such an approximation to the least
error metric, particularly in the squared error form, can be deter-
mined analytically either in the primal solution space or in the dual
solution space depending on the rank property of the covariance
matrix. This optimization approach has been a popular choice due
to its simplicity and tractability in analysis and implementation.
The approach is predominant in engineering applications as evi-
dent from its pervasive adoption in statistical and shallow network
learning.

Attributed to the computational effectiveness of the backprop-
agation algorithm (see e.g. [1–5]) running on the then limited
hardware and the theoretical establishment of the mapping capa-
bility (see e.g. [6–9]), the multilayer neural networks were once a
popular tool for research and applications in the 1980s. With the
advancement of computing facilities in the 1990–2000s, such min-
imization of the error cost function had been progressed to the
more memory intensive search algorithms utilizing the first- and
the second-order methods of gradient descent (see e.g. [10–12]).
Recently, driven by another leap bound advancement in the com-
puting resources together with the availability of a large quantity
of data, the multilayer neural networks reemerged as deep learning
networks [13]. In view of the demanding task of processing a large
quantity of data with the highly complex network function on the

limited computing resources such as the operating memory and
the level of data vectorization, the backpropagation remained a
viable tool for the optimization search.

In this work, we explore into utilization of the kernel and the range
space projection for network learning. This approach exploits
the approximation property of the column and the row spaces
of the system of linear equations for learning the network weights.
The main advantage of this approach is that neither descent nor
gradient computation is needed for network learning. Moreover,
the network learning can be computed analytically where no iter-
ative search is needed. The proposed approach can be applied to
networks of arbitrary number of layers. This proposal opens up a
new way of solving the network and functional learning problems
without having to compute the gradient.

2.  PRELIMINARIES

2.1.  Kernel and the Range

In engineering applications, it is common to formulate the problem
as a system of linear equations given in Equation (1):

	 Xw = y	 (1)

where, X Î m×d is the data matrix, y Î m×1 is the target vector,
and w Î d×1 is the unknown parameter vector to be solved.
The range or image of a matrix is the span of its column vectors.
The range of the corresponding matrix transformation is called the
column space of the matrix. The kernel or the null space of a linear
map is the set of solutions to the homogeneous equation Xw = 0.
In other words, w is in the kernel of X if and only if w is orthogonal
to each of the row vectors of X.

A RT I C L E I N F O
Article History

Received 16 October 2018
Accepted 1 November 2018

Keywords

Least squares error
linear algebra
multilayer neural networks

A B S T R AC T

A novel learning approach for a composite function that can be written in the form of a matrix system of linear equations is
introduced in this paper. This learning approach, which is gradient-free, is grounded upon the observation that solving the
system of linear equations by manipulating the kernel and the range projection spaces using the Moore–Penrose inversion boils
down to an approximation in the least squares error sense. In view of the heavy dependence on computation of the pseudoinverse,
a simplification method is proposed. The learning approach is applied to learn a multilayer feedforward neural network with
full weight connections. The numerical experiments on learning both synthetic and benchmark data sets not only validate the
feasibility but also depict the performance of the proposed formulation.

© 2018 The Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://www.atlantis-press.com/journals/ijndc
mailto:farhan.wasee%40northsouth.edu%0D?subject=
http://creativecommons.org/licenses/by-nc/4.0/

	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28	 21

For an under-determined system where m < d equations in
Equation (1), the number of equations is less than the number of
unknown parameters. This gives rise to an infinite number of
solutions to the parameters when minimizing the least error cost.
However, a least norm solution [14] can be obtained by constraining
w ∈ d to the m subspace [15] using ŵ = XTâ where â = (XXT)–1 y.
Here, XXT constitutes the kernel and is also known as the Gram matrix.

For an over-determined system where m > d, the m equations
in Equation (1) are generally unsolvable when a strict equality is
desired (see e.g. [16]). However, by multiplying XT to both sides of
Equation (1), the resulted d equations in Equation (2)

	 XTXw = XT y,	 (2)

is called the normal equation which can be rearranged to give the
least squares error solution ŵ = (XT X)–1 XT y.

Collectively, by denoting X† = (XT X)–1 XT when XT X has full rank
and X† = XT (XXT)–1 when XXT has full rank, the above observa-
tions can be summarized as follows:

Lemma 1. (see e.g. [17–20]) ŵ = X† y is the best approximate solu-
tion of Xw = y.

2.2.  Moore–Penrose Inverse

The matrix inversion given by X† = (XT X)–1 XT is known as the left
inverse and that given by X† = XT (XXT)–1 is known as the right inverse.
More generally, for non-square matrices, such matrix inversions can
be defined in the form of the Moore–Penrose inverse as follows.

Definition 1  (see e.g. [19,20]) If X (square or rectangular) is a
matrix of real or complex elements, then there exits a unique matrix
X†, known as the Moore–Penrose inverse or the pseudoinverse of X,
such that (i) XX†X = X, (ii) X†XX† = X†, (iii) (XX†)* = XX† and
(iv) (X†X)* = X†X.

Properties (i)–(iv) in Definition 1 are known as the Penrose equa-
tions. If X has a full rank factorization such that X = FG, then X† =
G*(GG*)–1 (F*F)–1 F* satisfies the Penrose equations [19]. In practice, a
decomposition of X into FG may not be readily available. For such a
case, the left and the right inverses can be adopted with regularization.

The relationship between the system in Equation (1) and the solu-
tion form in Lemma 1 implies that multiplying the pseudoinverse
of a system matrix to both sides of the system equation boils down
to an implicit least squares error approximation. The readers are
referred to Toh et al. [21] for greater details regarding the approx-
imation. For linear systems with multiple outputs, the following
result (see also e.g. [22]) is observed.

Lemma 2. (see e.g. [23]) Solving for W in the system of linear equa-
tions of the form

	 XW Y X W Y= , , ,Î Î Î´ ´ ´� � �m d d q m q 	 (3)

in the column space (range) of X or in the row space (kernel) of X is
equivalent to minimizing the sum of squared errors given by

	 SSE = () () .trace T()XW Y XW Y− − 	 (4)

Moreover, the resultant solution Ŵ= X†Y is unique with a minimum-
norm value in the sense that � � � �2 2

2 2Ŵ W� for all feasible W.

Based on the above observations, the inherent least squares error
approximation property of algebraic manipulation utilizing the
Moore–Penrose inverse shall be exploited in the following section
to derive an analytic solution for multilayer network learning that
is gradient-free.

2.3.  Multilayer Feedforward Network

We consider a multilayer feedforward network of n-layers [24] in
this study. Unlike conventional networks, the bias term in each
layer is excluded except for the inputs in this representation.

Mathematically, an n-layer network model of h1 - h2- ¼ -hn–1 - hn
structure with linear activation at the output layer can be written in
matrix form as shown in Equation (5).

	 G = fn − 1(¼ f2( f1(XW1)W2) ¼ Wn − 1)Wn,	 (5)

where X = [1, X]Îm×(d+1) is the augmented input data matrix (i.e.,
m samples of input data of d dimension plus a bias term), W1 Î
(d+1)×h1, W2 Î h1×h2, ¼, Wn–1 Î hn–2×hn–1, and Wn Î hn–1×q (hn = q
is the output dimension) are the weight matrices without bias at
each layer, and G Î m×q is the network output of q dimension. fk,
k = 1, ¼, n are activation functions which operate elementwise on
its matrix domain. In this study, the same activation function shall
be utilized for all layers, i.e., fk = f, k = 1, ¼, n – 1.

2.4.  Invertible Function

In some circumstances, we may need to invert the activation func-
tion over the network for solution seeking. For such a case, an
inversion is performed through a functional inversion. The inverse
function is defined as follows.

Definition 2 Consider a function f which maps x Î  to y Î ,
i.e., y = f(x). Then the inverse function for f is such that f –1(y) = x.

A good example of an invertible function is the trigonometric
“tan” function where its inverse is given by “tan–1” (or vice versa).
Although many other functions are invertible, the functional pair
of f = tan–1 and f –1 = tan shall be adopted as an illustrative example
in all our experiments.

3.  NETWORK LEARNING

3.1.  Theory

We learn a network toward a given target matrix Y Î m×q by put-
ting G = Y. Here, each layer of the network can be inverted based
upon the functional inverse and the Moore–Penrose inverse as
following Equations (6)–(8):

	
Y XW W W W

YW XW W W
= (((())))

= (((())))
1 2 1

1 2 1

f f f f
f f f f

n n

n n

� �
� �

−

−⇒ † 	 (6)

	  
Þ -

-f f f fn n
1

1 2 1() = ((()))YW XW W W† � �

� 	

(7)

	   ⇒ − − −
−f f f n n

1 1 1
1 2 1((())) = .� �YW W W XW† † † 	 (8)

22	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28

Based on Equations (6)–(8), we can express the weight matrices
respectively as shown in Equations (9)–(11)

	  

W X YW W W W1
1 1 1 1

1 3 2= (((())))† † † † †f f f f n n
- - - -

-� �

� 	
(9)

	 W XW W W YWn n nf f f f- -

-
1 1 2 2

1=[((()))] ()� � † † 	 (10)

	 W XW W W Yn nf f f f=[(((())))] .1 2 1� � -
† 	 (11)

This derivation shows an inter-dependency of the weight matrices.
However, by an appropriate initialization, such inter-dependency
can be decoupled [21,23]. The following presents a simplification
method for the weight matrix initialization.

Theorem 1 Given m distinct data samples of d dimension which
are packed as X Î m×(d+1) with augmentation. Consider the multi-
layer network (5) with linear activation at the output layer. Then,
learning of the network towards the target Y Î m×q of q dimension
admits the following solutions (12)–(15) to the least squares error
approximation:

	 W X R S X1 1 1= T Tor � (12)

	
W XW R S XW2 1 2 2 1=[()] [()]f fT Tor

� �
(13)

	
W XW W R

S XW W
n

T
n

n
T

f f f
f f f

- -

-

1 1 2 1

1 1 2

= [((()))]
[((()))]

� �
� �or �

(14)

	 W XW W W Yn nf f f f=[(((())))] ,1 2 1� � -
† � (15)

where Rk and Sk, k = 1, ¼, n – 1 are scaling matrices with matching
dimension towards their corresponding multipliers.

Proof: The weight matrices in Equations (9)–(11) appear to be
dependent on each other. However, according to the findings in
Toh et al. [21,23], they can be decoupled based on a random initia
lization. Here, since the weight matrices W2 ¼ Wn in Equation (9)
consist of random entries during initialization, we can simply put
W1 = X† with an implicit identity matrix initialization as a partic-
ular choice of the random matrix [24]. Then, weight matrix of the
second layer can be found as W2 = [f(XW1)]† which can be writ-
ten as W2 = [f(XX†)]† since W1 = X†. The setting of the subsequent
weights can be obtained from a recursive replacement of X by
f(XX†) in each of the layer learning from layer 2 to layer n – 1.

The subsequent step is to replace the pseudoinverse operations in
layers 1, ¼, (n – 1) by a scaled transposition. Suppose the replace-
ment is achieved by putting X† = XT R1 for layer 1, then pre-multiplying
both sides by {X}, implies that R1 = (XXT)–1XX† = (XXT)–1 when XXT
is invertible. On the other hand, when XT X is invertible, the scaling
matrix can be obtained from putting X† = S1 X

T which implies that S1 =
X† X(XT X)–1 = (XT X)–1. In other words, Rk and Sk, k = 1, ¼, n – 1 cor-
respond to the inverse terms in the right inverse and in the left inverse
of X respectively. Hence the proof.

3.2.  Algorithm

For simplicity, consider only the solution based on the right inverse
using Rk, k = 1, ¼, n – 1 in Equation (12) for the algorithmic
design. The proposed algorithm for analytic network learning
(called ANnet) is summarized as follows:

Algo. : ANnet

Initial. : (a) � Assign random weights to Rk Î m×hk, k = 1, …, n – 1 in
(12)–(14) with arbitrary hk, k = 1, …, n – 1.

  (b) � Remove Rk, k = 1, …, n – 1 in (12)–(14) and normalize
XT and subsequent composition terms using norm (X).

Learning : �Compute the network weights W1, …, Wn sequentially using
(12)–(15) with the common activation function f = tan–1.

Output : Compute the network output G according to (5).

The algorithm has two settings. ANnet(a) constitutes the generic
algorithmic setting where the number of hidden nodes (given
by hk, k = 1, ¼, n – 1, which are the column sizes of Wk, k =
1, ¼, n – 1) can be chosen arbitrarily. ANnet(b) is equivalent
to assigning identity matrices (of size m × m) to Rk, k = 1, ¼,
n – 1 so that no initialization is needed. This assignment could
incur large size of operating memory when the data sample size
(m) is large. To facilitate appropriate numerical scaling in such a
case, the data matrices XT, f(XXT)T, ¼ in each layer are divided
by norm (X).

4.  SYNTHETIC DATA

In this section, we observe the behavior of the proposed network
learning on three synthetic data sets with known properties.
The first set of data represents the regression problem whereas
the second and third data sets are well-known benchmarks for
classification.

4.1. � Single Dimensional Regression Problem

The first set of synthetic data has been generated using y = sin(2x)/
(2x) based on x Î {1, 2, 3, 4, 5, 6, 7, 8} for training. To simulate
noisy outputs, a 20% of variation from the original y values has
been incorporated. A total of 10 trials of such noisy measurements
are included for training apart from the original signal. A two-layer
ANnet(b) is adopted to learn the augmented data (i.e., input with
bias). Figure 1a shows the learning results for all the 11 sets of train-
ing data. Since there are eight data samples for each training set, the
structure of ANnet(b) is 8-1 where the number of hidden nodes
is equal to the number of samples. The results for these 11 target
functions (one original, plus 10 noisy ones) show fitting of all data
points for all the curves. Figure 1b shows the results when a five-
layer ANnet(b) (i.e., a 8-8-8-8-1 structure) is adopted. This result
shows under-fitting of the data points.

Comparing the two cases, the network is seen to find its fit through
all data points including those noisy ones for the two-layer network.
However, the five-layer network does not fit every data points. This
is due to the inherent deficiency in range projection in ANnet(b)
where the pseudoinverse operation has been replaced by a scaling.
This example illustrates the fitting behavior of the proposed multi-
layer network learning based on ANnet(b).

4.2.  XOR Problem

The next example is the well-known XOR problem which consists
of four data points (i.e., the input data points are {(0, 0), (1, 1), (1, 0),

	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28	 23

(0, 1)} which are associated with labels {0, 0, 1, 1} respectively).
A two-layer ANnet(b) with four hidden nodes is adopted to learn
the augmented data (i.e., input with bias giving {(1, 0, 0), (1, 1, 1),
(1, 1, 0), (1, 0, 1)}). For comparison, the feedforwardnet of the Matlab
toolbox is adopted with a similar architecture (adopting a two-layer
structure with tan–1 activation) for learning the same set of data
using the default training method trainlm. Figure 2a and b shows
respectively the learned decision surfaces for ANnet(b) and feed-
forwardnet. These results show the capability of ANnet(b) to fit the
nonlinear surface and the premature stopping of feedforwardnet at
local minimum for this data set.

Next, we compare the two networks using a five-layer architecture
with each layer having four hidden nodes for both networks. Figure 3a
and b shows respectively the decision surfaces for ANnet(b)
and feedforwardnet. These results show the fitting capability of
ANnet(b) despite the larger number of adjustable parameters and
again, the premature stopping of feedforwardnet for this data set.

4.3.  Three-Spiral Problem

In this example, a total of 1500 randomly perturbed data points
which form a three-spiral distribution have been used as the
training data. Among these data, each of the spiral arm consists
of 500 data points (which are shown as red, green and blue circles

in Figure 4). A three-layer ANnet(b) with 1500 hidden nodes at
each layer has been adopted for learning these data points with
respective labels using an indicator matrix. Since there are three
classes, the number of output nodes is 3. The learned decision
regions (which are shown in light red, green and blue tones) as
shown in Figure 4 shows the mapping capability of ANnet(b) for
the three-category problem.

5.  EXPERIMENTS ON REAL-WORLD DATA

The experiments are conducted in two parts. In the first part,
four data sets of medium sample size (ranging from 5620 to
20,000 sample sizes) from the UCI Macine learning reposi-
tory [25] are adopted for this experimentation. The proposed
learning algorithms ANnet(a) and (b) are experimented in this
study based on 10 trials of 10-fold cross-validation tests. The
results are reported in terms of the average accuracies of the
test sets. The accuracy is defined as the percentage of samples
being classified correctly. In the second part, two benchmark
data sets from the deep learning literature are experimented.

Figure 1 | (a) Decision outputs of a two-layer ANnet(b). (b) Decision
outputs of a five-layer ANnet(b)

(a)

(b)

Figure 2 | Decision surfaces of two-layer feedforward networks (ANnet(b)
and feedforwardnet both using f = tan–1 activation, feedforwardnet was
trained by trainlm)

(a)

(b)

24	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28

Figure 4 | Decision regions of ANnet(b) of three layers

The evaluating protocol follows the hold-out test according to
the benchmark.

5.1.  UCI Data Sets

For the two-layer ANnet(a), the size of the hidden nodes (i.e., h1,
which corresponds to the column size of the hidden layer matrix) is
chosen based on an inner 10-fold cross-validation loop using only
the training set among h1 = h Î {1, 2, 3, 5, 10, 20, 30, 50, 80, 100,
200, 500}. For the three-layer ANnet(a), a network structure of 2h-
h-q is adopted where q is the output dimension. The chosen hidden
node size is then applied for 10 runs of test evaluations using the
outer cross-validation loop.

For ANnet(b), the network structure is inherently fixed according
to the data sample size (i.e., h1 = m for the two-layer network and
h1 = h2= m for the three-layer network. The size of hidden nodes at
the output layer is q for both networks.)

The computing platform for the experiments in part-one is a note-
book computer with an Intel i7-6500U CPU running at 2.59 GHz.
The system has 8 GB of RAM memory.

5.1.1.  Nursery data set

The goal in this database [25,26] was to rank applications for nurs-
ery schools based upon attributes such as occupation of parents
and child’s nursery, family structure and financial standing, as well
as the social and health picture of the family. The eight input fea-
tures for the 12,960 instances are namely, ‘parents’ with attributes
usual, pretentious, great_pret; ‘has_nurs’ with attributes proper,
less_proper, improper, critical, very_crit; ‘form’ with attributes
complete, completed, incomplete, foster; ‘children’ with attributes
1, 2, 3, more; ‘housing’ with attributes convenient, less_conv, criti-
cal; ‘finance’ with attributes convenient, inconv; ‘social’ with attri-
butes non-prob, slightly_prob, problematic; ‘health’ with attributes
recommended, priority, and not_recom. These input attributes
are converted into discrete numbers and normalized to the range
(0, 1]. The output decisions include ‘not_recom’ with 4320
instances, ‘recommend’ with two instances, ‘very_recom’ with
328 instances, ‘priority’ with 4266 instances and ‘spec_prior’ with
4044 instances. Since the category ‘recommend’ has not enough
instances for partitioning in 10-fold cross-validation, it is merged
into the ‘very_recom’ category. We thus have four decision catego-
ries for classification.

The average accuracies for the two-and three-layer ANnet(a) are
respectively 92.01% at h = 500 and 89.03% at h = 80. These results
are lower than 98.89% for the feedforwardnet (h = 100, two-layer)
and comparable with 91.69% for the total error rate method adopt-
ing RM model (TERRM) method [27]. For ANnet(b), the average
accuracies are respectively 95.67% and 92.19% for the networks of
two- and three-layers.

5.1.2.  Letter recognition

The data set comes with 20,000 samples, each with 16 feature
attributes. The goal is to recognize the 26 capital letters in the
English alphabet based on a large number of black-and-white

Figure 3 | Decision surfaces of five-layer feedforward networks (ANnet(b)
and feedforwardnet both using  f = tan–1 activation, feedforwardnet was
trained by trainlm)

(a)

(b)

	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28	 25

rectangular pixel displays. The character images consist of
20 different fonts where each letter within these 20 fonts was
randomly distorted to produce a large pool of unique stimuli
[25,28]. Each stimulus was converted into 16 primitive numer-
ical attributes such as the statistical moments and the edge
counts. These attributes were then scaled to fit into a range of
integer values from 0 to 15.

The average accuracies for the two-and three-layer ANnet(a) are
respectively 90.38% and 52.33%, both at h = 500. The results for
ANnet(b) are 91.79% and 69.29% respectively for the two-and
three-layer networks. The feedforwardnet (two-layer) encountered
“out of memory” for the computing platform of Intel i7-6500U
CPU at 2.59 GHz with 8 GB RAM.

5.1.3. � Optical recognition of
handwritten digits

This data set was collected based on a total of 43 people, wherein
30 of them contributed to the training set and the remaining 13 to
the test set [25,29]. The original 32 × 32 bitmaps were divided into
non-overlapping blocks of 4 × 4 where the number of on pixels
were counted within each block. This generated an input matrix of
8 × 8 where each element was an integer within the range [0, 16].
The dimensionality (64) is thus reduced (from 32 × 32) and the
resulted image is invariant to minor distortions. The total number
of samples collected for training and testing are respectively 3823
and 1797. In our experiment, these two sets (training and test
sets) of data are combined for the running of 10 trials of 10-fold
cross-validation tests. Figure 5 shows some samples of the reduced
resolution image taken from the training set (upper two panels)
and the testing set (bottom two panels).

The average accuracies for the two-and the three-layer ANnet(a)
are respectively 97.41% at h = 500 and 93.69% at h = 500. These
results are comparable with the 96.81% for the TERRM method [27]
and the 98.16% for the TERRP method [30]. The ANnet(b) shows
96.82% and 99.06% accuracies respectively for the two-and three-
layer structures. These results are comparable with that of support
vector machines radial basis function (SVM-Rbf) with 99.13%
recognition accuracy. The feedforwardnet (two-layer) encounters
“out of memory” for the current computing platform.

5.1.4. � Pen-based recognition of
handwritten digits

This data set was collected based on the handwritten digits on a
pressure sensitive tablet with an integrated LCD display and a cord-
less stylus from 44 writers [25,31]. The writers were asked to write
250 digits (0–9) in random order inside boxes of 500 × 500 tablet
pixel resolution. A total of 10,992 digit samples formed the entire
database for recognition. The original 500 × 500 table pixel resolu-
tion was re-sampled to form a feature length of 16. No sample data
is display here due to the very low image resolution of 4 × 4. Similar
to other data sets, we perform 10 trials of 10-fold cross-validation
tests for this data set.

The average accuracies for the two-and three-layer ANnet(a) are
respectively 98.88% (h = 500) and 91.94% (h = 500). For ANnet(b),
the accuracies for the two-and three-layer networks are respec-
tively 99.54% and 98.36%. These results show competing accuracy
with TERRM, TER-RP and SVM-Rbf.

5.1.5.  State-of-the-arts comparison

The state-of-the-art methods adopted for comparison are namely, the
reduced multivariate (RM, [32]) polynomial method, the TERRM
[27], the feedforwardnet (two-layer) from the Matlab toolbox [33],
the SVM adopting polynomial (SVM-Poly, [34]) kernel and SVM
radial basis function (SVM-Rbf, [34]) kernel, all running under the
same protocol of 10 trials of 10-fold cross-validation tests.

Table 1 shows that the proposed ANnet has comparable prediction
accuracy with the compared state-of-the-art methods. While the
SVMs have been tuned by adjusting the kernel parameters (such
as the order in the polynomial kernel and the Gaussian width
in the radial basis kernel), the proposed network ANnet(a) has
been tuned by adjusting the number of hidden nodes (h) in each
layer according to the structures h-q and 2h-h-q. The network
ANnet(b) has a default setting of the hidden node size accord-
ing to the data sample size. The results show competence of the
proposed ANnet(a),(b) with state-of-art classifiers for medium
sample size data sets of relatively small dimension.

5.2.  MNIST AND CIFAR10 DATA SETS

In deep learning, the MNIST [35,36] and the CIFAR10 [37,38]
data sets are among those popular benchmark image data

Figure 5 | Handwritten digits: samples in the upper two panels are taken
from the training set and samples in the bottom two panels are taken from
the test set

Table 1 | Comparison of accuracy (%) with state-of-the-arts

Methods Nursery Letter Optdigit Pendigit

RM [32] 90.93 74.14 95.32 95.73
TERRP [30] 96.46 88.20 98.16 99.27
TERRM [27] 91.69 78.42 96.81 97.28
SVM-Poly [34] 91.61 77.22 95.52 94.50
SVM-Rbf [34] 98.24 97.14 99.13 99.52
FFnet(2L) [33] 98.89 OM OM OM
ANnet(a)-2L 92.01 90.38 97.41 98.88
ANnet(a)-3L 89.03 52.33 93.69 91.94
ANnet(b)-2L 95.67 91.79 96.82 99.54
ANnet(b)-3L 92.19 69.29 99.06 98.36

OM: out of memory for the current computing platform, 2L, 3L: two-and three-layer
respectively, FFnet: Feedforwardnet from Matlab [33].

26	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28

The computing platform for the experiments in part-two is a com-
puter with an Intel i7-7820X CPU running at 3.60 GHz. The system
has 96 GB of RAM memory. The training CPU time is measured
using the Matlab’s function CPU time which corresponds to the
total computational times from each of the 8 cores in the Processor.
In other words, the physical time experienced is about 1/8 of this
clocked CPU time.

The training and test results of ANnet(a) and (b) of two-layers
for MNIST data set are shown in Table 2 with respective train-
ing CPU processing times. For ANnet(a), the test accuracy is
seen to be increasing with the number of the hidden layer nodes.
However, such increment trend of the accuracy is observed to
peak at 5000 hidden nodes and starts to decline beyond. This is
apparently an over-trained case for a fully connected network
with large number of hidden nodes.

For ANnet(b), the hidden layer weight matrix W1 has been set
according to a condensed feature matrix instead of the full data
matrix due to insufficient computational memory. The con-
densed feature matrix was obtained by summing the feature
vectors over a regular interval such that the resultant sample
size (the row size of X) is reduced for W1’s column size setting.
Under this setting, the results show comparable test accuracy
with state-of-the-arts at high condensed feature size.

With similar settings as that in the above experiments, the training
and test results of ANnet(a) and (b) for CIFAR10 data set are tab-
ulated in Table 3 with respective training CPU processing times.
Due to the large variation of images between those in the train-
ing set and those in the test set, the accuracy only shows a 10%
improvement from that of the linear classifier for ANnet(b). These
results show insufficiency of the fully connected network for this
application.

sets for algorithmic study and experimental comparison. The
MNIST database of handwritten digits contains a training set
of 60,000 samples and a test set of 10,000 samples where each
sample image is of 28 × 28 pixels size. The CIFAR10 database of
objects consists of a training set of 50,000 samples and a test set
of 10,000 samples where each image in each of the three RGB
channels is of 32 × 32 pixels size. Each image sample thus contains
3 × (32 × 32) = 3072 pixels in total. In this study, every image is
sub-sampled into 3 × (8 × 8) = 192 pixels for the three channels.
Both of these data sets have an output of 10 class labels (i.e., q
= 10). Different from the above cross-validation protocols, we
follow the commonly adopted protocol of hold-out test in the
deep learning community in this study. Figures 6 and 7 show
respectively some training and test sample images from the
MNIST and CIFAR10 data sets.

Figure 6 | MNIST data set: samples in the upper two panels are taken
from the training set and samples in the bottom two panels are taken from
the test set

Figure 7 | CIFAR10 data set: samples in the upper two panels are taken
from the training set and samples in the bottom two panels are taken from
the test set

Table 2 | MNIST: classification accuracy (%) and training CPU time (s)

ANnet structure Training Test CPU (s)

Linear-classifier 85.77 86.03 18.1719
(a): 1000-10 91.70 91.41 43.6094
(a): 5000-10 94.49 92.70 717.0938
(a): 10000-10 95.54 92.56 3271.2343
(a): 27000-10 97.64 90.74 34111.0313
(b): 1000-10 94.30 94.37 29.1719
(b): 5000-10 98.17 97.25 701.2500
(b): 10000-10 99.22 97.85 3227.0625
(b): 27000-10 99.93 98.24 37267.9844

Table 3 | CIFAR10: classification accuracy (%) and training CPU time (s)

ANnet structure Training Test CPU (s)

Linear-classifier 40.59 40.15 1.6719
(a): 1000-10 39.58 38.66 24.1718
(a): 5000-10 42.37 39.13 573.8594
(a): 10000-10 43.94 39.44 2800.4375
(a): 25000-10 47.63 39.16 24423.1718
(b): 1000-10 50.42 47.13 23.2656
(b): 5000-10 65.15 50.58 608.5000
(b): 10000-10 75.99 49.90 2746.2031
(b): 25000-10 88.37 46.93 37514.9688

	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28	 27

6.  CONCLUSION

By exploiting the observation that a manipulation of the kernel
and the range space boils down to the least squares error
approximation, a gradient-free learning approach was proposed
for multilayer network learning. In order to reduce the compu-
tational complexity of the pseudoinverse of data matrix within
the hidden-layers, a simplified matrix scaling was introduced.
The learning results of synthetic and real-world data provided
not only the numerical evidence but also insights regarding the
learning mechanism. This opens up the vast possibilities along
the research direction.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (Grant
number: NRF-2018R1D1A1A09081956).

REFERENCES

  [1]	 H.J. Kelley, Gradient theory of optimal flight paths, ARS J. 30
(1960), 947–954.

  [2]	 P.J. Werbos, Beyond regression: new tools for prediction and
analysis in the behavioral sciences, Ph.D. dissertation, Harvard
University, Cambridge, Massachusetts, USA, 1974.

  [3]	 P.J. Werbos, Backpropagation: past and future, Proceedings of
the IEEE 1988 International Conference on Neural Networks
(ICNN), IEEE, San Diego, CA, USA, 1988, pp. 343–353.

  [4]	 P.J. Werbos, Backpropagation through time: what it does and how
to do it, Proceedings of the IEEE, IEEE, USA, 1990, pp. 1550–1560.

  [5]	 R. Hecht-Nielsen, Theory of the backpropagation neural network,
Proceedings of International Joint Conference on Neural Networks
(IJCNN), IEEE, Washington, DC, USA, 1989, pp. 593–605.

  [6]	 K-I. Funahashi, On the approximate realization of continuous map-
pings by neural networks, Neural Networks, 2 (1989), 183–192.

  [7]	 K. Hornik, M. Stinchcombe, H. White, Multi-layer feedfor-
ward networks are universal approximators, Neural Networks, 2
(1989), 359–366.

  [8]	 G. Cybenko, Approximations by superpositions of a sigmoidal
function, Math. Control Signal Syst. 2 (1989), 303–314.

  [9]	 R. Hecht-Nielsen, Kolmogorov’s mapping neural network
existence theorem, Proceedings of IEEE First International
Conference on Neural Networks (ICNN), Vol. III, IEEE,
Piscataway, NJ, USA, 1987, pp. 11–14.

[10]	 R. Battiti, First- and second-order methods for learning: between
steepest descent and newton’s method, Neural Comput. 4 (1992),
141–166.

[11]	 P.P. van der Smagt, Minimisation methods for training feedfor-
ward neural networks, Neural Networks, 7 (1994), 1–11.

[12]	 E. Barnard, Optimization for training neural nets, IEEE
Transactions on Neural Networks, IEEE, IEEE Computational
Intelligence Society, 1992, pp. 232–240.

[13]	 I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT
Press, 2016, available from: http://www.deeplearningbook.org.

[14]	 S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge
University Press, Cambridge, 2004.

[15]	 W.R. Madych, Solutions of underdetermined systems of linear
equations, in: A. Possolo, Lecture Notes — Monograph Series,
Spatial Statistics and Imaging, Institute of Mathematical Statistics,
Hayward, CA, USA, 1991, pp. 227–238.

[16]	 G. Strang, Introduction to Linear Algebra, fifth ed., Wellesley-
Cambridge Press, Wellesley, 2016.

[17]	 A. Albert, Regression and the Moore-Penrose Pseudoinverse,
Academic Press, Inc., New York, NY, USA, 1972.

[18]	 S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear
Transformations, (SIAM edition of the work published by Dover
Publications, Inc., 1991) ed., Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2009.

[19]	 A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and
Applications, second ed., Springer-Verlag, New York, NY, USA,
2003.

[20]	 R. MacAusland, The Moore–Penrose inverse and least squares, in:
Lecture Notes in Advanced Topics in Linear Algebra (MATH
420), available from: http://buzzard.ups.edu/courses/2014
spring/420projects/math420-UPS-spring-2014-macausland-
pseudo-inverse.pdf [Online].

[21]	 K-A. Toh, Z. Lin, Z. Li, B. Oh, L. Sun, Gradient-free learning
based on the kernel and the range space, 2018, 1–27, available
from: https://arxiv.org/abs/1810.11581.

[22]	 T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, New
York, NY, 2001.

[23]	 K-A. Toh, Learning from the kernel and the range space,
Proceedings of the 17th IEEE/ACIS International Conference
on Computer and Information Science, IEEE, Singapore, 2018,
pp. 417–422.

[24]	 K-A. Toh, Analytic network learning, 2018, 1–28, available from:
https://arxiv.org/abs/1811.08227.

[25]	 M. Lichman, UCI machine learning repository, 2013, available
from: http://archive.ics.uci.edu/ml [Online].

[26]	 M. Olave, V. RajkoviČ, M. Bohanec, An application for admis-
sion in public school systems, in: I.Th.M. Snellen, W.B.H.J.
van de Donk, J-P. Baquiast (Eds.), Expert Systems in Public
Administration, Elsevier Science Publishers, North Holland,
1989, pp. 145–160.

[27]	 K-A. Toh, H-L. Eng, Between classification-error approximation
and weighted least-squares learning, IEEE Transactions on Pattern
Analysis and Machine Intelligence, IEEE, 2008, pp. 658–669.

[28]	 P.W. Frey, D.J. Slate, Letter recognition using Holland-
style adaptive classifiers, Machine Learning, 6 (1991),
161–182.

[29]	 C. Kaynak, Methods of combining multiple classifiers and their
applications to handwritten digit recognition, Master’s thesis,
Institute of Graduate Studies in Science and Engineering,
Bogazici University, Istanbul, Turkey, 1995.

[30]	 K-A. Toh, Deterministic neural classification, Neural Comput.
20 (2008), 1565–1595.

[31]	 F. Alimoglu, E. Alpaydin, Methods of combining multiple clas-
sifiers based on different representations for pen-based hand-
writing recognition, Proceedings of the Fifth Turkish Artificial
Intelligence and Neural Networks Symposium Istanbul, Turkey
(TAINN'96), 1996, pp. 1–8.

https://doi.org/10.2514/8.5282
https://doi.org/10.2514/8.5282
http://dx.doi.org/10.1109/icnn.1988.23866
http://dx.doi.org/10.1109/icnn.1988.23866
http://dx.doi.org/10.1109/icnn.1988.23866
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1109/ijcnn.1989.118638
http://dx.doi.org/10.1109/ijcnn.1989.118638
http://dx.doi.org/10.1109/ijcnn.1989.118638
http://dx.doi.org/10.1016/0893-6080%2889%2990003-8
http://dx.doi.org/10.1016/0893-6080%2889%2990003-8
http://dx.doi.org/10.1016/0893-6080%2889%2990020-8
http://dx.doi.org/10.1016/0893-6080%2889%2990020-8
http://dx.doi.org/10.1016/0893-6080%2889%2990020-8
http://dx.doi.org/10.1007/bf02551274
http://dx.doi.org/10.1007/bf02551274
http://dx.doi.org/10.1162/neco.1992.4.2.141
http://dx.doi.org/10.1162/neco.1992.4.2.141
http://dx.doi.org/10.1162/neco.1992.4.2.141
http://dx.doi.org/10.1016/0893-6080%2894%2990052-3
http://dx.doi.org/10.1016/0893-6080%2894%2990052-3
http://dx.doi.org/10.1109/72.125864
http://dx.doi.org/10.1109/72.125864
http://dx.doi.org/10.1109/72.125864
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1214/lnms/1215460504
http://dx.doi.org/10.1214/lnms/1215460504
http://dx.doi.org/10.1214/lnms/1215460504
http://dx.doi.org/10.1214/lnms/1215460504
http://dx.doi.org/10.1016/s0076-5392%2808%29x6167-3
http://dx.doi.org/10.1016/s0076-5392%2808%29x6167-3
http://dx.doi.org/10.1137/1.9780898719048
http://dx.doi.org/10.1137/1.9780898719048
http://dx.doi.org/10.1137/1.9780898719048
http://dx.doi.org/10.1137/1.9780898719048
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-macausland-pseudo-inverse.pdf
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-macausland-pseudo-inverse.pdf
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-macausland-pseudo-inverse.pdf
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-macausland-pseudo-inverse.pdf
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-macausland-pseudo-inverse.pdf
https://arxiv.org/abs/1810.11581
https://arxiv.org/abs/1810.11581
https://arxiv.org/abs/1810.11581
https://arxiv.org/abs/1811.08227
https://arxiv.org/abs/1811.08227
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/tpami.2007.70730
http://dx.doi.org/10.1109/tpami.2007.70730
http://dx.doi.org/10.1109/tpami.2007.70730
http://dx.doi.org/10.1007/bf00114162
http://dx.doi.org/10.1007/bf00114162
http://dx.doi.org/10.1007/bf00114162
http://dx.doi.org/10.1162/neco.2007.04-07-508
http://dx.doi.org/10.1162/neco.2007.04-07-508

28	 K-A. Toh / International Journal of Networked and Distributed Computing 7(1) 20–28

[32]	 K-A. Toh, Q-L. Tran, D. Srinivasan, Benchmarking a reduced
multivariate polynomial pattern classifier, IEEE Transactions
on Pattern Analysis and Machine Intelligence, IEEE, 2004,
pp. 740–755.

[33]	 The MathWorks, Matlab and simulink, 2017, available from:
http://www.mathworks.com/.

[34]	 C-C. Chang, C-J. Lin, LIBSVM: a library for support vector
machines, ACM Trans. Intell. Syst. Technol. 2 (2011), 27:1–27:27,
2011, software available from: http://www.csie.ntu.edu.tw/ cjlin/
libsvm.

[35]	 Y. LeCun, C. Cortes, C.J. Burges, The MNIST database, 2018,
available from: http://yann.lecun.com/exdb/mnist/ [Online].

[36]	 Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE, IEEE,
1998, pp. 2278–2324.

[37]	 A. Krizhevsky, V. Nair, G. Hinton, The CIFAR-10 dataset, 2018,
available from: https://www.cs.toronto.edu/ kriz/cifar.html [Online].

[38]	 A. Krizhevsky, Learning multiple layers of features from tiny
images, Technical Report, 2009, available from: https://www.
cs.toronto.edu/kriz/learning-features-2009-TR.pdf [Online].

http://dx.doi.org/10.1109/tpami.2004.3
http://dx.doi.org/10.1109/tpami.2004.3
http://dx.doi.org/10.1109/tpami.2004.3
http://dx.doi.org/10.1109/tpami.2004.3
http://www.mathworks.com/
http://www.mathworks.com/
http://www.csie.ntu.edu.tw/%20cjlin/libsvm
http://www.csie.ntu.edu.tw/%20cjlin/libsvm
http://www.csie.ntu.edu.tw/%20cjlin/libsvm
http://www.csie.ntu.edu.tw/%20cjlin/libsvm
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/%20kriz/cifar.html
https://www.cs.toronto.edu/%20kriz/cifar.html
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf

