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ABSTRACT
Discretizing a continuous distribution has received much attention among researchers recently. Discrete analogue of the well-
known continuous distributions such as Normal, Exponential, Weibull, Laplace, Rayleigh, and so on, are available in the liter-
ature. In this paper, we introduce a discrete version of the additive Weibull geometric distribution of Elbatal et al. [1]. Discrete
Weibull, discrete modified Weibull, discrete Weibull geometric, discrete exponential geometric, discrete Rayleigh distribution,
and so on, are sub models of this distribution. We study some properties of the new distribution. The hazard rate function of
the new distribution is monotonically increasing or decreasing or bathtub shape based on the values of the shape parameters.
The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out
to show the performance of the maximum likelihood estimate of parameters of the new distribution. An application of this dis-
tribution to a real data set is also presented.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

There are situations where continuous random variables may not necessarily always be measured on a continuous scale but may often be
counted as discrete random variable. For example, in military service, the weapons like tanks, what is more important is the number of
times it fires until failure than the life of the weapon. Similar situations frequently occur in reliability and survival analysis. By discretizing
the continuous distribution, several discrete lifetime distributions are developed in the literature. Some of them are discrete Weibull distri-
bution in Nakagawa and Osaki [2], a second type of discrete Weibull distribution in Stein and Dattero [3], a third type of discrete Weibull
distribution in Padgett and Spurrier [4], discrete exponential distribution in Sato et al. [5], discrete normal distribution in Roy [6], dis-
crete Rayleigh distribution in Roy [7], discrete Laplace distribution in Inusah and Kozubowski [8], discrete skew-Laplace distribution in
Kozubowski and Inusah [9], discrete Burr and discrete Pareto distributions in Krishna and Pundir [10], discrete inverse Weibull distribu-
tion in Jazi et al. [11], discrete generalized exponential distribution in Gómez-Déniz [12], discrete generalized exponential distribution in
Nekoukhou et al. [13], discrete gamma distribution in Chakraborty and Chakravarty [14], discrete additive Weibull (AW) distribution in
Bebbington et al. [15], discrete Lindley distribution in Bakouch et al. [16], discrete Gumbel distribution in Chakraborty and Chakravarty
[17], exponentiated geometric distribution in Chakraborty and Gupta [18], discrete distribution related to generalized gamma distribution
in Chakraborty [19], transmuted geometric distribution in Chakraborty and Bhati [20], discrete Weibull geometric (DWG) distribution in
Jayakumar and Babu [21], and so on.

Discretization plays a vital role in variable selection method, in addition to transforming the continuous variable to discrete variable. This
method can significantly make an impact on the performance of classification algorithms applied in the analysis of high-dimensional
biomedical data. While constructing the discrete version of a continuous distribution, one may preserve one or more characteristic proper-
ties of the continuous one. There are different methodologies available in the literature about the discretization of a continuous distribution
(see Bracquemond and Gaudoin [22], Chakraborty [23]).

Discretization of the distribution of a continuous random variable X, to its discrete analogue, say Y, using the method of survival functions
is given by

P
(
Y = y

)
= P

(
X ≥ y

)
− P

(
X ≥ y + 1

)
= SX

(
y
)
− SX

(
y + 1

)
; y = 0, 1, 2, ... , (1)

where, Y = [X] = largest integer less than or equal to X and SX (.) is the survival function of the random variable X.
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Xie and Lai [24] proposed the AW distribution by combining the failure rates of two Weibull distributions of which one has a decreasing
failure rate and the other has an increasing failure rate. The cumulative distribution function (cdf) of AW distribution is given by

F (x; 𝛼, 𝛽, 𝛾, 𝛿) = 1 − e−
(
𝛼x𝛽+𝛾x𝛿

)
, (2)

where 𝛼 > 0, 𝛾 > 0 and 𝛽 > 𝛿 > 0 or (𝛿 > 𝛽 > 0), which gives identifiability to the model. Here 𝛼 and 𝛾 are scale parameters, and 𝛽 and 𝛿
are shape parameters. Lemonte et al. [25] examined some structural properties of AW distribution.

Suppose X1,X2, ...,XN areN independent and identically distributed (iid) random variables from AW distribution with cdf given in Eq. (2).
Let N be a discrete random variable following geometric distribution (truncated at zero) with probability mass function (pmf) given by

P (N = n) =
(
1 − p

)
pn−1; n = 1, 2, ...; 0 < p < 1. (3)

Let X(1) = Min {Xi}Ni=1. Then the cdf of X(1)|N = n, is given by,

G{X(1)|N=n} (x) = 1 − [1 − F (x)]n = 1 − e−n
(
𝛼x𝛽+𝛾x𝛿

)
. (4)

Hence, the cdf of X(1) is

F
(
x; 𝛼, 𝛽, 𝛾, 𝛿, p

)
=

(
1 − p

) ∞
∑
n=1

pn−1 [1 − e−n
(
𝛼x𝛽+𝛾x𝛿

)
]

= 1 − e−
(
𝛼x𝛽+𝛾x𝛿

)
1 − pe−(𝛼x𝛽+𝛾x𝛿)

, (5)

where x > 0, 0 < p < 1, 𝛼 > 0, 𝛽 > 0, 𝛾 > 0 and 𝛿 > 0. The distribution of X(1) is called AW geometric and its survival function is given
by,

S
(
x; 𝛼, 𝛽, 𝛾, 𝛿, p

)
=

(
1 − p

)
e−

(
𝛼x𝛽+𝛾x𝛿

)
1 − pe−(𝛼x𝛽+𝛾x𝛿)

(6)

This distribution is studied by Elbatal et al. [1].

The contents of the paper are arranged as follows: In Section 2, the discrete AW geometric (DAWG) distribution is introduced and in
Section 3, various properties of this distribution including the structure of hazard rate function are studied. In Section 4, the maxi-
mum likelihood estimation (MLE) method is used for parameter estimation. Also a simulation study is carried out to study the perfor-
mance of the maximum likelihood estimates of the new distribution. Application of this distribution in real data modeling is illustrated in
Section 5 and conclusions are presented in Section 6.

2. DAWG DISTRIBUTION

Marshall and Olkin [26] introduced a method of adding a parameter into a family of distributions. According to them if F (x) denote the
survival function of a continuous random variable X, then the usual device of adding a new parameter results in another survival function
G (x) is defined by

G (x) = 𝜃F (x)
1 − 𝜃F (x)

, −∞ < x < ∞, 𝜃 > 0, (7)

where 𝜃 = 1 − 𝜃. In particular when 𝜃 = 1, G (x) = F (x) .
Let Y be the discrete analogue of the continuous random variable X with survival function defined in Eq. (7). Gómez-Déniz [12] obtained
the discrete analogue of Marshall–Olkin scheme by applying Eq. (7) in Eq. (1). The corresponding random variable Y has the pmf,

pY
(
y
)
= P

(
Y = y

)
=

𝜃 [F
(
y
)
− F

(
y + 1

)
]

[1 − 𝜃F
(
y
)
] [1 − 𝜃F

(
y + 1

)
]
. (8)

Now, we apply the AW geometric distribution with survival function defined Eq. (6) in Eq. (8) and after re-parametrizations as 𝜌 = e−𝛼
and 𝜂 = e−𝛾 , then the pmf becomes,

pY
(
y
)
=

𝜃
(
1 − p

)
[𝜌y𝛽𝜂y𝛿 − 𝜌(y+1)𝛽𝜂(y+1)𝛿]

[
(
1 − 𝜃

(
1 − p

))
𝜌y𝛽𝜂y𝛿] [

(
1 − 𝜃

(
1 − p

))
𝜌(y+1)𝛽𝜂(y+1)𝛿]

, y = 0, 1, 2, ... , (9)
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where 𝜃 > 0, 0 < p < 1, 0 < 𝜌 < 1, 0 < 𝜂 < 1, 𝛽 > 𝛿 > 0 (or 𝛿 > 𝛽 > 0). We call this distribution as the generalized DAWG distribution.

When 𝜃 = 1, Eq. (9) becomes,

pY
(
y; p, 𝜌, 𝜂, 𝛽, 𝛿

)
=

(
1 − p

) (
𝜌y𝛽𝜂y𝛿 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

)
(
1 − p𝜌y𝛽𝜂y𝛿

)(
1 − p𝜌(y+1)𝛽𝜂(y+1)𝛿

) , y = 0, 1, 2, ... , (10)

where 0 < p < 1, 0 < 𝜌 < 1, 0 < 𝜂 < 1, 𝛽 > 𝛿 > 0 (or 𝛿 > 𝛽 > 0). We call this distribution as DAWG distribution with parameters
p, 𝜌, 𝜂, 𝛽, and 𝛿 and is denoted as DAWG

(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
. We have the following cases:

1. When 𝜌 ↑ 1 or 𝜂 ↑ 1, then Eq. (10) reduces to DWG distribution introduced in Jayakumar and Babu [21].

2. When 𝜂 = 𝜌, 𝛿 = 𝛽, then also it becomes DWG distribution with parameters 𝜌2 and 𝛽.
3. When 𝛽 = 1 and 𝜂 = 1, it becomes discrete exponential geometric distribution.

4. When p ↓ 0 and 𝛽 = 1, it becomes discrete modified Weibull distribution.

5. When p ↓ 0 and 𝜂 = 1, then it becomes discrete Weibull distribution (Nakagawa and Osaki [2]) with parameters 𝜌 and 𝛽.
6. When p ↓ 0, 𝛽 = 2, and 𝜂 = 1, then it becomes discrete Rayleigh distribution (Roy [7]).

7. When p ↓ 0, 𝛽 = 1, and 𝜂 = 1, then it becomes geometric distribution with parameter 𝜌.

3. STRUCTURAL PROPERTIES OF DAWG (p, 𝜌, 𝜂, 𝛽, 𝛿) DISTRIBUTION

Figure 1, provides pmf plots ofDAWG
(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution for various choices of parameter values. The probabilities can be calculated

recursively using the following relation:

pY
(
y + 1

)
=

(
1 − p𝜌y𝛽𝜂y𝛿

)(
𝜌(y+1)𝛽𝜂(y+1)𝛿 − 𝜌(y+2)𝛽𝜂(y+2)𝛿

)
(
1 − p𝜌(y+2)𝛽𝜂(y+2)𝛿

)(
𝜌y𝛽𝜂y𝛿 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

)pY (y) . (11)

From Gupta et al. [27], we have the distribution having pmf pY
(
y
)
is log-concave if and only if { pY(y+1)

pY(y)
}
y≥0

is decreasing and log-convex if

and only if { pY(y+1)
pY(y)

}
y≥0

is increasing. Also, if the sequence { pY(y+1)
pY(y)

}
y≥0

is constant, then the hazard rate is constant and the distribution is

geometric.

The cdf of DAWG
(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution is,

F
(
y; p, 𝜌, 𝜂, 𝛽, 𝛿

)
= P

(
Y ≤ y

)
= 1 − SX

(
y
)
+ P

(
Y = y

)
= 1 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

1 − p𝜌(y+1)𝛽𝜂(y+1)𝛿
, (12)

where y = 0, 1, 2, ...; 𝛽 > 𝛿 > 0 (or 𝛿 > 𝛽 > 0), 0 < p < 1, 0 < 𝜌 < 1 and 0 < 𝜂 < 1. Here note that, F (0)= 1−𝜌𝜂
1−p𝜌𝜂 and the proportion of

positive values is 𝜌𝜂(1−p)
1−p𝜌𝜂 .

The survival function of DAWG
(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution is given by,

S
(
y
)
= P

(
Y > y

)
= 1 − P

(
Y ≤ y

)
=

(
1 − p

)
𝜌(y+1)𝛽𝜂(y+1)𝛿

1 − p𝜌(y+1)𝛽𝜂(y+1)𝛿
. (13)

The hazard rate function of DAWG
(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution is

h
(
y
)
= P

(
Y = y/Y ≥ y

)
=

P
(
Y = y

)
P
(
Y ≥ y

) = 1 − 𝜌(y+1)𝛽−y𝛽𝜂(y+1)𝛿−y𝛿

1 − p𝜌(y+1)𝛽𝜂(y+1)𝛿
, (14)
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Figure 1 Plots of the probability mass function (pmf) of discrete additiveWeibull geometric (DAWG)(p, 𝜌, 𝜂, 𝛽, 𝛿)
distribution.

provided, P
(
Y ≥ y

)
> 0. In Figure 2, we present the plot of hazard rate function ofDAWG

(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution for various parameter

values. When y → 0, we have from Eq. (14)

h
(
y
)
→ 1 − 𝜌𝜂

1 − p𝜌𝜂 = pY (0) .

Now to study the limit of h
(
y
)
as y →∞, we consider the following five cases based on the values of the shape parameters 𝛽 and 𝛿:

Case (i).When 𝛽 > 1 and 𝛿 > 1 (provided 𝛽 > 𝛿 or 𝛽 < 𝛿).

Here note that limy→∞ h
(
y
)
= 1. In this case h (0)= 1−𝜌𝜂

1−p𝜌𝜂 , h (1)=
1−𝜌2

𝛽−1𝜂2
𝛿−1

1−p𝜌2𝛽𝜂2𝛿
,

h (2) = 1−𝜌3
𝛽−2𝛽𝜂3

𝛿−2𝛿

1−p𝜌3𝛽𝜂3𝛿
, ... . That is, h (0) < h (1) < h (2) < ... < 1. Therefore, h

(
y
)
is an increasing function increases from 1−𝜌𝜂

1−p𝜌𝜂 to 1.

Case (ii).When 𝛽 > 1 and 𝛿 = 1.

Here note that limy→∞ h
(
y
)
= 1.Also it can be seen that h (0) < h (1) < h (2) < ... < 1. Therefore, h

(
y
)
is an increasing function increases

from 1−𝜌𝜂
1−p𝜌𝜂 to 1.
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Figure 2 Plots of the hazard rate function of discrete additiveWeibull geometric (DAWG)(p,𝜌,𝜂,𝛽, 𝛿) distribution.

Case (iii).When 0 < 𝛽 < 1 and 𝛿 > 1.

Here also limy→∞ h
(
y
)
= 1. But here h

(
y
)
is initially decreases from h (0) to the minimum point h (m) and then increases to 1. The

minimum pointm can be numerically identified by solving the conditions, h (m) − h (m − 1) ≤ 0 and h (m + 1) − h (m) ≥ 0.

Case (iv).When 0 < 𝛽 < 1 and 𝛿 = 1.

In this case limy→∞ h
(
y
)
= 1 − 𝜂. Also h (0) > h (1) > h (2) > ... > 1 − 𝜂. That is, h

(
y
)
is a decreasing function.

Case (v).When 0 < 𝛽 < 1 and 0 < 𝛿 < 1 (provided 𝛽 > 𝛿 or 𝛽 < 𝛿).
Here limy→∞ h

(
y
)
= 0. It can be shown that h (0) > h (1) > h (2) > ... > 0. That is, in this case also, h

(
y
)
is decreasing.

Figure 3, shows a comparison of all the five cases explained above.

The reverse hazard rate function is

h∗
(
y
)
= P

(
Y = y/Y ≤ y

)
=

(
1 − p

) (
𝜌y𝛽𝜂𝛿 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

)
(
1 − p𝜌y𝛽𝜂𝛿

)(
1 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

) . (15)

The second rate of failure is

h∗∗
(
y
)
= log {

S
(
y
)

S
(
y + 1

)} = log
⎧⎪
⎨⎪
⎩

(
1
𝜌

)(y+2)𝛽 (
1
𝜂

)(y+2)𝛿
− p(

1
𝜌

)(y+1)𝛽 (
1
𝜂

)(y+1)𝛿
− p

⎫⎪
⎬⎪
⎭

. (16)

Pdf_Folio:37



38 K. Jayakumar and M. Girish Babu / Journal of Statistical Theory and Applications 18(1) 33–45

Figure 3 Plots of the hazard rate functions for the five cases.

The accumulated hazard function, H
(
y
)
is given by,

H
(
y
)
=

y

∑
t=0

h (t) =
y

∑
t=0

1 − 𝜌(t+1)𝛽−t𝛽𝜂(t+1)𝛿−t𝛿

1 − p𝜌(t+1)𝛽𝜂(t+1)𝛿
. (17)

The mean residual life function (MRLF) is given by,

L
(
y
)
= E [

(
Y − y

)
|Y ≥ y] =

∑
j>y

S(j)

S
(
y
) = ∑

j≥y

j

∏
t=y

(
1 − h(i)

)
= ∑

j≥y

j

∏
i=y

𝜌(i+1)𝛽𝜂(i+1)𝛿 (1 − p𝜌i𝛽𝜂i𝛿 )
𝜌i𝛽𝜂i𝛿

(
1 − p𝜌(i+1)𝛽𝜂(i+1)𝛿

) ; y = 0, 1, 2, ... . (18)

3.1. Quantile Function

Since the cdf of DAWG distribution is not invertible, we use the method discussed in Lemonte et al. [25] to obtain the quantile function.
We take

F
(
y
)
= 1 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

1 − p𝜌(y+1)𝛽𝜂(y+1)𝛿
= u,

where u ∈ (0, 1) . This implies, (
y + 1

)𝛽 ln (𝜌) + (
y + 1

)𝛿 ln (𝜂) = ln
(

1 − u
1 − up

)
. (19)

We obtain the nonlinear equation, at𝛽 + ct𝛿 = x, where a = ln (𝜌) , c = ln (𝜂) , x = ln
(

1−u
1−up

)
and t = y + 1. We can expand

t𝛽 in Taylor series as t𝛽 =
∞
∑
k=0

(𝛽)k (t − 1)k /k! =
∞
∑
k=0

fjtj, where fj =
∞
∑
k=j

(−1)k−j
(
k
j

)
(𝛽)[k] /k! , (𝛽)k = 𝛽 (𝛽 − 1) ... (𝛽 − k + 1) is the

falling factorial and (𝛽)[k] = 𝛽 (𝛽 + 1) ... (𝛽 + k − 1) is the ascending factorial. Analogously, we can expand t𝛿 as t𝛿 =
∞
∑
j=0

gjtj, where

gj =
∞
∑
k=j

(−1)k−j
(
k
j

)
(𝛿)[k] /k! . Now,
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x = H (t) =
∞
∑
j=0

(
afj + cgj

)
tj =

∞
∑
j=0

hjtj, (20)

where hj = afj + cgj. To obtain an expansion for the quantile function of DAWG distribution we use the Lagrange’s theorem. Now suppose
that if the power series expansion holds

x = H (t) = h0 +
∞
∑
j=1

hjtj, h1 = H′ (t) |t=0 ≠ 0,

where H (t) is analytic at a zero point, then the inverse power series t = H−1 (x) exists and is single-valued in the neighbourhood of the
point x = 0, and is given by

t = H−1 (x) =
∞
∑
j=1

𝜐jxj,

where the coefficients 𝜐j are given by

𝜐j =
1
j!

(
dj−1

dtj−1 [𝜙 (t)]
j
)
|t=0, 𝜙 (t) = t

H (t) − h0
.

Hence, the quantile function can be expressed as

Q (u) =
∞
∑
j=1

𝜐j

(
ln
(

1 − u
1 − up

)j)
− 1. (21)

3.2. Moments

The rth raw moment about origin is given by,

𝜇′r = E (Yr) =
∞
∑
y=0

yr
(
1 − p

) (
𝜌y𝛽𝜂y𝛿 − 𝜌(y+1)𝛽𝜂(y+1)𝛿

)
(
1 − p𝜌y𝛽𝜂y𝛿

)(
1 − p𝜌(y+1)𝛽𝜂(y+1)𝛿

) .
Since this expansion is not in a tractable form, for given values of p, 𝜌, 𝜂, 𝛽 and 𝛿, the moments can be numerically computed using R
programming. Table 1 shows the moments, skewness and kurtosis for DAWG distribution for given values of parameters.

Table 1 Moments, skewness, and kurtosis for p = 0.9, 𝜌 = 0.8, 𝜂 = 0.9, and various choices of 𝛽 and 𝛿.

Parameter Raw moments Central moments Skewness Kurtosis

𝜇′
1 = 0.27

𝛽 = 1.5 𝜇′
2 = 0.45  𝜇2 = 0.38 

𝛿 = 2   𝜇′
3 = 0.98  𝜇3 = 0.65  2.79 12.59

𝜇′
4 = 2.70  𝜇4 = 1.82 

𝜇′
1 = 0.32

𝛽 = 1.5 𝜇′
2 = 0.73  𝜇2 = 0.63 

𝛿 = 1   𝜇′
3 = 2.37  𝜇3 = 1.73  3.50 19.44

 𝜇′
4 = 10.24   𝜇4 = 7.59 

𝜇′
1 = 0.46

𝛽 = 0.5 𝜇′
2 = 1.76 𝜇2 = 1.55

𝛿 = 1.5   𝜇′
3 = 10.13 𝜇3 = 7.88 4.09 25.18

 𝜇′
4 = 76.97  𝜇4 = 60.28

𝜇′
1 = 1.38 

𝛽 = 0.2  𝜇′
2 = 27.89 𝜇2 = 26.00

𝛿 = 0.9  𝜇′
3 = 1092.96  𝜇3 = 983.02 7.41 86.06

 𝜇′
4 = 63894.82  𝜇4 = 58185.39
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3.3. Order Statistics

Let Y1,Y2, ...,Yn be a random sample from DAWG
(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution. Also, let Y(1),Y(2), ...,Y(n), denotes the corresponding order

statistics. Then the pmf and the cdf of kth order statistic, say, Z = Y(k), are

fZ (z) =
n!

(k − 1) ! (n − k) !F
k−1 (z) [1 − F (z)]n−k f (z)

= n!
(k − 1) ! (n − k) !

(
1 − p

)(n−k+1) 𝜌(n−k)(z+1)𝛽𝜂(n−k)(z+1)𝛿(
1 − p𝜌(z+1)𝛽𝜂(z+1)𝛿

)n(
𝜌z𝛽𝜂z𝛿 − 𝜌(z+1)𝛽𝜂(z+1)𝛿

)(
1 − 𝜌(z+1)𝛽𝜂(z+1)𝛿

)k−1

(
1 − p𝜌z𝛽𝜂z𝛿

) , (22)

and

FZ (z) =
n

∑
i=k

(
n
j

)
Fj (z) [1 − F (z)]n−j

=
n

∑
j=k

(
n
j

) (
1 − p

)n−j 𝜌(n−j)(z+1)𝛽𝜂(n−j)(z+1)𝛿
(
1 − 𝜌(z+1)𝛽𝜂(z+1)𝛿

)j

(
1 − p𝜌(z+1)𝛽𝜂(z+1)𝛿

)n , (23)

respectively.

The pmf of the minimum is,

fY(1) (z) =
n
(
1 − p

)n 𝜌(n−1)(z+1)𝛽𝜂(n−1)(z+1)𝛿
(
𝜌z𝛽𝜂z𝛿 − 𝜌(z+1)𝛽𝜂(z+1)𝛿

)
(
1 − p𝜌z𝛽𝜂z𝛿

) (
1 − p𝜌(z+1)𝛽𝜂(z+1)𝛿

)n , (24)

and the pmf of the maximum is,

fY(n) (z) =
n
(
1 − p

) (
1 − 𝜌(z+1)𝛽𝜂(z+1)𝛿

)n−1 (
𝜌z𝛽𝜂z𝛿 − 𝜌(z+1)𝛽𝜂(z+1)𝛿

)
(
1 − p𝜌z𝛽𝜂z𝛿

) (
1 − p𝜌(z+1)𝛽𝜂(z+1)𝛿

)n . (25)

3.4. Stress–Strength Parameter

The stress-strength parameter, R = P (Y > Z) is a measure of component reliability. Suppose that, the random variable Y is the strength of
a component which is subjected to a random stress Z, the estimation of R when Y and Z are i.i.d has been considered in the literature. One
may see Kotz et al. [28], for a review of stress-strength model. In the discrete case, the stress-strength model is defined as,

R = P (Y > Z) =
∞
∑
y=0

pY
(
y
)
FZ

(
y
)
,

where, pY
(
y
)
and FZ

(
y
)
denotes the pmf and cdf of the independent discrete random variables Y and Z, respectively. The stress-strength

models are applied in various fields such as Engineering, Psychology and Medicine.

Let, Y ∼ DAWG (𝜃1) and Z ∼ DAWG (𝜃2), where, 𝜃1 =
(
p1, 𝜌1, 𝜂1, 𝛽1, 𝛿1

)T and 𝜃2 = (p2, 𝜌2, 𝜂2, 𝛽2, 𝛿2)T. Then, from Eq. (10) and Eq.
(12), we have,

R =
∞
∑
y=0

(
1 − p1

)(
𝜌y

𝛽1

1 𝜂y
𝛿1

1 − 𝜌(y+1)𝛽1
1 𝜂(y+1)𝛿1

1

)(
1 − 𝜌(y+1)𝛽2

2 𝜂(y+1)𝛿2
2

)
(
1 − p1𝜌

y𝛽1
1 𝜂y

𝛿1
1

)(
1 − p1𝜌

(y+1)ta1
1 𝜂(y+1)𝛿1

1

)(
1 − p2𝜌

(y+1)𝛽2
2 𝜂(y+1)𝛿2

2

) . (26)

Assume that,
(
y1, y2, ..., yn

)
and (z1, z2, ..., zm) are independent observations drawn from DAWG (𝜃1) and DAWG (𝜃2), respectively. The

total likelihood function is given by, LR (𝜃∗) = Ln (𝜃1) Lm (𝜃2), where, 𝜃∗ = (𝜃1, 𝜃2) . The score vector is given by,

UR (𝜃∗) =
(𝜕LR
𝜕p1

, 𝜕LR𝜕𝜌1
, 𝜕LR𝜕𝜂1

, 𝜕LR𝜕𝛽1
, 𝜕LR𝜕𝛿1

, 𝜕LR𝜕p2
, 𝜕LR𝜕𝜌2

, 𝜕LR𝜕𝜂2
, 𝜕LR𝜕𝛽2

, 𝜕LR𝜕𝛿2

)
.
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Table 2 Value of R for various choices of parameter values.

p1 = 0.8, p2 = 0.8

𝜌1 = 0.5, 𝜌2 = 0.5 𝜂1 = 0.5, 𝜂2 = 0.5(
𝛽1, 𝛿1

)
→
(
𝛽2, 𝛿2

)
↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1) 0.9404 0.9402 0.9402 0.9401
(1, 1.5) 0.9411 0.9410 0.9409 0.9409
(1.5, 2) 0.9413 0.9413 0.9412 0.9412
(2,2.5) 0.9413 0.9413 0.9413 0.9413

𝜌1 = 0.2, 𝜌2 = 0.6 𝜂1 = 0.2, 𝜂2 = 0.6(
𝛽1, 𝛿1

)
→
(
𝛽2, 𝛿2

)
↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1) 0.8994 0.8993 0.8993 0.8993
(1, 1.5) 0.8996 0.8996 0.8995 0.8995
(1.5, 2) 0.8997 0.8997 0.8997 0.8996
(2,2.5) 0.8977 0.8997 0.8997 0.8997

p1 = 0.5, p2 = 0.8
𝜌1 = 0.5, 𝜌2 = 0.5 𝜂1 = 0.5, 𝜂2 = 0.5(

𝛽1, 𝛿1
)
→
(
𝛽2, 𝛿2

)
↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1) 0.9443 0.9438 0.9436 0.9435
(1, 1.5) 0.9457 0.9455 0.9454 0.9453
(1.5, 2) 0.9463 0.9462 0.9462 0.9461
(2,2.5) 0.9464 0.9464 0.9464 0.9463

𝜌1 = 0.2, 𝜌2 = 0.6 𝜂1 = 0.2, 𝜂2 = 0.6(
𝛽1, 𝛿1

)
→
(
𝛽2, 𝛿2

)
↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1) 0.9002 0.9001 0.9001 0.9001
(1, 1.5) 0.9006 0.9006 0.9005 0.9005
(1.5, 2) 0.9008 0.9008 0.9008 0.9008
(2,2.5) 0.9009 0.9009 0.9009 0.9009

The MLE, ̂𝜃∗ may be obtained from the solution of the nonlinear equation, UR
( ̂𝜃∗

)
= 0. Applying ̂𝜃∗, in Eq. (26), the stress-strength

parameter R can be obtained. The stress strength reliability function for different values of p1, 𝜌1, 𝜂1, 𝛽1, 𝛿1 and p2, 𝜌2, 𝜂2, 𝛽2, 𝛿2 are
computed in Table 2. We see that the value of R is decreasing when 𝛽1 and 𝛿1 increases, and increasing when 𝛽2 and 𝛿2 increases.

4. MAXIMUM LIKELIHOOD ESTIMATION (MLE) OF PARAMETERS

Consider a random sample
(
y1, y2, ..., yn

)
of size n from the DAWG

(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution. Then, the likelihood function is given by,

L =

(
1 − p

)n n

∏
i=1

(
𝜌y

𝛽
i 𝜂y𝛿i − 𝜌(yi+1)𝛽𝜂(yi+1)𝛿

)
n

∏
i=1

(
1 − p𝜌y

𝛽
i 𝜂y𝛿i

) n

∏
i=1

(
1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿

) . (27)

The log-likelihood function is,

log (L) = n log
(
1 − p

)
+

n

∑
i=1

log
(
𝜌y

𝛽
i 𝜂y𝛿i − 𝜌(yi+1)𝛽𝜂(yi+1)𝛿)

−
n

∑
i=1

log(1 − p𝜌y
𝛽
i 𝜂y𝛿i ) −

n

∑
i=1

log
(
1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿). (28)

The likelihood equations are the following:

𝜕 log (L)
𝜕p = −n

1 − p +
n

∑
i=1

𝜌y
𝛽
i 𝜂y𝛿i

1 − p𝜌y
𝛽
i 𝜂y𝛿i

+
n

∑
i=1

𝜌(yi+1)𝛽𝜂(yi+1)𝛿

1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿
= 0, (29)

𝜕 log (L)
𝜕𝜌 =

n

∑
i=1

y𝛽i 𝜌
y𝛽i −1𝜂y𝛿i − (yi + 1)𝛽𝜌(yi+1)𝛽−1𝜂(yi+1)𝛿

𝜌y
𝛽
i 𝜂y𝛿i − 𝜌(yi+1)𝛽 ta(yi+1)𝛿

+p
n

∑
i=1

y𝛽i 𝜌
y𝛽i −1𝜂y𝛿i

1 − p𝜌y
𝛽
i 𝜂y𝛿i

+ p
n

∑
i=1

(yi + 1)𝛽𝜌(yi+1)𝛽−1𝜂(yi+1)𝛿

1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿
= 0, (30)

Pdf_Folio:41



42 K. Jayakumar and M. Girish Babu / Journal of Statistical Theory and Applications 18(1) 33–45

𝜕 log (L)
𝜕𝜂 =

n

∑
i=1

y𝛿i 𝜌
y𝛽i 𝜂y𝛿i −1 − (yi + 1)𝛿𝜌(yi+1)𝛽𝜂(yi+1)𝛿−1

𝜌y
𝛽
i 𝜂y𝛿i − 𝜌(yi+1)𝛽𝜂(yi+1)𝛿

+p
n

∑
i=1

y𝛿i 𝜌
y𝛽i 𝜂y𝛿i −1

1 − p𝜌y
𝛽
i 𝜂y𝛿i

+ p
n

∑
i=1

(yi + 1)𝛿𝜌(yi+1)𝛽𝜂(yi+1)𝛿−1

1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿
= 0, (31)

𝜕 log (L)
𝜕𝛽 = log (𝜌)

n

∑
i=1

y𝛽i 𝜌
y𝛽i 𝜂y𝛿i log(yi) − (yi + 1)𝛽𝜌(yi+1)𝛽𝜂(yi+1)𝛿 log(yi + 1)

𝜌y
𝛽
i 𝜂y𝛿i − 𝜌(yi+1)𝛽𝜂(yi+1)𝛿

+p log (𝜌)
n

∑
i=1

y𝛽i 𝜌
y𝛽i 𝜂y𝛿i log(yi)

1 − p𝜌y
𝛽
i 𝜂y𝛿i

+p log (𝜌)
n

∑
i=1

(yi + 1)𝛽𝜌(yi+1)𝛽𝜂(yi+1)𝛿 log(yi + 1)
1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿

= 0, (32)

and

𝜕 log (L)
𝜕𝛿 = log (𝜂)

n

∑
i=1

y𝛿i 𝜌
y𝛽i 𝜂y𝛿i log(yi) − (yi + 1)𝛿𝜌(yi+1)𝛽𝜂(yi+1)𝛿 log(yi + 1)

𝜌y
𝛽
i 𝜂yli − 𝜌(yi+1)𝛽𝜂(yi+1)𝛿

+p log (𝜂)
n

∑
i=1

y𝛽i 𝜌
y𝛽i 𝜂y𝛿i log(yi)

1 − p𝜌y
𝛽
i 𝜂y𝛿i

+p log (𝜂)
n

∑
i=1

(yi + 1)𝛽𝜌(yi+1)𝛽𝜂(yi+1)𝛿 log(yi + 1)
1 − p𝜌(yi+1)𝛽𝜂(yi+1)𝛿

= 0.

(33)

These equations do not have explicit solutions and they have to be obtained numerically by using the statistical softwares like nlm package
in R programming.

We compute themaximized unrestricted and restricted log-likelihood ratio (LR) test statistic for testing on someDAWG submodels.We can
use the LR test statistic to check whetherDAWG distribution for a given data set is statistically superior to the submodels. Here,H0 ∶ 𝜃 = 𝜃0
versus H1 ∶ 𝜃 ≠ 𝜃0 can be performed using LR test. The LR test statistic is 𝜔 = 2

(
l
( ̂𝜃, y

)
− l

( ̂𝜃0, y
))
, where ̂𝜃 and ̂𝜃0 are the MLEs under

H1 andH0, respectively. The test statistic 𝜔 is asymptotically (as n →∞) distributed as 𝜒2
(k), where k is the length of the parameter vector 𝜃

of interest. The LR test rejects H0 if 𝜔 > 𝜒2
(k,𝛼), where 𝜒2

(k,𝛼) denotes the upper 100 (1 − 𝛼)% quantile of the 𝜒2
(k) distribution.

4.1. Simulation Study

Here we study the performance of the MLEs of the model parameters of DAWG distribution using Monte Carlo simulation for various
sample sizes and for selected parameter values. The algorithm for the simulation study are given below:

step 1: Input the number of replications (N);

step 2: Specify the sample size n and the values of the parameters p, 𝜌, 𝜂, 𝛽 and 𝛿;
step 3: Generate ui ∼ Uniform (0, 1) , i = 1, 2, ..., n.;
step 4: Obtain random observations from DAWG distribution by solving for real roots of the Eq. (19) and take the floor value;

step 5: Compute the MLEs of the five parameters;

step 6: Repeat steps 3 to 5, N times;

step 7: Compute the average bias, mean square error (MSE) and coverage probability (CP) for each parameter.

Here the expected value of the estimator is E
( ̂𝜃

)
= 1

N

N

∑
i=1

̂𝜃i, average bias =
1
N

N

∑
i=1

( ̂𝜃i − 𝜃
)
,

MSE
( ̂𝜃

)
= 1

N

N

∑
i=1

( ̂𝜃i − 𝜃
)2

and the CP = probability of 𝜃i ∈
(

̂𝜃i± 1.96√−𝜕2 log(L)
𝜕𝜃2

i

)
.
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We have taken the parameter values as p = 0.8, 𝜌 = 0.5, 𝜂 = 0.5, 𝛽 = 0.5 and 𝛿 = 1.5 and generated random samples of size n = 20,
60 and 100 respectively. The MLEs of p, 𝜌, 𝜂, 𝛽 and 𝛿 are determined by maximizing the log-likelihood function in Eq. (28) using the nlm
package of R software based on each generated samples. This simulation is repeated 500 times and the average estimates of bias, MSE and
CP are computed and presented in Table 3. It can be seen that, as the sample size increases, the bias and MSE decreases. Also note that the
CP values are quite closer to the 95% nominal level.

Table 3 The average bias, MSE, and CP for given values of parameters.

Sample size Actual value Estimates Average bias MSE CP

p = 0.8 0.921 0.115 0.074 0.873
𝜌 = 0.5 0.346 −0.164 0.086 0.926

20 𝜂 = 0.5 0.723 0.213 0.017 0.932
𝛽 = 0.5 0.661 0.165 0.038 0.896
𝛿 = 1.5 1.833 0.301 0.099 0.882
p = 0.8 0.866 0.071 0.016 0.926
𝜌 = 0.5 0.486 −0.013 0.018 0.936

60 𝜂 = 0.5 0.610 0.102 0.008 0.943
𝛽 = 0.5 0.612 0.110 0.012 0.912
𝛿 = 1.5 1.598 0.096 0.073 0.917
p = 0.8 0.833 0.028 0.009 0.938
𝜌 = 0.5 0.491 −0.003 0.007 0.942

100 𝜂 = 0.5 0.552 0.057 0.005 0.949
𝛽 = 0.5 0.587 0.083 0.006 0.929
𝛿 = 1.5 1.554 0.052 0.011 0.934

MSE, mean square error; CP, coverage probability.

5. APPLICATION

In this section, to show how the DAWG
(
p, 𝜌, 𝜂, 𝛽, 𝛿

)
distribution works in practice, we use the data set representing remission times (in

months) of 128 bladder cancer patients taken from Lee and Wang [29]. The data are: 0.080 0.200 0.400 0.500 0.510 0.810 0.900 1.050 1.190
1.260 1.350 1.400 1.460 1.760 2.020 2.020 2.070 2.090 2.230 2.260 2.460 2.540 2.620 2.640 2.690 2.690 2.750 2.830 2.870 3.020 3.250 3.310
3.360 3.360 3.480 3.520 3.570 3.640 3.700 3.820 3.880 4.180 4.230 4.260 4.330 4.340 4.400 4.500 4.510 4.870 4.980 5.060 5.090 5.170 5.320
5.320 5.340 5.410 5.410 5.490 5.620 5.710 5.850 6.250 6.540 6.760 6.930 6.940 6.970 7.090 7.260 7.280 7.320 7.390 7.590 7.620 7.630 7.660
7.870 7.930 8.260 8.370 8.530 8.650 8.660 9.020 9.220 9.470 9.740 10.06 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63
13.11 13.29 13.80 14.24 14.76 14.77 14.83 15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74 25.82 26.31 32.15 34.26
36.66 43.01 46.12 79.05.

Since the data set is continuous, here first we discretize the data by considering the floor value (y). The parameters are estimated by using
the method of MLE. We compare the fit of the DAWG distribution with the discrete life time distributions:

(a) Geometric (G) distribution having pmf,

P
(
Y = y

)
=
(
1 − p

)
py; 0 < p < 1, y = 0, 1, 2, ....

(b) Discrete Weibull (DW) distribution having pmf,

P
(
Y = y

)
= qy

𝛽 − q(y+1)𝛽 ; 0 < q < 1, 𝛽 > 0, y = 0, 1, 2, ....

(c) Discrete Logistic (DLOG) distribution (see Chakraborty and Chakravarty [30]) having pmf,

P
(
Y = y

)
=

(
1 − p

)
py−𝜇(

1 + py−𝜇
) (

1 + p(y−𝜇+1)
) ; 0 < p < 1, −∞ < 𝜇 < ∞, y = 0, ±1, ±2, ....

(d) Exponentiated discrete Weibull (EDW) distribution (see Nekoukhou and Bidram [31]) having pmf,

P
(
Y = y

)
=
(
1 − p(y+1)𝛼

)𝛾
−
(
1 − py

𝛼
)𝛾

; 0 < p < 1, 𝛼 > 0, 𝛾 > 0, y = 0, 1, 2, ....

(e) DWG distribution (see Jayakumar and Babu [21]) having pmf,

P
(
Y = y

)
=

(
1 − p

) (
𝜌y𝛼 − 𝜌(y+1)𝛼

)
(
1 − p𝜌y𝛼

) (
1 − p𝜌(y+1)𝛼

) ,
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Table 4 Parameter estimates and goodness of fit for various models fitted for the data set.

Model ML estimates -log L AIC AICC BIC K-S p value

G p̂ = 0.8991 414.836 831.672 831.704 831.779 0.1000 0.1549
DW q̂ = 0.9114 414.556 833.112 837.304 833.326 0.1131 0.0758̂𝛽 = 1.0511
DLOG p̂ = 0.8000 456.825 917.650 917.746 917.864 0.1860 0.0003�̂� = 7.6149

p̂ = 0.4689
409.766 825.532 825.726 825.854 0.1237 0.0399EDW �̂� = 0.5397

�̂� = 4.9697
p̂ = 0.9529

409.277 824.554 824.748 824.876 0.0905 0.2458DWG ̂𝜌 = 0.9982
�̂� = 1.7025
p̂ = 0.9589

405.230 820.460 820.952 820.996 0.0882 0.2727
̂𝜌 = 0.9989

DAWG ̂𝜂 = 0.9995
̂𝛽 = 1.7018
̂𝛿 = 1.7016

−logL, log-likelihood function; K−S, Kolmogorov–Smirnov; AIC, Akaike Information Criterion; AICC, Akaike Information Criterion with correction;
BIC, Bayesian Information Criterion; DLOG, Discrete Logistic; DAWG, discrete additive Weibull geometric; EDW, exponentiated discrete Weibull; DWG,
discrete Weibull geometric; DW, discrete Weibull.

Figure 4 Fitted cumulative distribution function’s (cdf) of the data with
empirical distribution.

where y = 0, 1, 2, ...; 𝛼 > 0, 0 < p < 1 and 0 < 𝜌 < 1.

The values of the log-likelihood function
(
− log L

)
, the statistics Kolmogorov–Smirnov (K − S), Akaike Information Criterion (AIC ),

Akaike Information Criterion with correction (AICC), and Bayesian Information Criterion (BIC) are calculated for the six distributions in
order to verify which distribution fits better to these data. The better distribution corresponds to smaller− log L,AIC,AICC, BIC, andK−S
values and larger p value.

Here, AIC = −2 log L+ 2k, AICC = −2 log L+
(

2kn
n − k − 1

)
and BIC = −2 log L+ k log n, where L is the likelihood function evaluated at

the maximum likelihood estimates, k is the number of parameters, and n is the sample size. The K− S distance,Dn = supy |F
(
y
)
− Fn

(
y
)
|,

where, Fn
(
y
)
is the empirical distribution function.

The values in Table 4, indicates thatDAWG distribution leads to a better fit compared to the other five models. Figure 4 shows the structure
of the cdf ’s of the six models with the empirical distribution of the given data. Here the dotted line indicates the empirical cdf of the data.
The LR test statistic is used to test the hypothesis H0 ∶ 𝜂 = 1 versus H1 ∶ 𝜂 ≠ 1 is 𝜔 = 8.094 > 5.991 with p value 0.0175. So we reject the
null hypothesis.Pdf_Folio:44
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6. CONCLUSION

In the present study, we have introduced the generalized DAWG distribution. A particular member of this distribution, namely DAWG
distribution is studied in detail. This discrete distribution contains the DWG, discrete exponential geometric, discrete modified Weibull,
discrete Weibull, discrete Rayleigh, and geometric distribution as special cases. We have studied some basic properties of the new model
and illustrated that the hazard rate function of the new model is monotonically increasing, decreasing, or bathtub shape depending on the
values of the shape parameters. By fitting the DAWG model to a real data set, the flexibility and capacity of the new distribution in data
modeling is established.
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