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1.  INTRODUCTION

With the aggravation of market-oriented competition, gas com-
panies are actively seeking business transformation, focusing on 
retaining high-value customer groups and carrying out value-
added sales such as gas appliances and floor heating equipment. 
The issue of data management including how data are collected, 
formatted, stored, and owned will play an important part in  
service provision and profit making [1]. Floor heating users, as 
the high-quality customer group, have the characteristics of large 
gas consumption in winter and good overall economic income 
base. These customers are becoming the target of various gas 
companies in the market.

Based on available sales records, a gas company may have known 
that the customers of certain streets are stable floor heating users. 
It is important that the company can take advantage of these data 
to forecast the potential customers willing to buy floor heating  
service. Big data technology enables a gas company to do this much 
more effectively than ever. In particular, by analyzing the gas usage 
of existing users including those known to be using floor heating, 
the company can have a prediction of new floor heating customers, 
and then differentiate the service for various customer groups, set 
proper charging standards for them, and advertise related equip-
ment. This is critical for gas companies to improve the customer’s 
satisfaction, enhance the competitiveness in the fierce market, and 
increase economic returns.

The problem of floor heating customer prediction can be regarded 
as a binary classification problem, i.e., each user should be assigned 

to either floor heating or non-floor heating. Well-known two-
class classification algorithms include, among others, k-Nearest  
Neighbor (KNN) [2], logistic regression [3], Support Vector 
Machine (SVM) [4], naive Bayes [5], decision tree [6], and random 
forest [7].

This paper proposes an application of random forest for floor heat-
ing customer prediction. Random forest is an ensemble learning 
method that integrates multiple decision trees to learn, and pre-
dicts according to the votes of these trees. Compared with other 
methods mentioned above, random forest introduces randomness 
to avoid overfitting problems. It can handle high-dimensional 
features, and has high prediction accuracy and computational 
efficiency. Random forest has applications in bioinformatics [8], 
ecology [9], medicine [10], remote sensing geography [11], image 
processing [12], and many other fields. As far as we are concerned, 
few works have been done in predicting floor heating customers in 
gas industry.

Using random forest, we establish a floor heating customer predic-
tion model that helps indicate the potential customers using floor 
heating. The data we exploit come from the actual running of a 
Shanghai based gas company. Experiments show that the random 
forest model has better performance than those using KNN or 
logistic regression.

The remainder of this paper is organized as follows. Section 2 
introduces the random forest method. Section 3 demonstrates 
the procedure of establishing the random forest model for the 
prediction of floor heating customers. Section 4 explains how the 
experiment is done and analyzes the results. Section 5 concludes 
the paper.
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A B S T R AC T
Nowadays floor heating service is increasingly attracting both residents in cold areas and gas companies for market profits. With 
the aggravation of market-oriented competition, the gas companies are actively seeking service transformation. It is of great 
significance to gas companies to be able to forecast those customers willing to use floor heating. In this paper, we establish a floor 
heating customer prediction model that helps indicate the potential customers using floor heating, based on analyzing existing 
floor heating customers’ behavior. The prediction model uses random forest. We exploit data coming from the actual running 
of a Shanghai based gas company. Experiments show that the random forest model has better performance than those using  
k-nearest neighbor (KNN) or logistic regression.
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2.  RANDOM FOREST METHOD

The random forest method [7] is one of the supervised classifica-
tion algorithms in machine learning. As a variant of Bagging algo-
rithm [13], the random forest method contains multiple decision 
trees, and synthesizes the output of multiple models to decrease 
the variance of the result from different training sets based on the 
same distribution. Decision tree is the base classifier of the random 
forest. The output of a random forest is determined by the votes of 
all its decision trees. The random forest has high predictive accu-
racy, and can eliminate abnormal data of certain features as well as 
avoid overfitting.

2.1.  Decision Trees

The decision tree is composed of multiple judgment nodes, rep-
resenting a mapping relationship between attributes and values. 
A decision tree works through several steps. It starts from the 
root node by testing the corresponding attributes in the items 
to be classified. Then it selects the output branch according to 
their value until reaching the leaf nodes. Finally, the classes of 
these leaf nodes are outputted as the decision results. The core 
of the decision tree algorithm is how to select the appropriate 
splitting conditions to split the data. Thus it is very important 
to choose the appropriate measure metrics of order degree and 
then qualify the split by information gain. At present, the mea-
sure metrics mainly include the entropy (i.e., ID3 [14], C4.5 [15] 
decision-making algorithms) and the Gini impurity (i.e., CART 
algorithm [6]).

2.2.  Random Forests

A random forest [7] is a supervised classifier consisting of inde-
pendent identically distributed decision tree classifiers {h(x, qk),  
k = 1, …}, h(x,qk) represents the kth decision tree, and x represents 
the input vector, and (qk) represents an independent identically dis-
tributed subset of features. The classification result of the random 
forest is decided by the votes of each decision tree for the input 
vector x.

Assume that Strain represents the training set, which includes N sam-
ples, M features. The specific construction process of the random 
forest model is shown in Figure 1 and the steps are described as 
follows.

	 • 	 Use the Bootstrap method to randomly sample the training set 
with replacement, and repeat k times to obtain the indepen-
dent identically distributed training subsets {Strain,1, Strain,2, …,  
Strain,k}, every subset has n samples (n < N);

	 •	 Use different training subsets to build the decision tree collec-
tion {h(x, q1), h(x, q2), …, h(x, qk)} (the construction process 
of the decision tree will be introduced in the next paragraph).

	 •	 The input variable x is decided through the decision trees, and 
then the classification result is obtained by the votes.

The concrete construction process of the decision tree is as follows.

	 •	 Input the number m of features for each decision tree (m < M);

	 •	 For each node, select m features randomly, calculate the infor-
mation gain of each feature, then find the optimal splitting 
method of the decision tree.

	 •	 Each decision tree grows according to the training subset 
without pruning. Finally, we get a decision tree h(x, q ), 
x denotes the training subset, and q represents the feature 
subset.

The random forest has many advantages that make it promising 
for the problem of classifying the gas users. First of all, random 
forest has better accuracy compared with other classification 
algorithms. Furthermore, it has better denoising ability, and it 
runs efficiently while dealing with large data sets, like gas con-
sumption records, since the process of training is independent 
among trees.

3. � FLOOR HEATING CUSTOMERS  
PREDICTION USING RANDOM  
FOREST MODEL

This section uses random forest to build a model for predicting 
potential customers of floor heating.

3.1.  Data Preprocessing

Data preprocessing includes feature extraction and feature 
processing as follows.

Figure 1 | The construction of random forest
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3.1.1.  Feature extraction

Due to the significant differences in gas consumption between the 
users of the floor heating group and those of the non-floor heat-
ing group, we extract the gas records of all residents for 3 years 
from 2014 to 2016. Considering the different meter reading time of 
gas subsidiary companies, we calculate the usage at the interval of  
2 months. The structural feature set is shown in Table 1. The struc-
ture of 2015 and 2016 gas consumption features are similar.

3.1.2.  Feature processing

We constructed 18 features of gas consumption. However, we 
found that there were both missing and abnormal data in the fea-
tures after analysis.

The missing data of certain months are caused by the difference in 
the time when users start to use gas or the deliberate negligence 
of the gas system. We amend this by supplementing the records of 
the other 2 years in the same period.

There are several types of abnormal feature data. We deal with 
them respectively.

3.1.2.1.  Negative value

We use default value 0 to replace the negative values in the gas con-
sumption records.

3.1.2.2.  Missing values

There are still a large number of missing values in the gas usage records 
after the replacement. We removed the user from the floor heating 
group if the number of value 0 is larger than 9 in the 18 features.

3.1.2.3.  Misjudgement

The features of some users who belong to the non-floor heating 
group may conform to the pattern of floor heating users. After 
analysis and confirmation, the reason is that the operator may have 
mis-recorded the situation. We handle this in the following way.

	 •	 If there are more than two feature values larger than the cor-
responding 75-fractile in the group of floor heating users in 
2014, the user category is modified to the category of floor 
heating users, otherwise go to the next step.

	 •	 If there are more than two feature values larger than the cor-
responding 75-fractile in the group of floor heating users in 
2015, the user category is modified to the category of floor 
heating users, otherwise go to the next step.

	 •	 If there are more than two values larger than the correspond-
ing 75-fractile in the group of floor heating users in 2016, 
the user category is modified to the category of floor heating 
users, otherwise go to the next step.

	 •	 If there are more than three values larger than the correspond-
ing 75-fractile in the group of floor heating users from 2014 
to 2016, the user category is modified to the category of floor 
heating users, then stop.

Taking the six characteristics in 2016 as an example, the quartiles, 
standard deviations and averages of the training dataset are shown 
in Table 2, the values of floor heating category dataset are shown 
in Table 3, and the values of non-floor heating category dataset are 
shown in Table 4.

Table 1 | Feature set of 2014

Name Meaning Calculation

Y141 Gas consumption in  
1st period, 2014

Gas consumption in January and 
February, 2014

Y143 Gas consumption in  
2nd period, 2014

Gas consumption in March and 
April, 2014

Y145 Gas consumption in  
3rd period, 2014

Gas consumption in May and 
June, 2014

Y147 Gas consumption in  
4th period, 2014

Gas consumption in July and 
August, 2014

Y149 Gas consumption in  
5th period, 2014

Gas consumption in September 
and October, 2014

Y1411 Gas consumption in  
6th period, 2014

Gas consumption in November 
and December, 2014

Table 2 | Min, quartiles, max, average, standard deviation of gas 
consumption of the residents in training set, 2016

Training  
set Min 25% 50% 75% Max Average Standard 

deviation

Y161 0 11 40 80 18568 91.175 197.25
Y163 0 12 40 81 11537 89.026 187.436
Y165 0 11 33 61 9041 153.75 100.96
Y167 0 10 25 44 6589 35.695 63.022
Y169 0 9 23 40 14304 31.888 66.434
Y1611 0 11 30 54 7860 45.782 76.491

Table 3 | Min, quartiles, max, average, standard deviation of gas 
consumption of floor heating users, 2016

Floor 
heating user Min 25% 50% 75% Max Average Standard 

deviation

Y161 0 60 153 408 18568 294.29 371.702
Y163 0 60 154 3712 5879 279.145 348.141
Y165 0 42 84 159 9041 134.68 196.96
Y167 0 30 53 97 6589 80.89 120.79
Y169 0 25 47 82 14304 70.61 135.025
Y1611 0 37 71 136 7860 110.723 142.707

Table 4 | Min, quartiles, max, average, standard deviation of gas 
consumption of non-floor heating users, 2016

Non-floor 
heating user Min 25% 50% 75% Max Average Standard 

deviation

Y161 0 6 30 60 1593 42.104 50.535
Y163 0 8 32 61 11537 43.095 59.134
Y165 0 8 28 50 2363 33.484 35.930
Y167 0 6 21 36 2565 24.776 28.174
Y169 0 6 20 33 3481 22.532 25.007
Y1611 0 8 25 44 3452 30.092 32.854
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3.2.  PREDICTION MODEL

In the prediction of floor heating customer, features established 
based on the gas consumption records are used as input, the classi-
fication of gas user is the prediction result. The prediction model is 
obtained through the training set.

Assume that Strain represents the training set with N samples, every 
sample has M features, the modeling process is as Algorithm 1.

Algorithm 1 | The prediction Model

Input: Training set Strain = (Xi, Yi)|i = 1, 2, …, N}; Factors set  
I = {(I1, I2, …, IM)}; The number of decision trees k
Output: A random forest H
1: function Forest Generate (Strain, I, k)
2:     for j = 0 → k – 1 do
3: �      Strain, j = {(Xi, Yi)|i = 1, 2, …, n} ← Randomly sample the train-

ing set with replacement to generate the subset;
4: �      qj = {qj1, qj2,…, qjm} ← Randomly select m features instead of 

using M features to split;
5:       h(X, qj) ← Generate a decision tree;
6:     end for
7:     return H = {h(X, qj)| j = 1, 2, ..., k}
8: end function

4.  EXPERIMENT AND ANALYSIS

4.1.  Datasets and Evaluation Metrics

The data sets are based on the real data of gas users are provided in 
Shanghai. The field I_DINUAN is used to identify customer who 
are using floor heating. Residents using floor heating is identified 
by 1, and the others are identified by 0.

After the missing values and abnormal values were processed, 
the total number of gas users in the dataset is 2,73,415, the 
number of floor heating users is 53,206, the number of resident 
users who have been identified as non-floor heating users is 
2,20,213. We divided the labeled users into training set and test 
set in a ratio of 7:3.

The combination of the actual category of the sample and the pre-
diction of classifiers can be divided into four cases: True Positive 
(TP), False Positive (FP), True Negative (TN) and False Negative 
(FN). The confusion matrix is shown in Table 5.

	 •	 False negative (FN) is the sample that is judged as negative but 
is positive actually.

	 •	 False positive (FP) is the sample that is judged as positive but 
is negative actually.

	 •	 True negative (TN) is the sample that is judged as negative and 
is negative actually.

	 •	 True positive (TP) is the sample that is judged as positive and 
is positive actually.

As usual for two-class problems in machine learning, the 
performance of our floor heating customer prediction model 
is measured using accuracy, precision, recall, F1-score, Receiver 
Operating Characteristic (ROC) curve and Area Under the 
Curve (AUC).

Accuracy, as defined in Equation (1), reflects the ability to judge 
the whole model, that is, the proportion of samples that are cor-
rectly predicted. Precision, as defined in Equation (2), reflects the 
ability to discriminate negative samples. The higher the precision, 
the stronger ability the method has to differentiate the negative 
samples. Recall, as defined in Equation (3), reflects the ability to 
identify positive samples. The higher the recall, the stronger ability 
the model has to recognize positive samples. F1-score, as shown in 
Equation (4), is a combination of precision and recall. The higher 
the F1-score, the more robust the classification model is

 		  Accuracy
TP + TN

TP + TN + FP + FN
= � (1) 

		  Precision = TP
TP + FP � (2) 

		      Recall = TP
TP + FN

� (3) 

		        F1 =
2 *

2 *
TP

TP FP FN+ + � (4)

In the ROC curve, the abscissa of each point is False Positive Ratio 
(FPR), and the ordinate is True Positive Ratio (TPR). The defini-
tion of FPR is shown in Equation (5), and the definition of TPR is 
shown in Equation (6). We can get a point (FPR, TPR) based on 
the performance on the test set. By adjusting the threshold of the 
classifier, we can get a corresponding ROC curve of this classifier. 
ROC curve reflects the ability to classify. The closer the ROC curve 
is to the upper left corner, the better performance of the classifier 
is. AUC is defined as the area under the ROC curve. The larger the 
AUC value, the better the prediction effect of the classifier is

			 
FPR = 

FP
FP + TN � (5) 

			   TPR = TP
TP + FN

� (6)

4.2.  Experiment Result

The experiment consists of two parts: experiment on the effect of 
different number of decision trees in the random forest, and exper-
iment on the comparison of random forest with logistic regression 
and KNN.

4.2.1.  Effect of number of decision trees  
in random forest

The number of decision trees in the random forest model is the 
key to the result of the model. It will directly decide the classifica-
tion effect and efficiency of the model. With the gradual increase 

Table 5 | Confusion matrix

Actual condition

Actual positive Actual negative

Predicted Predicted positive True positive (TP) False positive (FP)
Condition Predicted negative False negative (FN) True negative (TN)
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of the number of decision trees, the performance is better, but the 
training time will increase. So we should find a trade-off between 
performance and cost.

4.2.1.1.  Accuracy

The trend of accuracy is shown in Figure 2. With the increasing 
number of decision trees, the accuracy of the random forest model 
shows an increasing trend. Then it will reach a stable state when the 
number of trees is 19 and the accuracy is 0.943.

4.2.1.2.  Precision, recall

The trends of precision and recall are shown in Figure 3. As the 
number of decision trees in the random forest model increases, the 
precision and recall value of the model generally increase. When 
the number of trees is larger than 19, the upward trend is not obvi-
ous and tends to be stable. When the number of decision trees 
reaches 19, it reaches a good state and the precision value is 0.912, 
the recall value is 0.788.

4.2.1.3.  F1-score

The change trend of F1-score is shown in Figure 4. The F1-score 
shows a rising trend when the number of random forest is increas-
ing. The curve tends to be gentle when the number is larger than 
19, it will reach a good condition and the F1-score is 0.846 when the 
number of decision trees is 19.

4.2.1.4. �  Receiver operating characteristic, area under  
the curve

The ROC curves and the AUC values are shown in Figure 5. We 
select the number of decision trees for the random forest model to 
be 1, 2, 3, 4, and 19 for ROC and AUC calculations. As the number 
of decision trees increases, the ROC curve of random forest with 
more decision tree is closer to the upper left corner, and the AUC 
value of the random forest with more decision trees is also larger. 
Therefore, it demonstrates that the effect of the prediction will 
become better as the number of trees is increasing.

Based on the above analysis and experiments, we set the number of 
decision trees in the floor heating prediction model to 19.

Figure 3 | Effect of tree number on precision and recall value

Figure 4 | Effect of tree number on F1-scoreFigure 2 | Effect of tree number on accuracy value

Figure 5 | Comparison of ROC curves in random forest model
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Figure 6 | Comparison of ROC curves for random forest, logistic 
regression and KNN

Table 6 | Comparison of classification results 

Classifier Parameters F1-score Precision Recall Accuracy

KNN k = 5 0.7996 0.9120 0.7118 0.9298
LR Default 0.6371 0.9220 0.4867 0.8909
RF n = 19 0.8446 0.9131 0.7857 0.9431

4.2.2.   Comparative studies

After determining the number of decision trees in the random 
forest of the floor heating prediction model, we compared the 
random forest model, logistic regression model and KNN.

4.2.2.1.   Accuracy, precision, recall, F1-score

Accuracy, precision, recall and F1-score for the three models are 
shown in Table 6. From the evaluation results of the four indicators, 
it can be seen that the performance of the random forest model is 
relatively the best.

4.2.2.2. � Receiver operating characteristic, area  
under the curve

The ROC curves and the AUC values of the three models are shown 
in Figure 6. The ROC curve of the random forest inclined toward the 
left upper quadrant than those of logistic regression model and KNN 
model indicating its higher sensitivity and specificity. The AUC value 
of the random forest, logistic regression, KNN model are 0.94, 0.85, 
0.91 respectively. Therefore, it indicates that the random forest has 
better prediction than logistic regression and KNN.

5.  CONCLUSION

This paper presents the application of the random forest for floor 
heating customer prediction. It can be used to forecast those  

customers willing to use floor heating. This will help gas com-
panies to provide differentiated services for the customers of 
the floor heating group, so that the gas companies can maintain 
their advantages in the fierce competition and increase the eco-
nomic benefits.
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