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1.  INTRODUCTION

Currently, business and industry sectors are giving increasingly 
higher priority to transportation and distribution of goods because 
the oil price which determines a transportation cost is ever increas-
ing. Transportation and distribution of goods are the most expen-
sive logistics activities; therefore, businesses are keen to increase the 
efficiency and reduce the cost of transportation—especially, they 
have brought in new information technology to help reduce the cost 
of transportation, i.e. reduce the amount of fuel used for transpor-
tation, reduce the maintenance cost, etc. Generally, transportation 
cost varies with the distance; an efficient routing scheme can reduce 
the cost of transportation substantially, which in turn, reduces the 
cost of goods. Meta-heuristic algorithms have been used successfully 
by manufacturers to reduce transport costs and enhance the busi-
ness. Algorithms of this type generally find a satisfactory solution to 
problems, which are inherently nondeterministic polynomial-time 
hard (NP-hard), in an acceptably short time [1,2]. Meta-heuristic 
algorithms have also been applied to Traveling Salesman Problem 
(TSP), a classic NP-hard problem that tries to find the shortest tour 
that a salesman can take to visit all of his customer sites in a single 
tour, with starting and end points at the same city. However, when 
the search space is large and there are numerous cities or nodes 
which must be touched, the problems cannot be modeled as the 
original TSP with only one salesman. Real-world applications of 
such problems are print scheduling, workforce planning, production 
planning, transportation planning, etc. [3]. To address this problem, 
Multiple-Vehicle Traveling Salesman Problems (MTSP) have been 

developed under the constraints that each city is to be visited only 
once by only one salesman and the starting and end points are the 
same city; the objective is to minimize the total distance of all of 
the tours. Possible variations of MTSP include: (i) single depot or 
multiple depots—for the case of a single depot, the origin and desti-
nation for every salesman is the same, while, for the case of multiple 
depots, the origins and destinations for any salesman can be any 
depot; (ii) the number of salesmen can be any number, i.e. user-
defined; (iii) fixed charges—with multiple salesmen, there may be a 
certain fixed cost for a particular salesman responsible for a partic-
ular tour plus the cost of the tour; (iv) time window—each city must 
be visited within a time window that may be different for different 
problems, such as for a school bus routing problem or for an airline 
scheduling problem; (v) other constraints, such as the number of 
cities that each salesman can visit or the maximum or minimum 
distances that a salesman can travel [4,5].

Several researchers have discussed the MTSP. For example, Xu 
et al. [6] described a Two Phase Heuristic Algorithm (TPHA) for 
MTSP. They achieved a balanced workload and minimized the total 
distance, that a salesman takes, by using a K-means algorithm in 
the first phase to group all cities into several subsets depending on 
their locations and by using a genetic algorithm (GA) in the second 
phase to assess the route for each subset. A roulette wheel selection 
method and an elitist strategy are combined to form a new selection 
operator for the GA. In addition, they introduced a mobile appli-
cation that incorporated this TPHA for travelers based on a Baidu 
electronic map. The TPHA was found to be better at finding a solu-
tion to MTSP than a GA-based tour planning algorithm. In another 
study, Zhou et al. [7] described Partheno Genetic Algorithm (PGA) 
and Improved Partheno Genetic Algorithm (IPGA) for solving 
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MTSP, with multiple depots where the starting and end points were 
the same depot and each salesman had to visit a required minimum 
number of cities. PGA uses a roulette wheel selection method and an 
elitist selection method with four types of mutation, i.e. FlipInsert, 
SwapInsert, LSlideInsert and RSlideInsert. On the other hand, IPGA 
uses the same selection methods as those of PGA but added muta-
tion probability. They claimed improved performance compared 
to those of a modified particle swarm optimization algorithm and 
an invasive weed optimization algorithm. Although there are many 
papers devoted to MTSP, but they cannot be used as a benchmark 
because they did not state clearly and unequivocally the conditions 
and constraints of the MTSP that they solved. However, Necula  
et al. [8] carefully determined which of the several ant colony algo-
rithms produced the best balanced workload for each salesman 
and the best total tour cost reduction. They investigated five dif-
ferent ant colony system algorithms for MTSP: Km-Ant Colony 
System (ACS) that decomposed MTSP by using K-means; g-ACS 
that combined ACS with global-solution pheromone update; s-ACS 
that combined ACS with sub-tour pheromone update; gb-ACS 
that combined ACS with global-solution pheromone update and 
bounded tours; and sb-ACS that combined ACS with sub-tour 
pheromone update and bounded tours. The results showed that a 
Km-ACS was a good benchmark for a single-depot MTSP. In addi-
tion, Wang et al. [9] used a novel memetic algorithm incorporating 
a sequential variable neighborhood descent (seq_VND) method. 
At each iteration, the best individual among the reproduced off-
spring is improved by the seq_VND. The seq_VND ordered the 
neighborhoods in a sequence and visited one-by-one until a local 
minimum is reached. This algorithm was evaluated on large-scale 
benchmark problems (up to 1173 cities). It was also evaluated 
against six other algorithms in terms of precision, robustness and 
convergence speed. The results showed that it was superior to all of 
the other algorithms. Kencana et al. [10] solved the MTSP with an 
ant system (AS) algorithm. They found the shortest tour for five to 
ten salesmen visiting up to 30 cities. Their study produced similar 
results to other studies, but the minimum total tour distance and 
completion time were longer. Moreover, it did not guarantee that 
a higher number of salesmen would reduce the length of the tour. 
Finally, Soylu [11] used a General Variable Neighborhood Search 
(GVNS) approach for MTSP; he was motivated to use it for solv-
ing the traffic signalization network in Kayseri Province, Turkey. 
The network had 170 nodes and six sub-networks. In this problem, 
the sub-network lengths were not balanced and the network was 
so large that a suitable alternative could not be easily found. GVNS 
was able to obtain a significant improvement in terms of maximum 
tour length and range.

The MTSP mentioned above used various types of constraints 
found from real-life applications such as a single depot or multi-
ple depots, a small or large number of nodes (cities to be visited). 
In our study, we aimed to develop an algorithm for solving both a 
TSP under the constraints of a single depot and only one vehicle 
that would deliver all of the goods to all customers, as well as an 
MTSP under the constraints of a single depot and multiple vehi-
cles that would minimize the total length of the tour while keeping 
the workloads of the salesmen balanced. Moreover, it should allow 
for a pre-determined number of multiple vehicles for each tour, as 
well as pre-determined minimum and maximum numbers of cities 
in each sub-route that each vehicle would visit. However, there 
would be no constraints on delivery time or vehicle capacity. In this 

paper, we improved tour reproduction, pheromone updating, and 
local search strategies. Four strategies—simulated annealing (SA), 
simulated annealing with similarity measure (SA_Sim), 2-opt and 
3-opt—were used to improve local search capability. We evaluated 
performance on several instances in the TSP Library (TSPLIB) 
dataset. For the single-vehicle TSP, we compared results with those 
achieved by AS algorithm and elitist ant system (EAS). Our multi-
ple-vehicle performance was evaluated against that of five variants 
of the ACS reported in the literature.

The remainder of this paper is organized as follows: Section 2 
describes in detail the basic concepts and steps of the AS algorithm. 
Section 3 presents our proposed method. Section 4 reports the 
performance evaluation results of the proposed method. Finally, 
Section 5 is the conclusion.

2.  RELATED ALGORITHM

2.1.  Basic AS Algorithm

In the last two decades, many researchers have attempted to 
combine ideas from the bioscience domain with those in com-
putational mathematics. Specifically, they have tried to solve 
some mathematical problems by integrating animal behaviors 
into certain computational techniques. Ant system algorithm is 
based on a self-organization mechanism of social insects [12]. 
This algorithm mimics the behavior of ants trying to search for 
the shortest tour from their nest to food sources. On the path 
that they traverse, they leave traces of pheromones. The phero-
mone density depends on the distance between the food source 
and the nest as well as the quality of the food source. Ants tend 
to follow the tour with the maximum pheromone density laid 
down by previous ants. This idea was adapted to solve the stan-
dard TSP problem [13–15].

2.2.  Steps of AS Algorithm

Basically, an AS algorithm has two main parts: tour construction 
and pheromone update. At the beginning of the tour construction, 
m ants are randomly placed in one of n cities. The rule for choosing 
a city that each of the ants will visit in its next move is in the form 
of a probability that the kth ant, currently at the ith city, will move to 
the jth city, as shown in Equations (1) and (2).
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where hij represents the visibility of the jth city as perceived by the 
kth ant (from the ith city); dij is the distance between the ith and the 
jth cities; tij is the pheromone trail on the path between the cities i 
and j;  Ci 

k is a set of cities that have not been visited by the kth ant; 
and a ≥ 0 and b ≥ 0 are two parameters that control the relative 
importance of the pheromone trail and the visibility respectively.  
It is recommended by Dorigo et al. [12] to set b  ≥  a.
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After all of the ants have constructed their initial tour, the phero-
mone updating process begins. As expressed in Equation (3), the 
pheromone updating process consists of two activities: (i) the pher-
omone is laid down by ants while traversing the paths, and (ii) the 
amount of pheromone on all paths is decreased with time by a con-
stant factor called pheromone evaporation rate.
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where 0 < r ≤ 1 represents the pheromone evaporation rate, which 
is used to prevent excessive pheromone accumulation; t ij

Old  is the 
previous amount of pheromone on the path ij; t ij

k  is the amount 
of pheromone laid on path ij by the kth ant; it can be expressed as 
[Equation (4)]:
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where Lk represents the length of the tour of the kth ant.

3.  PROPOSED ALGORITHM

We developed our algorithm to remedy the following deficiencies 
of the AS algorithm: (i) insufficient population diversity, since 
the path that has the highest pheromone density is always taken;  
(ii) premature convergence and becoming trapped in local optima; 
and (iii) the quality of the solutions degrade as the number of cities 
increases. A key contribution is the addition of a new tour repro-
duction method. This new method allows a stronger ant to repro-
duce two tours whereas a weaker one reproduces only one, so the 
stronger ant will contribute more to finding better solution.

Another contribution is the introduction of a weight of each tour; 
with a shorter tour having a higher weight. The last contribution 
improves local search by randomly choosing one of these four 
strategies: simulated annealing (SA), simulated annealing with 
similarity measure (SA_Sim), 2-opt and 3-opt. Using these fours 
strategies increases the chance that a solution will escape from a 
local optimum. The flowchart of the proposed algorithm is dis-
played in Figure 1.

In detail, the steps are:

Step 1: � Initialize the total number of tours (m), the total number of 
cities, the initial pheromone value (t0), the pheromone evap-
oration rate (r), a  and b that control the relative importance 
of the pheromone trail and the visibility, the total number of 
vehicles (V), the minimum number of cities that each vehi-
cle will visit, the maximum number of cities that each vehi-
cle will visit, and the maximum number of iterations. 

Step 2: � Randomly generate each tour. The distance between the ith 
and the jth cities of each sub-route in a tour is di,j, di,j = [(xi 
− xj)

2 + (yi − yj)
2]1/2. The length of the sub-route for vehicle 

s is Ls [Equation (5)]. 
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where d0,1 is the distance between the depot and the first 

city in the sub-route; 
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1,  is the total distance from the 

first to the last city in the sub-route; dn,0 is the distance from 
the last city to the depot along the sub-route. The length of 
each tour Ltotal is [Equation (6)]: 
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where V is the total number of vehicles. 

Step 3: � Update the amount of pheromone on every path.  
The updated amount of pheromone on each path is 
[Equation (7)]: 
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where t ij
Old  is the previous amount of pheromone on the 

path ij; t ij
k  is the amount of pheromone laid on the path ij 

Figure 1 | Flowchart of the proposed algorithm
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by the kth ant [defined in Equation (4)]; W k is the weight of 
the tour of the kth ant [Equation (8)]: 
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Where Lshortest is the shortest tour of a particular iteration 
and Llongest is the longest tour of that iteration. 

Step 4: � Sort the tours according to their length from the shortest 
to the longest. 

Step 5: � Divide the tours into two groups: the top 20% and the 
bottom 80%. The tours in each group are cloned differently. 
Tours in the top 20% group generate two new tours whereas 
those in the bottom 80% generate only one new tour. Each 
new tour is constructed by randomly selecting two cities in 
the original tour and swapping them. The rest of the cities 
that have not been swapped are arranged as follows. In the 
case that the first city was randomly selected for swapping, 
the cities in the slots between and after the swapped cities 
are changed according to the probability for selecting the 
next city in Equation (1). However, if the first city of the 
selected tour was not selected for swapping, the city or 
cities located in the slot(s) before the first of the swapped 
cities remain the same (see Figure 2), while the city or 
cities in the slot(s) between the swapped cities and those 
following them are changed according to the probability in  
Equation (1). Figure 2 shows two examples of this proce-
dure. In the first (left-hand side) example, “2” and “7” were 
randomly selected. After swapping, “7” became the first 
city of the tour. The possible cities to traverse to next are 
“1”, “3”, “4”, “5”, “6”, “8”, or “9”. The probability for select-
ing these cities as the next city are (P71 = 10), (P73 = 22), 
(P74 = 25), (P75 = 21), (P76 = 14), (P78 = 18), and (P79 = 22). 
Therefore, the next path will be toward city “4” that has 
the highest probability. If a city has already been visited, it 
will be removed from the list. The path to the next city is 
determined in the same way until the list of next possible 
cities is empty. 

The description above is for the case of randomly select-
ing and swapping two cities in the same sub-route. On the 

other hand, Figure 3 illustrates the procedure for repro-
ducing a new tour from two different sub-routes. This 
procedure further improves the diversity of the original 
tour. To begin with, the two sub-routes are randomly 
selected from all possible sub-routes in the original tour. 
Assuming “1” is the depot. After “7” and “8” in the two 
different sub-routes have been randomly selected and 
swapped, the city or cities located in the slot(s) before the 
first swapped city remain the same (see Figure 3), while the 
city or cities in the slot(s) between the swapped cities and 
those following them are changed following Equation (1). 
In the left-hand side sub-route in Figure 3 which is the 
first sub-route that was randomly selected, “8” is the city 
that has been swapped, hence similar to the procedure for 
swapping cities within a sub-route above, “2” and “6” take 
the same position that they have in the original sub-route; 
the possible cities to traverse to next in this sub-route are 
then “3”, “4”, or “5”. The probabilities are P83 = 20, P84 = 
26, and P85 = 30. Therefore, the next path will be toward 
city “5”. Then, in the right-hand side sub-route which 
is the second sub-route that was randomly selected, the 
left-most unassigned slot is assigned city “3” because the 
probability of taking these paths are P53 = 25 and P54 = 20, 
and the last unassigned slot receives city “4”. 

 Step 6: � Use Equation (7) to update the amount of pheromone on 
all the paths with the new tours created in Step 5. Combine 
the lists of initial and new tours, and then sort based on 
the tour length from the shortest to the longest. The top 
m ranked tours are selected for the next step. The shortest 
tour, Tour_best, is recorded. 

 Step 7: � Improve the quality of the tours by using one of the four 
local search strategies. To start with, each of the m tours is 
randomly assigned to one of the four lists: LSA, LSA_Sim, L2-opt, 
and L3-opt. Each list corresponds to a particular strategy. In 
the first iteration (t = 1), all strategies have the same proba-
bility of being chosen (PSA(t) = PSA_Sim(t) = P2-opt(t) = P3-opt(t) = 
0.25). In the subsequent iterations, however, the probability 
of being chosen for each strategy is updated to reflect the 
performance in improving the quality of the tour of that 
strategy. The method used in this updating process follows 
Qin et al. [16]. 

Figure 2 | Two examples of reproduction of a new tour from a  
sub-route

Figure 3 | Example of reproduction of a new tour from two different 
sub-routes
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The first strategy uses the SA algorithm to improve the tour quality 
in LSA as follows:

	 •	 Firstly, randomly select one of the three heuristics in SA 
(insert_mutation, inverse_mutation, and exchange_mutation) 
and apply it to the tour thus creating a new tour. 

	 •	 Compute the length of the new tour. 

	 •	 Compute the change in length between the new tour and the 
original tour [Equation (9)]: 

		      n E L L= −new current � (9) 

where Lnew is the length of the new tour; and Lcurrent is the length 
of the current tour. If E ≤ 0, replace the current tour with the new 
tour. However, if E ≥ 0, compute the probability eE/T and compare 
it with a randomly generated real number in [0, 1]. If the gener-
ated random number is less than or equal to the probability, replace 
the current tour with the new tour, else keep the current tour. The 
temperature, T, in each SA iteration is calculated by Equation (10): 

		    T t
t t

= −
−





×start
start end

iter_max
iter � (10) 

where tstart is the initial temperature; tend is the final temperature; iter 
is the current iteration; and iter_max is the maximum number of 
iterations specified beforehand.

	 •	 Repeat the above procedure until the maximum number of 
iterations is reached. 

	 •	 The best tour achieved by this strategy is grouped with the 
original tours from Step 6 and other new tours achieved by the 
other local search strategies. 

The second strategy uses the SA_Sim algorithm to improve the 
quality of each tour in LSA_Sim.

	 •	 Initially, the similarities between Tour_best and all tours in LSA_Sim 
are determined. Pair up Tour_best with all of the tours in LSA_Sim 
as shown in Figure 4 and determine their similarity values. From 
the example in Figure 4, the similarity value between Tour_best 
and Tour_1 is determined as follows: the first path of both tours 
is the same (city 1 → city 3) so the similarity value for this path 
is 1. Next, the second path of Tour_best is 3 → 4, but no paths of 
Tour _1 is 3 → 4, so the similarity value for this path is 0. On the 
other hand, the fourth path of Tour_best is 2 → 5 which is similar 
to the third path of Tour_1, so the similarity value for this path is 
also 1. It can be observed that all of the other paths in Tour_best 
and Tour_1 are not similar, so the total similarity value between 

Tour_best and Tour_1 is the sum of the similarity values of all of 
the paths in both tours which is 2 in this example. 

	 •	 The obtained similarity values between Tour_best and all of 
the tours in LSA_Sim are then used to calculate the probability of 
taking SA. 

		        P
i

i
SA

Similarity
dim

= � (11) 

where PSAi
 is the probability of taking SA for the tour i. Similarityi is 

the similarity value between Tour_best and the tour i in LSA_Sim; dim 
is the total number of paths in the tour. 

	 •	 For each tour in the LSA_Sim, if a random number in [0, 1] is less 
than or equal to the probability of taking SA, follow the steps 
of the SA algorithm above, else keep the current tour. 

	 •	 Group the best tour achieved by this strategy with the original 
tours from Step 6 and other new tours achieved by the other 
local search strategies. 

The third strategy uses the 2-Opt algorithm which randomly 
selects two sub-routes and swaps some cities between them [17,18]. 
The steps of the algorithm are demonstrated in the example below.

	 •	 Figure 5 shows an example of a tour consisting of four sub-routes. 

	 •	 A sub-route (the second sub-route in Figure 6a labelled sub-
route 1) and a path from city 10 → 12 in this sub-route are 
randomly selected (paths that begin or end at city 1, the depot, 
are discarded if randomly selected) then another sub-route 
(labelled sub-route 2) is randomly selected. This sub-route 2 
(in Figure 6a) must be randomly selected from only sub-routes 
that come after sub-route 1 in the sequence. 

	 •	 The randomly selected path, 10 → 12, in sub-route 1 is 
matched to each path in sub-route 2, except 1 → 2 and 8 → 1, 
because city 1 is the depot. 

Figure 5 | Example of a tour used to illustrate 2-opt algorithm

Figure 6 | Illustration of 2-opt algorithmFigure 4 |  Example of a tour list in SA_Sim

Tour_best 1 3 4 2 5 1

L SA
_S

im

Tour_1 1 3 2 5 4 1

Tour_2 1 4 2 5 3 1

… … … … … … …

Tour_n 1 3 4 5 2 1
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Figure 7 | Example of a tour used to illustrate 3-opt algorithm

Figure 8 | Illustration of 3-opt algorithm

	 •	 Swap the destination city in the selected path in sub-route 1 
(i.e., 12) with the origin city in each of the matched paths in 
sub-route 2. For example, for the first matched pair, swap 12 ↔ 
2; for the second match pair, swap 12 ↔ 4; for the last matched 
pair, swap 12 ↔ 7. Then, the other cities located between the 
swapped cities are rearranged in reverse order. This procedure 
produces several new tours; in our example, three new tours, 
as shown in Figure 6a–c, are created. 

	 •	 Compute the lengths of the tours with these new sub-routes 
and compare them with the length of the original tour. 

	 •	 Group the best tour achieved by this strategy with the original 
tours from Step 6 and other new tours achieved by the other 
local search strategies. 

The fourth strategy uses 3-Opt algorithm which randomly selects 
three sub-routes and swaps some cities among them [18]. The steps 
of this algorithm are demonstrated by using an example of tour 
comprising four sub-routes in Figure 7.

	 •	 A sub-route (the second sub-route in Figure 8a labelled sub-
route 1) and a path from city 8 → 14 in this sub-route are ran-
domly selected (paths that begin or end at city 1, the depot, 
are discarded if randomly selected). Then another sub-route 
(labelled sub-route 2) and a path 7 → 9 in this sub-route 
are randomly selected. This sub-route 2 must be randomly 
selected from among only the sub-routes that come after sub-
route 1 in the sequence. Next, another sub-route (called sub-
route 3) is randomly selected. Sub-route 3 (in Figure 8a) must 
be randomly selected from among only the sub-routes that 
come after sub-route 2 in the sequence. 

	 •	 The randomly selected path, 8 → 14, in sub-route 1 and  
the path, 7 → 9, in sub-route 2 are matched to each path in 
sub-route 3, except 1 → 6 and 12 → 1 because city 1 is the 
depot. 

	 •	 For the matched paths between the path 8 → 14 in sub-route 
1 and the path 7 → 9 in sub-route 2 to the path 6 → 4 in 
sub-route 3, the following procedure is used: the destina-

tion city of the selected path in sub-route 1 (i.e., 14) replaces 
the destination city of the selected path in sub-route 3 (i.e., 
4); the destination city of the selected path in sub-route 3  
(i.e., 4) replaces the destination city of the selected path in 
sub-route 2 (i.e., 9); and the destination city of the selected 
path in sub-route 2 (i.e., city 9) replaces the destination city of 
the selected path in sub-route 1 (i.e., city 14). All of the other 
cities remain at the same positions as shown in Figure 8a. 
The same procedure is used on the matched paths between 
the path 8 → 14 in sub-route 1 and the path 7 → 9 in sub-
route 2 to the path 4 → 12 in sub-route 3. 

	 •	 Compute the lengths of the new tours (two new tours in our 
example above) then compare the new tour lengths to the 
original tour length. The best tour achieved by this strategy 
is grouped with the original tours from Step 6 and other 
new tours achieved by the other local search strategies. 

The original tours (from Step 6) and the new tours generated by 
all of the strategies mentioned above are sorted based on the tour 
length from the shortest to the longest. Then, the top m ranked 
tours are selected and put into the same group. These selected tours 
are labelled “successful” while the tours that are not selected are 
labelled “unsuccessful”. These “unsuccessful” tours are put into 
another group.

Then, the success rate of each strategy (from the four local search 
strategies) is computed as in Equation (12):

		        S
ns

ns nfk
k

k k

=
+ � (12) 

where k ∈{SA, SA_Sim, 2-opt, 3-opt}; Sk is the success rate of the 
strategy k in generating the successful tours; nsk is the number of 
successful tours generated by the strategy k; nfk is the number of 
unsuccessful tours generated by the strategy k. Next, the proba-
bility of choosing the strategy k is updated as in Equations (13) 
and (14):
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where m is a real number in [0, 1]. Since the sum of the probabil-
ities of choosing each strategy in the candidate pool must be 1, 
but the sum of Pk(t) for all k as computed by the equation above 
is greater than 1. Therefore, the Pk(t) must be normalized to com-
pute Pk(t + 1), the probability of choosing the strategy k for the 
next iteration: 

	 P t
P t
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+ + +
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SA SA_Sim 2-opt 3-opt

� (15) 

where, k ∈ {SA, SA_Sim, 2-opt, 3-opt}.

Step 8: Record the best tour as well as its tour length. 

Step 9: Repeat Steps 4–8 until the maximum number of iterations 
is reached. 
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AS algorithm converged closer to the global minimum for 
eil51, eil76, and eil101 while EAS algorithm converged closer 
to the global minimum for att48, st70, pr76, kroC100, rd100, 
lin105, ch130, ch150, rat195, and kroB200. AS and EAS algo-
rithms achieved similar results for berlin52, rat99, kroA100, and 
kroA200. Even though our algorithm required a significantly 
larger number of iterations to reach the best solution than AS and 
EAS, the best solution obtained by the proposed algorithm was 
much closer to the best-known solution. In contrast, both AS and 
EAS converged rapidly to a local optimum solution.

Table 2 shows the results on the single-depot multiple traveling 
salesman problems. The name of the instance is in the first column 
of Table 2. Column 2 denotes the number of salesmen, M, for the 
corresponding MTSP instance who will have to visit all of the cities. 
Columns 3 and 4 show the minimum, K, and maximum, L, number 
of cities a salesman must visit in his tour. In each of the last six 
columns, the average tour length found over 10 runs by each algo-
rithm is shown. The best results are highlighted in bold. It can be 
seen clearly that the proposed algorithm is the best performer; it 
achieved the best solutions on the following 11 out of 16 datasets: 
eil51 (M = 5, K = 7, L = 12), eil51 (M = 7, K = 5, L = 10), eil76 (M 
= 7, K = 7, L = 15), berlin52 (M = 2, K = 10, L = 41), berlin52 (M = 
3, K = 10, L = 27), berlin52 (M = 5, K = 6, L = 17), berlin52 (M = 
7, K = 4, L = 17), rat99 (M = 2, K = 46, L = 52), rat99 (M = 3, K = 
27, L = 36), rat99 (M = 5, K = 13, L = 30), and rat99 (M = 7, K = 9, 
L = 22). gb-ACS comes in second; it achieved the best solutions on 
these four datasets: eil51 (M = 2, K = 23, L = 27), eil51 (M = 3, K = 
15, L = 20), eil76 (M = 3, K = 21, L = 30), and eil76 (M = 5, K = 12, L 
= 17). The third place is taken by sb-ACS, which achieved the best 
solution on only one dataset.

The results in Tables 1 and 2 show the overall superior perfor-
mance of our algorithm compared to other ant-based algorithms. 
Our algorithm succeeded because our randomly generated initial 
population was more diversified than that of other ant-based algo-
rithms; a proper weight was added to each tour which increased 
the pheromone level on each tour path; the cloning of more good 
tours than bad tours led to a higher number of better newly gener-
ated tours; and the four local search strategies helped escaping from 
local minima.

4. � EXPERIMENTAL RESULTS  
AND DISCUSSION

We measured the performance of our algorithm as well as other 
major algorithms on TSP data from TSPLIB [19]. For the single-
vehicle TSP, the results of our algorithm were compared with 
those achieved by the ant system algorithm and EAS. For the 
single-depot MTSP, the performance of the proposed algorithm 
was evaluated against five variants of the ACS [8]. The algorithm 
was terminated after 10,000 iterations and each algorithm run 
10 times. Each run started with a different initial population and 
stopped when the maximum number of iterations was reached.

Table 1 shows the experimental results on the single-vehicle TSP. 
The results shown in Table 1 are the shortest tour length achieved 
by each algorithm and the number of iterations to reach the best 
solution, follow in brackets. It can be clearly seen that our algo-
rithm achieved near-optimum solutions on all tested datasets. 
In contrast, AS and EAS algorithms did not return good results. 
They fall behind our algorithm on all datasets. Among them,  

Table 1 | Performances of the three tested algorithms on the  
single-vehicle TSP 

Instance BKS AS EAS Proposed algorithm

att48 33,522 37,086 (7) 36,382 (14) 33,524 (8615)
eil51 426 457.39 (2) 473.12 (2) 426.98 (1468)
berlin52 7542 8093.4 (2) 8093.4 (3) 7544.4 (132)
st70 675 761.69 (1) 727.13 (3) 676.11 (1193)
eil76 538 578.33 (4) 586.98 (2) 538.83 (3017)
pr76 108,159 1,26,050 (16) 1,23,770 (23) 1,08,160 (4531)
rat99 1211 1369.5 (1) 1369.5 (1) 1212 (2850)
kroA100 21,282 24,698 (1) 24,698 (1) 21,283 (3061)
kroC100 20,749 23,566 (1) 23,248 (2) 20,750 (1548)
rd100 7910 9134.5 (5) 8986.1 (1) 7920.8 (3730)
eil101 629 722.56 (2) 727.76 (4) 643.02 (3365)
lin105 14,379 16,554 (10) 16,045 (66) 14,383 (1859)
ch130 6110 6941.6 (4) 6852.7 (3) 6161.4 (7897)
ch150 6528 7078.4 (1) 6943.9 (22) 6533.5 (9666)
rat195 2323 2560.6 (1) 2540 (4) 2332.1 (7368)
kroA200 29,368 34,548 (1) 34,548 (1) 29,370 (7748)
kroB200 29,437 34,036 (12) 33,519 (20) 29,701 (7936)

Table 2 | Performance of the proposed algorithm relative to that of ACS variants reported in Necula et al. [8] 

Instance M K L kM-ACS g-ACS s-ACS gb-ACS sb-ACS Proposed algorithm

eil51 2 23 27 454.30 452.66 454.96 452.22 453.81 461.37
3 15 20 500.00 485.73 489.64 479.51 483.39 505.24
5 7 12 563.58 582.36 590.63 585.76 598.61 561.25
7 5 10 634.47 674.78 680.38 688.26 699.47 634.36

eil76 2 36 39 594.21 580.77 583.41 579.68 578.96 596.47
3 21 30 642.89 622.91 630.67 613.76 619.19 629.28
5 12 17 740.35 747.49 760.05 734.61 744.94 752.42
7 7 15 820.35 873.65 883.63 894.70 911.06 815.80

berlin52 2 10 41 8836.80 8043.92 8036.08 8057.38 8122.44 7911.34
3 10 27 9009.18 8653.86 8806.95 8795.52 8839.37 8270.34
5 6 17 10335.03 10164.58 10343.52 10660.46 10866.66 9182.78
7 4 17 11966.20 11993.31 12125.55 12451.16 12712.41 10006.80

rat99 2 46 52 1485.56 1398.01 1391.89 1382.05 1389.08 1153.66
3 27 36 1672.11 1691.56 1707.20 1661.04 1651.68 1645.30
5 13 30 1996.04 2260.74 2297.05 2286.73 2337.94 1890.78
7 9 22 2361.55 2859.98 2878.97 3004.37 2984.42 2169.84
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5.  CONCLUSION

In this paper, we demonstrated an improved ant system algorithm 
which was especially effective for the multiple-vehicle routing prob-
lem. It used four local search strategies: simulated annealing (SA), 
simulated annealing with similarity measure (SA_Sim), 2-opt, and 
3-opt. Performance of the proposed algorithm was assessed on sev-
eral single-vehicle TSP and MTSP instances from the TSPLIB. For 
single vehicles, it converged closer to the global optimum solutions 
than both AS and EAS. For multiple vehicles, it outperformed other 
ACS variants in 11 out of 16 datasets. Our future work will attempt 
to further improve the ability of searching the global optimum and 
make it applicable to larger datasets as well as to multiple depots. 
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