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ABSTRACT
In this work, a new four-parameter zero-truncated Poisson Topp Leone Burr XII distribution is defined and studied. Various
structural mathematical properties of the proposed model including ordinary and incomplete moments, residual and reversed
residual life functions, generating functions, order statistics are investigated. Some useful characterizations are also presented.
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1. INTRODUCTION

The Pearson systemof frequency curves was introduced by Pearson [1] whoworked out a set of four-parameter probability density functions
(PDFs) as solutions to the following differential equation

f′ (x)/ f (x) = P (x)/Q (x) = (x − a)
(
b0 + b1x + b2x2

)−1

where f is a density function and a, b0, b1, and b2 Pearson family such as Gamma, Gaussian, Beta, and Student’s t models. Analogously to
the Pearson system, Burr [2] introduced another system of frequency curves that includes 12 types of cumulative distribution functions
(CDFs) which yield a variety of density shapes, this system is obtained by considering CDFs satisfying a differential equation which has a
solution, given by

G (x) = {1 + exp [− ∫ 𝜏 (x) dx]}
−1

,

where 𝜏 (x) is chosen such thatG (x) is a CDF on the real line and has 12 choices which made by Burr, resulted in 12 models which might be
useful for modeling data, the principal aim in choosing one of these forms of distributions is to facilitate the mathematical analysis to which
it is subjected, while attaining a reasonable approximation. A special attention has been devoted to one of these forms denoted by type XII
(for more details see Burr [2–4], Burr and Cislak [5], Hatke [6], and Rodriguez [7]), whose CDF, G (x) , is given as

G𝛼,𝛽 (x) = 1 − (1 + x𝛼)−𝛽 ,

where both 𝛼 and 𝛽 are shape parameters. The location and scale parameters can easily be introduced to make G𝛼,𝛽 (x) a four-parameter
distribution. The corresponding PDF is given by

g𝛼,𝛽 (x) = 𝛼𝛽x𝛼−1 (1 + x𝛼)−𝛽−1 .
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The Burr XII (BXII) (see Burr [2]) has many applications in different areas including reliability, acceptance sampling plans, and failure
time modeling. Tadikamalla [8] studied the BXII model and its related models. Zimmer et al. [9] proposed a new three-parameter BXII
distribution, this distribution, having the Weibull and the logistic as submodels, is a very popular distribution for modeling lifetime data
and phenomenon with monotone failure rates. Shao [10] studied the maximum likelihood estimations for the three-parameter BXII model
then Soliman [11] studied the estimation of parameters of life from progressively via censored data using Burr-XII model, Wu et al. [12]
discussed the estimation problems for BXII model on the basis of progressive type II censoring under random removals where the number
of units removed at each failure time has a discrete uniformmodel. Recently, Silva et al. [13] introduced the log-BXII regressionmodels with
censored data, Silva et al. [13] proposed a new location-scale regression model based on BXII model, Silva et al. [14] proposed a residual
for the log-BXII regression distribution whose empirical model is close to normality, Afify et al. [15] studied the Weibull BXII distribution,
Cordeiro et al. [16] proposed the double BXII model among others. For the other new extensions of the BXII see Altun et al. [17], Altun
et al. [18], Paranaíba et al. [19], Yousof et al. [20], and Yousof et al. [21].

The rest of the paper is outlined as follows. In Section 2, we introduce the new model and its physical motivation. Section 3 presents some
plots and the justification for introducing the new model. Some useful characterizations are presented in Section 4. In Section 5, we derive
some statistical properties for the new model. Finally, we offer some concluding remarks in Section 6.

2. THE NEW MODEL AND ITS PHYSICAL MOTIVATION

The CDF and the PDF of the Topp Leone BXII (TLBXII) distributions (Reyad and Othman [22]) are given by

Hb,𝛼,𝛽 (x) = [1 − (1 + x𝛼)−2𝛽]
b

(1)

and

hb,𝛼,𝛽 (x) = 2b𝛼𝛽x𝛼−1 (1 + x𝛼)−2𝛽−1 [1 − (1 + x𝛼)−2𝛽]
b−1

(2)

respectively. Suppose Z1,Z2, ...,ZN be independent identically random variable (iid rv) with common CDF of the TLBXII model and N be
a rv with probability mass function (PMF)

P (N = n) = an/ [(ea − 1) n! ] |(n=1,2,..., a>0)

and define

MN = max {Z1,Z2, ...,ZN}

then

F (x) =
∞
∑
n=0

p
(
MN ≤ x|N = n

)
p (N = n) (3)

As described in Ramos et al. [23], Eq. (3) can be expressed as

F (x) =
∞
∑
n=1

1
ea − 1

an
n!

((
1 − (1 + x𝛼)−2𝛽

)b)n

(4)

Using Eqs. (2) and (4), we can write

F (x) =
(
1 − exp {−a [1 − (1 + x𝛼)−2𝛽]

b
}
)
/ (1 − e−a) . (5)

Equation (5) is the CDF of the zero-truncated Poisson Topp Leone BXII (ZTPTLBXII) model. Henceforward f (x) = fa,b,𝛼,𝛽 (x) and
F (x) = Fa,b,𝛼,𝛽 (x) . The corresponding PDF of Eq. (5) reduces to

f (x) = 2ab𝛼𝛽
(1 − e−a)

x𝛼−1 (1 + x𝛼)−2𝛽−1 [1 − (1 + x𝛼)−2𝛽]
b−1

exp {−a [1 − (1 + x𝛼)−2𝛽]
b
}⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

A

. (6)

Nowwe can provide a useful linear representation for the ZTPTLBXII density function in Eq. (6). Expanding the quantityA in power series,
we can write

f (x) =
∞
∑
i=0

2 (−1)i ai+1b𝛼𝛽
i! (1 − e−a)

x𝛼−1 (1 + x𝛼)−2𝛽−1 [1 − (1 + x𝛼)−2𝛽]
b(i+1)−1

. (7)
Pdf_Folio:2
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Consider the power series

(
1 − 𝜁

)𝜏−1 =
∞
∑
r=0

(−1)r Γ (𝜏) 𝜁 r/ [j! Γ
(
𝜏 − j

)
] =

∞
∑
r=0

(−1)r
(
𝜏 − 1

r

)
𝜁 r, (8)

which holds for |𝜁| < 1 and 𝜏 > 0 real non-integer. Using the power series in Eq. (8) and after some algebra the PDF of the ZTPTLBXII
model in Eq. (7) can be expressed as

f (x) =
∞
∑
i=0

2 (−1)i ai+1b𝛼𝛽
i! (1 − e−a)

x𝛼−1 (1 + x𝛼)−2𝛽−1 [1 − (1 + x𝛼)−2𝛽]
b(i+1)−1

=
∞
∑
i,r=0

2 (−1)i+r ai+1b
i! (1 − e−a)

𝛼𝛽x𝛼−1 (1 + x𝛼)−2𝛽−1 (1 + x𝛼)−2r𝛽
(
b (i + 1) − 1

r

)
=

∞
∑
i,r=0

2 (−1)i+r ai+1b
i! (1 − e−a)

(
b (i + 1) − 1

r

)
𝛼𝛽x𝛼−1 (1 + x𝛼)−2𝛽(1+r)−1

=
∞
∑
i,r=0

2 (−1)i+r ai+1b
i! (1 − e−a) [2 (1 + r)]

(
b (i + 1) − 1

r

)
𝛼 [2 (1 + r) 𝛽] x𝛼−1 (1 + x𝛼)−2𝛽(1+r)−1

=
∞
∑
r=0

∞
∑
i=0

(−1)i+r ai+1b
i! (1 − e−a) (1 + r)

(
b (i + 1) − 1

r

)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

vr

𝛼 [2 (1 + r) 𝛽] x𝛼−1 (1 + x𝛼)−2(1+r)𝛽−1⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
g𝛼,2(1+r)𝛽(x)

=
∞
∑
r=0

vrg𝛼,2(1+r)𝛽 (x) ,

where

g𝛼,2(1+r)𝛽 (x) = 2𝛼 (1 + r) 𝛽x𝛼−1 (1 + x𝛼)−2(1+r)𝛽−1 ,

is the BXII density with parameters 𝛼 and 2 (1 + r) 𝛽.

vr =
∞
∑
i=0

(−1)i+r ai+1b
i! (1 − e−a) (1 + r)

(
b (i + 1) − 1

r

)

Via integrating Eq. (9), we obtain the same mixture representation

F (x) =
∞
∑
r=0

vrG𝛼, 2(1+r)𝛽 (x) , (9)

where G𝛼, 2(1+r)𝛽 (x) is the CDF of the BXII density with parameters 𝛼 and 2 (1 + r) 𝛽. The new model has a wide application in many types
of data such as Guinea pigs (Bjerkedal [24]) and many other data types.

3. PLOTS AND JUSTIFICATION

In this section, we provide some graphical plots of the PDF and hazard rate function (HRF) of the ZTPTLBXII model to show its flexibility.
Figure 1(a) displays some plots of the ZTPTLBXII density for some parameter values a, b, 𝛼, and 𝛽. Plots of the HRF of the ZTPTLBXII
model for selected parameter values are given in Fig. 1(b), where the HRF can be upside down bathtub (unimodal) and decreasing.

The justification for introducing the ZTPTLBXII lifetime model is based on the wider use of the BXII model. As well as we are motivated
to introduce the ZTPTLBXII lifetime model because it exhibits the unimodal hazard rate as illustrated in Fig. 1(b). It is shown above that
the ZTPTLBXII lifetime model can be viewed as a linear mixture of the BXII densities as illustrated in Eqs. (9) and (10).
Pdf_Folio:3
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Figure 1 Plots of the  zero-truncated Poisson Topp Leone BXII (ZTPTLBXII PDF) (right panel) and HRF (left panel).

4. CHARACTERIZATIONS

We will need the following two Lemmas for the characterization of the distribution:

Assumption A. X is an absolutely continuous rv with CDF F (x) and PDF f (x). We assume E (X) exists and f (x) is differentiable. We assume
further

𝛼 = sup {x | f (x) > 0} and 𝛽 {x | f (x) < 1} .

Lemma 1. If

E
(
X | X ≤ x

)
= g (x) f (x)/ F (x) ,

where g (x) is a continuous differentiable function in (𝛼, 𝛽) , then f (x)=c exp [∫
x − g′ (x)
g (x) dx] , c is determined by the condition

∫
𝛽

𝛼
f (x) dx = 1.

Proof.

g (x) =
∫
x

𝛼
uf (u) du

f (x)
, thus ∫

x

𝛼
uf (u) du = f (x) g (x)

Differentiating both sides of the above equation, we obtain xf (x) = f ′ (x) g (x) + f (x) g′ (x) on simplification, we get

[ f ′ (x)/ f (x)] = [x − g′ (x)]/ g (x) .

On integrating both sides of the above equation, we obtain

f (x) = c exp [∫
x − g′ (x)
g (x) dx] ,

where c is determined by the condition

∫
𝛽

𝛼
f (x) dx = 1.

Pdf_Folio:4
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Lemma 2. Under the assumption A, if

E
(
X |X ≥ x

)
= h (x) f (x)/ [1 − F (x)] ,

where h (x) is a continuous differentiable function in (𝛼, 𝛽) , then

f (x) = c exp [∫ = x + h′ (x)
h (x)

dx] ,

where c is determined by the condition ∫
𝛽

𝛼
f (x) dx = 1.

Proof.

h (x) =
∫
∞

x
uf (u) du

f (x)
, thus ∫

∞

x
uf (u) du = f (x) h (x)

Differentiating both sides of the above equation, we obtain −xf (x) = f ′ (x) h (x) + f (x) h′ (x) on simplification, we obtain

[ f ′ (x)/ f (x)] = − [x + h′ (x)]/ h (x) .

On integrating both sides of the above equation, we obtain

f (x) = c exp [∫ −x + h′ (x)
h (x)

dx] ,

where c is determined by the condition

∫
𝛽

𝛼
f (x) dx = 1.

Theorem 1. Suppose that the random variable X satisfies the conditions of the assumption A with 𝛼 = 0 and

𝛽 = ∞. Then, E
(
X|X ≤ x

)
= g (x) 𝜏 (x) , where 𝜏 (x) = f (x)

F (x) and

g (x) =

∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]B(x𝛼,1+ 1
𝛼 ,2 (1 + r)𝛽 − 1

𝛼
)

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)
,

if and only if

f (x) =
∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x) .

Proof.
Suppose that

f (x) =
∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x) ,

then

f (x) g (x) =
∞
∑
r=0

𝜈r ∫
x

0
ug𝛼,2(1+r)𝛽(u)du

=
∞
∑
r=0

𝜈r ∫
x

0
2𝛼 (1 + r) 𝛽u𝛼 (1 + u𝛼)−2(1+r)𝛽−1 du

=
∞
∑
r=0

𝜈r ∫
x𝛼

0
2 (1 + r) 𝛽 (1 + t)𝛽2(1+r)𝛽−1 t

1
𝛼 dt

=
∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]B
(
1 + 1

𝛼 , 2 (1 + r) 𝛽 − 1
𝛼
)
.

Pdf_Folio:5
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Thus

g (x) =

∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]B(x𝛼,1+ 1
𝛼 ,2 (1 + r)𝛽 − 1

𝛼
)

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)
.

Suppose

g (x) =

∞
∑
r=0

𝜈r2 (1 + r)𝛽B(x𝛼,1+ 1
𝛼 ,2 (1 + r)𝛽 − 1

𝛼
)

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)
,

then

g′ (x) = x −

∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]B(x𝛼,1+ 1
𝛼 ,2 (1 + r)𝛽 − 1

𝛼
)

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)

×

∞
∑
r=0

𝜈r2𝛼 (1 + r) 𝛽
x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1]x𝛼}

(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)

= x − g (x)

∞
∑
r=0

𝜈r𝛼2 (1 + r) 𝛽
x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1] x𝛼}

(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)

Thus

x − g′ (x)
g (x) =

∞
∑
r=0

𝜈r2𝛼 (1 + r) 𝛽 x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1] x𝛼}
(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)
.

By Lemma 1, we have

f ′ (x)
f (x)

=

∞
∑
r=0

𝜈r𝛼 (1 + r) 𝛽 x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1] x𝛼}
(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)
.

Integrating both sides of the above equation we obtain

f (x) = c
∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x) ,

where c is constant. Using the condition ∫
∞

0
f (x) dx = 1, we obtain

f (x) =
∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x) .
Pdf_Folio:6



Haitham M. Yousof et al. / Journal of Statistical Theory and Applications 18(1) 1–11 7

Theorem 2. Suppose that the random variable X satisfies the conditions of the assumption A with 𝛼 = 0 and 𝛽 = ∞.

Then, E
(
X |X ≥ x

)
= h (x) r (x) , where r (x) = f (x)

F (x) and

g (x) =

∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]Bc
(
x𝛼,1+ 1

𝛼 ,𝛽 −
1
𝛼
)

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)
,

if and only if

f (x) =
∞
∑
r=0

𝜈rg𝛼,(1+r)𝛽 (x) ,

where

B (a1, a2) = ∫
∞

0
ta1−1 (1 + t)−(a1+a2) dt

and

B (z, a1, a2) = ∫
z

0
ta1−1 (1 + t)−(a1+a2) dt

are the beta and the incomplete beta functions of the second type, respectively.

Proof.

Suppose that f (x) =
∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x) , then

f (x) g (x) =
∞
∑
r=0

𝜈r ∫
∞

x
ug𝛼,2(1+r)𝛽 (u) du

=
∞
∑
r=0

𝜈r ∫
∞

x
2𝛼(1 + r)𝛽u𝛼 (1 + u𝛼)−2(1+r)𝛽−1 du

=
∞
∑
r=0

𝜈r ∫
∞

x
2(1 + r)𝛽 (1 + t)−2(1+r)𝛽−1 t

1
𝛼 dt

=
∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]Bc

(
1 + 1

𝛼 , 2 (1 + r) 𝛽 − 1
𝛼
)
.

Thus

g (x) =

∞
∑
r=0

vr [2 (1 + r) 𝛽] Bc
(
1+ 1

𝛼 , 2 (1 + r)𝛽 − 1
𝛼
)

∞
∑
r=0

vrg𝛼, 2(1+r)𝛽 (x)
.

Suppose

g (x) =

∞
∑
r=0

𝜈r [2 (1 + r) 𝛽] Bc
(
1+ 1

𝛼 , 2 (1 + r)𝛽 − 1
𝛼
)

∞
∑
r=0

𝜈rg𝛼, 2(1+r)𝛽 (x)
,

Pdf_Folio:7
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then

g′ (x) = −x −

∞
∑
r=0

𝜈r [2 (1 + r) 𝛽]B(x𝛼,1+ 1
𝛼 ,2 (1 + r)𝛽 − 1

𝛼
)

∞
∑
r=0

𝜈rg𝛼, 2(1+r)𝛽 (x)

×

∞
∑
r=0

𝜈r2𝛼 (1 + r) 𝛽 x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1]x𝛼}
(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)

= −x − g (x)

∞
∑
r=0

𝜈r𝛼2 (1 + r) 𝛽 x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1] x𝛼}
(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,2(1+r)𝛽 (x)

Thus

x − g′ (x)
g (x) =

∞
∑
r=0

𝜈r2𝛼 (1 + r) 𝛽 x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1] x𝛼}
(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼,(1+r)𝛽 (x)
.

By Lemma 2, we have

f ′ (x)
f (x)

=

∞
∑
r=0

𝜈r𝛼 (1 + r) 𝛽 x𝛼−2{𝛼−1−[2𝛼𝛽(1+r)+1] x𝛼}
(1+x𝛼)2(1+r)𝛽+2

∞
∑
r=0

𝜈rg𝛼, 2(1+r)𝛽 (x)
.

Integrating both sides of the above equation we obtain

f (x) = c
∞
∑
r=0

𝜈rg𝛼, 2(1+r)𝛽 (x) ,

where c is constant. Using the condition

∫
∞

0
f (x) dx = 1,

we obtain f (x) =
∞
∑
r=0

𝜈rg𝛼, 2(1+r)𝛽 (x) .

5. MATHEMATICAL PROPERTIES

5.1. Moments and Incomplete Moments

The r(th) ordinary moment of X is given by

𝜇′n = E (Xn) = ∫
∞

−∞
xnf (x) dx.

Then we obtain

𝜇′r =
∞
∑
r=0

vr ∫
∞

0
xng𝛼, 2(1+r)𝛽 (x) =

∞
∑
r=0

vr [2 (1 + r) 𝛽]B
(
1 + n

𝛼 , 2 (1 + r) 𝛽 − n
𝛼
)
. (10)
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By setting n= 1 in Eq. (11), we have the mean of X. The s(th) incomplete moment, say Is (t), of X can be expressed from (9) as

Is (t) = ∫
t

−∞
xsf (x) dx. Then

Is (t) =
∞
∑
r=0

vr ∫
t

−∞
xsg𝛼, 2(1+r)𝛽 (x) dx =

∞
∑
r=0

vr [2 (1 + r) 𝛽]B
(
t𝛼; 1 + s

𝛼 , 2 (1 + r) 𝛽 − s
𝛼
)
, (11)

The general equation for the first incomplete, I1 (t) , can be derived from Eq. (12) as

I1 (t) =
∞
∑
r=0

vr ∫
t

−∞
xg𝛼, 2(1+r)𝛽 (x) dx =

∞
∑
r=0

vr [2 (1 + r) 𝛽]B
(
t𝛼; 1 + 1

𝛼 , 2 (1 + r) 𝛽 − 1
𝛼
)
.

5.2. Moment Generating Function

The moment generating function (MGF) of X, sayMX (t) = E [exp (tX)], can be obtained from Eq. (9) asMX (t) =
∞
∑
r=0

vrM2(1+r)𝛽 (t) , where

M2(1+r)𝛽 (t) is the mgf of the BXII distribution with parameters 𝛼, 2 (1 + r) 𝛽, then we have

MX (t) =
∞
∑
r=0

vrMr+1 (t)

= 2𝛼𝛽
∞
∑
r=0

(1 + r)vr ∫
∞

0
exp(tx)x𝛼−1 (1 + x𝛼)−2(1+r)𝛽−1 dx

= 2𝛼𝛽
∞
∑
r=0

(1 + r)vr
∞
∑
k=0

tk
k! ∫

∞

0
x𝛼+k−1 (1 + x𝛼)−2(1+r)𝛽−1 dx.

Let u = x𝛼, then

MX (t) = 2𝛽
∞
∑
r=0

(1 + r)vr
∞
∑
k=0

tk
k! ∫

∞

0
u

k
𝛼 (1 + u)−2(1+r)𝛽−1 du

= 2𝛽
∞
∑
r=0

(1 + r)vr
∞
∑
k=0

tk
k!B

(
1 + n

𝛼 , 2 (1 + r) 𝛽 − n
𝛼
)
,

which also means that the r(th) ordinary moment of X is

𝜇′r = 2𝛽
∞
∑
r=0

vr (1 + r)B
(
1 + n

𝛼 , 2 (1 + r) 𝛽 − n
𝛼
)
.

5.3. Order Statistics

Let X1, … ,Xn be a random sample from the ZTPTLBXII model of distributions and let X1 ∶ n, … ,Xn ∶ n be the corresponding order statistics.
The PDF of i(th) order statistic, say Xi ∶ n, can be written as

fi ∶ n (x) = [B (i, n − i + 1)]−1
n−i

∑
j=0

(−1)j
(
n − i
j

)
f (x) F j+i−1 (x) , (12)

where B (⋅, ⋅) is the beta function. Substituting Eqs. (5) and (6) in Eq. (13) and using a power series expansion, we get that

f (x) F (x) j+i−1 =
∞
∑
h=0

vhg𝛼,(1+h)𝛽 (x) ,

where

vh =
∞
∑

w,m,k=0

2b(w+1)−mbaw+1 (−1)w+m+k+h (k + 1)w

w! h! (1 + h) (1 − e−a)j+i

(
j + i − 1

k

)(
b (w + 1) − 1

m

)
× [

(
1 + 𝛽 (w + 1) +m

h

)
−
(
2 + 𝛽 (w + 1) +m

h

)
]
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The PDF of Xi ∶ n can be expressed as

fi ∶ n (x) =
n−i

∑
j=0

(−1) j
(
n − i
j

)
[B (i, n − i + 1)]−1

∞
∑
h=0

vhg𝛼,(1+h)𝛽 (x) .

For example, the moments of Xi ∶ n can be expressed as

E
(
Xq
i ∶ n

)
=

n−i

∑
j=0

(−1)j
(
n − i
j

)
B (i, n − i + 1)

∞
∑
h=0

vh (1 + h) 𝛽B
(
1 + q

𝛼 , (1 + h) 𝛽 − q
𝛼
)
. (13)

5.4. Quantile Spread Ordering

The quantile spread (QS) of the rv T ∼ ZTPTLBXII (a, b, 𝛼, 𝛽) having CDF (5) is given by

QST (𝜈) |[𝜈∈(0.5,1)] = [F−1 (𝜈)] − [F−1 (1 − 𝜈)] ,

which implies
QST (𝜈) = [S−1 (1 − 𝜈)] − [S−1 (𝜈)] ,

where
F−1 (𝜈) = S−1 (1 − 𝜈) and S (t) = 1 − F (t)

is the survival function. The QS of a distribution describes how the probability mass is placed symmetrically about its median and hence can
be used to formalize concepts such as peakedness and tail weight traditionally associated with kurtosis. So, it allows us to separate concepts
of kurtosis and peakedness for asymmetric models. Let T1 and T2 be two rvs following the ZTPTLBXII (a, b, 𝛼, 𝛽) model with QST1

and
QST2

. Then T1 is called smaller than T2 in QS order, denoted as T1 ≤(QS) T2, if

QST1
(𝜈) | [𝜈∈(0.5,1)] ≤ QST2

(𝜈) .

Following properties of the QS order can be obtained:

• The order ≤(QS) is a location-free

T1 ≤(QS) T2 if (T1 + C) ≤(QS) T2|(C∈R).

• The order ≤(QS) is dilative

T1 ≤(QS) CT1 wheneverC ≥ 1 andT2 ≤(QS) CT2|(C≥1).

• Let FT1
and FT2

be symmetric, then

T1 ≤(QS) T2 if, and only if F −1
T1

(𝜏) ≤ F −1
T2

(𝜈) |[𝜈∈(0.5, 1)].

• The order ≤(QS) implies ordering of the mean absolute deviation around the median, say 𝛾(Median)(Ti)|(i=1,2),

𝛾(Median) (T1) = E [|T1 −Median (T1) |]

and
𝛾(Median) (T2) = E [|T2 −Median (T2) |] ,

where
T1 ≤(QS) T2 implies 𝛾(Median) (T1) ≤(QS) 𝛾(Median) (T2) .

Finally
T1 ≤(QS) T2 if, and only if − T1 ≤(QS) −T2.
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6. CONCLUSIONS

In this paper, a new four-parameter ZTPTLBXII distribution is defined and studied. The new model has a strong physical motivation.
Various structural mathematical properties of the proposed model including ordinary and incomplete moments, residual and reversed
residual life functions, generating functions, order statistics are investigated also the QS ordering is defined for formalizing concepts such
as peakedness and tail weight traditionally associated with kurtosis on the new model. Some useful characterizations are also presented.
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