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ABSTRACT
In this paper, we consider a general family of distributions generated by Topp–Leone distribution (known as TL family of
distributions) proposed by Rezaei et al. [1]. We consider the problem of estimation of the shape parameter, scale parameter, and
reliability function based on record data from TL family of distributions. We derive the maximum likelihood estimator (MLE)
for shape parameter, scale parameter, and reliability function. We have also obtained UMVUE (uniformly minimum-variance
unbiased estimator) for reliability function when scale parameter is known. A Bayesian study is carried out under symmetric
and asymmetric loss functions in order to find the Bayes estimators for unknown parameters and reliability function. Further,
we have predicted future record values using Bayesian approach. A numerical comparison of various estimators is also reported.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Topp–Leone (TL) distribution was first introduced by Topp and Leone [2]. Later Nadarajah and Kotz [3] discussed this distribution elab-
orately by obtaining explicit algebraic expressions such as hazard rate function and nth moment, and so on. The density and distribution
function (df) of TL distribution is given by

f (x) = 2𝛼 (1 − x) [x (2 − x)]𝛼−1 , 𝛼 > 0, 0 < x < 1,
F (x) = [x (2 − x)]𝛼 , 𝛼 > 0, 0 < x < 1.

Since its emergence, many authors have studied different properties of TL distribution. We mention reliability measures and stochastic
orderings Ghitany et al. [4]; distributions of sums, products, and ratios Zhou et al. [5]; behavior of kurtosis Kotz and Seier [6]; record values
Zghoul [7]; moments of order statistics Genc [8].

Though probability distributions are very useful in practical problems but in some situations the available distributions do not support our
problem appropriately. Then it becomes necessary to either define a new distribution ormodify some existing distributions, so that they can
be useful for various practical problems. This modification of probability distribution gives boost to generalization of distribution. From the
last couple of years, we see that several authors have proposed various generated family of distributions. TL distribution is very useful and
widely applicable distribution. But due to fact that it has only one parameter and its support is restricted to (0, 1), it is not flexible. It cannot
be used for lifetime modeling. So, the generalization of TL distribution is needed. One of the generalization of TL distribution is discussed
by Al-Shomrani et al. [9]. They have considered G (x) as the baseline df in TL distribution and obtained moments and hazard rate of the
new TL family of distributions. Rezaei et al. [1] also generalized this TL distribution by using [G (x)]𝜃 as the baseline distribution called
TL-generated (TLG) family of distributions. The authors have explained some special cases of this distribution and also derived expressions
of maximum likelihood estimators (MLEs) for unknown parameters.

In this paper, we consider TLG family of distributions proposed by Rezaei et al. [1]. For this generated family of distribution, we con-
sider baseline distribution G (x/𝜃) where 𝜃 denotes an unknown scale parameter. Several well-known distributions can be used for the
baseline distribution, for example, exponential distribution with df G (x/𝜃) = 1 − e−x/𝜃, 𝜃 > 0, x > 0, Rayleigh distribution with df
G (x/𝜃) = 1 − e−x2/2𝜃2 , 𝜃 > 0, x > 0, and so on.
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The density and df of TLG family of distributions is given by

f(x, 𝛼, 𝜃) = 2𝛼
𝜃 g(x/𝜃)[1 − G(x/𝜃)][G(x/𝜃)

(
2 − G(x/𝜃)

)
]
(𝛼−1)

, 𝛼 > 0, 𝜃 > 0 x ∈ ℝ,

F(x; 𝛼, 𝜃) = [G(x/𝜃)
(
2 − G(x/𝜃)

)
]
𝛼
, 𝛼 > 0, 𝜃 > 0, x ∈ ℝ. (1)

Chandler [10] introduced the idea of record values and studied some of its basic properties. After that many authors have worked in this
field and gave their valuable inputs. For excellent understanding of records, one may refer to books written by Ahsanullah [11], Ahsanullah
[12], and Arnold [13]. For application of record values in various disciplines, one may refer to Minimol and Thomas [14], Ahsanullah [15],
itekhan2016umvu, Bdair and Raqab [16], MirMostafaee et al. [17], Ahsanullah and Nevzorov [18], Arshad and Jamal [19], Arshad and
Baklizi [20], Anwar [21], and Arshad and Jamal [22]. Now we discuss the mathematical definition of records and its distribution.

Definition 1.1. Let {Xi ∶ i ≥ 1} be a sequence of independent and identically distributed (iid) random variables with an absolutely contin-
uous df F (x) and probability density function (pdf) f (x). An observation Xj is called a lower record if its value precedes all previous obser-
vations, that is, Xj is a lower record if Xj < Xi for every j > i. Let R1,R2, … ,Rn be n lower records and let r1, r2, … , rn denote the observed
values of R1,R2, … ,Rn, respectively. The density of nth record is given by

fRn
(rn) =

1
(n − 1) ! (− ln [F (rn)])

(n−1) f (rn) , −∞ < rn < … < r2 < r1 < ∞.

The joint density of pth and qth lower record is given by
(
p < q

)
fRp,Rq

(
rp, rq

)
=

(− ln[F(rp)])(p−1)(
p − 1

)
!

(ln[F(rp)] − ln[F(rq)])(q−p−1)(
q − p − 1

)
!

f
(
rp
)
f
(
rq
)
,

−∞ < rn < ⋯ < rq < rp⋯ < r2 < r1 < ∞.

The joint density of R = (R1,R2, … ,Rn) is given by

fR (r1, r2, … , rn) =
n−1

∏
i=1

f (ri)
F (ri)

f (rn) , −∞ < rn < … < r2 < r1 < ∞. (2)

The remainder of the paper is as follows. In Section 2, we derive the expressions for finding out the MLEs for the unknown parameters. An
example for finding out MLE is also provided. In Section 3, uniformly minimum-variance unbiased estimator (UMVUE) of the reliability
function is derived when the scale parameter is known. In Section 4, a Bayesian study is carried out for obtaining the Bayes estimators
for scale parameter, shape parameter, and reliability function under symmetric (squared error) and asymmetric (LINEX and entropy) loss
functions. In Section 5, we provide Bayesian prediction interval for future records. Finally, in Section 6, a numerical study is provided to
illustrate the results.

2. MAXIMUM LIKELIHOOD ESTIMATION

The likelihood function based on the lower records observed form TLG family of distributions is given by

L
(
𝛼, 𝜃; r

)
=
(2𝛼
𝜃
)n n−1

∏
i=1

(
g (ri/𝜃) [1 − G (ri/𝜃)]
G (ri/𝜃) [2 − G (ri/𝜃)]

)
[G (rn/𝜃) [2 − G (rn/𝜃)]]𝛼 .

Now taking log both sides, we get

ln L
(
𝛼, 𝜃; r

)
= n ln (2𝛼) − n ln (𝜃) +

n−1

∑
i=1

ln (3)

Differentiating Eq. (3) with respect to 𝛼, we get

𝜕 ln L
(
𝛼, 𝜃; r

)
𝜕𝛼 = n

𝛼 + ln [G (rn/𝜃) (2 − G (rn/𝜃))] .
Pdf_Folio:2

Nowadays several researchers are interested in study of record data (extreme values) because of its application in various fields, such as in
sports, the longest winning streak of a team, the highest runs of a player, lowest run given by a bowler in an over. In field of marketing;
lowest stock market figure, minimum cost of a certain product in market. Medical sciences; most number of people affected by a disease at
a particular place, and so on. In all these field of research, record data is widely used.

F
(
rp
)

(
g (ri/𝜃) [1 − G (ri/𝜃)]
G (ri/𝜃) [2 − G (ri/𝜃)]

)
+ 𝛼 ln [G (rn/𝜃) [2 − G

( rn
𝜃
)
]] .
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In order to find MLE of 𝛼, we will equate the above equation to 0 and we have

𝛼 ln [G (rn/𝜃) (2 − G (rn/𝜃))] + n = 0. (4)

Similarly, differentiating Eq. (3) with respect to 𝜃 and equating to 0, we get

−n
𝜃 − 2𝛼

( rn
𝜃2

) g (rn/𝜃) [1 − G (rn/𝜃)]
G (rn/𝜃) (2 − G (rn/𝜃))

−
n

∑
i=1

( ri
𝜃2

) [g′ (ri/𝜃) − g′ (ri/𝜃)G (ri/𝜃) − g2 (ri/𝜃)]
g (ri/𝜃) (1 − G (ri/𝜃))

+
n

∑
i=1

(
2ri
𝜃2

) [g (ri/𝜃) (1 − G (ri/𝜃))]
G (ri/𝜃) (2 − G (ri/𝜃))

= 0. (5)

The MLE
(
�̂�, ̂𝜃

)
of (𝛼, 𝜃) is a solution of the Eqs. (4) and (5). Because of the nonlinear nature of these equations, it is very cumbersome

to obtain the numerical values of unknown parameters explicitly. So, we will use numerical computation techniques to obtain the MLEs
for both the parameters and the reliability function, based on lower records obtained from TLG family of distributions. The corresponding
MLE of the reliability function R (t) is obtained, after replacing 𝛼 and 𝜃, respectively, by their MLEs �̂� and ̂𝜃, obtained after solving Eqs. (4)
and (5), that is, the MLE of the reliability function R (t) is given by

R̂ (t) = 1 − [G
(
t/ ̂𝜃

) (
2 − G

(
t/ ̂𝜃

))
]�̂� .

Example 2.1.

Let TLG family of distributions has baseline distribution as exponential distribution with df

G (x/𝜃) = 1 − e−x/𝜃, x > 0, 𝜃 > 0.

Therefore, X has Topp-Leone exponential (TL-Exp) distribution. From Eqs. (4) and (5), we have

𝛼 ln
(
1 − e−rn/𝜃

)
+ n = 0, (6)

−n
𝜃 +

n
𝜃2

rne−2rn/𝜃(
1 − e−2rn/𝜃

)
ln

(
1 − e−2rn/𝜃

) + n

∑
i=1

ri
𝜃3 −

n

∑
i=1

rie−2ri/𝜃

𝜃3
(
1 − e−2ri/𝜃

) = 0. (7)

For MLE of 𝜃, Eq. (7) has to be solved, then MLE of 𝛼 can be obtained from Eq. (6), after putting value of ̂𝜃 obtained from Eq. (7). The
numerical computation of the MLE of 𝛼 and 𝜃 and R (t) is illustrated in Section 6 (see Example 6.1).

3. UMVUE OF RELIABILITY FUNCTION

In this section, we derive the UMVUE of R (t)when the scale parameter 𝜃 is known (WLOG, assume 𝜃 = 1). For this, we need the following
lemma. The proof of lemma is straightforward and is omitted. This lemma can be obtained from the Lemma 3.1 of Khan and Arshad [23].

Lemma 3.1. Let R1,R2, …Rn be the first n lower records having joint pdf given in Eq. (2). Define Z = G (Rn) (2 − G (Rn)) . Then, for
z ∈ (0, 1), the conditional distribution of R1 given Z = z 

fR1/Z (r1/z) =
⎧
⎨
⎩

2 (n − 1)
(− ln (z)) [1 −

ln [G (r1) (2 − G (r1))]
ln (z) ]

n−2 g (r1) (1 − G (r1))
G (r1) (2 − G (r1))

, if G−1
(
1 −√1 − z

)
< r1 < ∞

0, otherwise.

Now we shall derive the UMVUE of R (t) = 1 − F (t). Since Z is a complete sufficient statistic for 𝛼, it follows from the Lehmann–Scheffé
theorem that the UMVUE of R (t) can be obtained as

ℜ (t) = E [ J (R1, t) |Z = z] ,

where

J (R1, t) = {1, if R1 > t
0, if R1 ≤ t.
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Using Lemma 3.1, we have

ℜ (t) = ∫
∞

t
fR1/Z(r1/z)dr1

= ∫
∞

max {t,G−1(1−√1−z)}
2(n − 1)(
− ln(z)

) [1 − lnG (r1) (2 − G (r1))
ln (z) ]

n−2 g (r1) (1 − G (r1))
G (r1) (2 − G (r1))

dr1

= 1 − [max {0,
(
1 − lnG(t)(2−G(t))

ln(z)

)
}]

n−1
.

The UMVUE of R (t) is

ℜ (t) =
⎧
⎨
⎩

1 − [1 − ln [G (t) (2 − G (t))]
ln (z) ]

n−1

, if z < G (t) (2 − G (t))

1, if z ≥ G (t) (2 − G (t)) .
(8)

Example 2.1 continued The UMVUE of R (t) for the TL-Exp distribution is

ℜ (t) =
⎧
⎨
⎩

1 −
(
1 −

ln
(
1 − e−2t)

ln
(
1 − e−2rn

))n−1

, if t > rn

1, if t < rn.
(9)

4. BAYESIAN ESTIMATION

In this section, we consider the problem of estimation under Bayesian view point. For this, we consider one symmetric and two asymmetric
loss functions. Under these loss functions, Bayes estimators for both the parameters and reliability function are obtained. Squared error
loss function is taken as symmetric loss function, it gives equal weight to overestimation as well as underestimation. For asymmetric loss
function, linear exponential (LINEX) loss function is used, which was proposed by Varian [24] (also see Zellner [25]) and entropy loss
function is also taken, which was proposed by James and Stein [26].

In TLG family of distributions, it is not possible to find a mathematically tractable continuous joint prior distribution for both unknown
parameters 𝛼 and 𝜃. To choose a joint prior distribution for (𝛼, 𝜃) that incorporate uncertainty about both unknown parameters, we adopt
the method proposed by Soland [27]. This method is also used by several researchers (see Asgharzadeh and Fallah [28]).

Assume that the scale parameter 𝜃 is restricted to a finite number of values 𝜃1, 𝜃2, … , 𝜃k with prior probabilities p1, p2, … , pk, respectively,
that is, the prior distribution for 𝜃 is given by

𝜋
(
𝜃j
)
= P

(
𝜃 = 𝜃j

)
= pj, j = 1, 2, … , k.

Further, we are assuming that the conditional prior distribution for 𝛼 given 𝜃 = 𝜃j has gamma distribution with parameters aj and bj, that is,

𝜋
(
𝛼|𝜃j

)
=

b
aj
j 𝛼

aj−1e−𝛼bj

Γ
(
aj
) , 𝛼 > 0, aj > 0, bj > 0. (10)

The joint density of records R = (R1,R2, … ,Rn) is given by

fR
(
r|𝛼, 𝜃

)
=
(2𝛼
𝜃
)n n

∏
i=1

(
g (ri/𝜃) [1 − G (ri/𝜃)]
G (ri/𝜃) [2 − G (ri/𝜃)]

)
(G (rn/𝜃) [2 − G (rn/𝜃)])𝛼 , r = (r1, r2, … , rn) . (11)

Using Eqs. (10) and (11), we get the conditional posterior density of 𝛼 given 𝜃 = 𝜃j as

𝜋
(
𝛼 | 𝜃j; r

)
=

𝜋
(
𝛼 | 𝜃j

)
fR
(
r | 𝛼, 𝜃j

)
∫
∞

0
𝜋(𝛼 | 𝜃j)fR(r | 𝛼, 𝜃j)d𝛼

= 𝛼
(
n+aj−1

)
e−𝛼I(rn,𝜃j)

∫
∞

0
𝛼
(
n+aj−1

)
e−𝛼I(rn,𝜃j)d𝛼

=
[I
(
rn, 𝜃j

)
]
(
n+aj

)
Γ
(
n + aj

) 𝛼
(
n+aj−1

)
e−𝛼I(rn,𝜃j), 𝛼 > 0, (12)
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where

I
(
rn, 𝜃j

)
= [bj − ln [G

(
rn/𝜃j

) (
2 − G

(
rn/𝜃j

))
]] .

The joint prior distribution can be obtained by multiplying 𝜋
(
𝛼 | 𝜃j

)
and 𝜋

(
𝜃j
)
, j = 1, 2, … , k. Then the joint posterior distribution for

(𝛼, 𝜃) is given by

𝜋
(
𝛼, 𝜃j | r

)
=

fR
(
r | 𝛼, 𝜃j

)
𝜋
(
𝛼 | 𝜃j

)
𝜋
(
𝜃j
)

∫
∞

0

k

∑
j=1

fR
(
r | 𝛼, 𝜃j

)
𝜋
(
𝛼 | 𝜃j

)
𝜋
(
𝜃j
)
d𝛼

. (13)

Now, we will first solve the denominator integral of above equation, that is,

I = ∫
∞

0

k

∑
j=1

fR
(
r | 𝛼, 𝜃j

)
𝜋
(
𝛼 | 𝜃j

)
𝜋
(
𝜃j
)
d𝛼

=
k

∑
j=1 ∫

∞

0

b
aj
j 𝛼

aj−1e−𝛼bj

Γ
(
aj
) pj

(
2𝛼
𝜃j

)𝜃 n

∏
i=1

(
g
(
ri/𝜃j

)
[1 − G

(
ri/𝜃j

)
]

G
(
ri/𝜃j

)
[2 − G

(
ri/𝜃j

)
]

)
(G(rn/𝜃j)[2 − G(rn/𝜃j)])𝛼d𝛼

=
k

∑
j=1

pj
b
aj
j

Γ
(
aj
)( 2

𝜃j

)n n

∏
i=1

(
g
(
ri/𝜃j

)
[1 − G

(
ri/𝜃j

)
]

G
(
ri/𝜃j

)
[2 − G

(
ri/𝜃j

)
]

)

× ∫
∞

0
𝛼n+aj−1e−𝛼[bj−ln[G(rn/𝜃j)][2−G(rn/𝜃j)]]d𝛼

=
k

∑
j=1

pj
b
aj
j

Γ
(
aj
)( 2

𝜃j

)n n

∏
i=1

(
g
(
ri/𝜃j

)
[1 − G

(
ri/𝜃j

)
]

G
(
ri/𝜃j

)
[2 − G

(
ri/𝜃j

)
]

)
Γ
(
n + aj

)
[bj − ln[G(rn/𝜃j)(2 − G(rn/𝜃j))]](n+aj)

(14)

Using Eqs. (13) and (14), the joint posterior density is

𝜋
(
𝛼, 𝜃j|r

)
=

pjmjb
aj
j 𝛼

n+aj−1

𝜃nj Γ
(
aj
)
G

e−𝛼[I(rn,𝜃j)], 𝛼 > 0, j = 1, 2, … , n.

where

G =
k

∑
j=1

mjpjb
aj
j

𝜃nj Γ
(
aj
) Γ

(
n + aj

)
[I
(
rn, 𝜃j

)
]
(
n+aj

) and mj =
n

∏
i=1

g
(
ri/𝜃j

) (
1 − G

(
ri/𝜃j

))
G
(
ri/𝜃j

) (
2 − G

(
ri/𝜃j

)) , j = 1, 2, 3, … , k.

The marginal posterior density of 𝜃j is

Pj = ∫
∞

0
𝜋(𝛼, 𝜃j|r)d𝛼

Pj = ∫
∞

0

pjmjb
aj
j 𝛼

n+aj−1

Γ(aj)G
e−𝛼[I(rn,𝜃j)]d𝛼

Pj =
Γ(n + aj)

[I(rn, 𝜃j)]
(n+aj)

pjmjb
aj
j

𝜃nj Γ(aj)G
, j = 1, 2, 3, … , k.

Now we will derive the Bayes estimators of unknown quantities under various loss functions.

4.1. Squared Error Loss Function

The squared error loss function is defined as

L (𝛿, 𝜆) = (𝛿 − 𝜆)2 , 𝛿 ∈ 𝔻, 𝜆 ∈ Θ,
Pdf_Folio:5
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where𝔻 is decision space andΘ is the parameter space. Clearly, the Bayes estimator under squared error loss function is the posteriormean,
then the Bayes estimator for 𝛼 is

𝛼*
BS = ∫

∞

0
𝛼

k

∑
j=1

Pj𝜋
(
𝛼|𝜃j; r

)
d𝛼 =

k

∑
j=1

(
n + aj

)
Pj

I
(
rn, 𝜃j

) .

Similarly, the Bayes estimator for 𝜃 is given by

𝜃*BS = ∫
∞

0

k

∑
j=1

𝜃jPj𝜋
(
𝛼|𝜃j; r

)
d𝛼 =

k

∑
j=1

Pj𝜃j.

The Bayes estimator for reliability function R (t) is

R(t)*BS = ∫
∞

0

k

∑
j=1

[1 − F(t; 𝛼, 𝜃j)]Pj𝜋(𝛼|𝜃j; r)d𝛼

=
k

∑
j=1

Pj[1 − [1 −
ln [G(t/𝜃j)

(
2 − G(t/𝜃j)

)
]

I(rn, 𝜃j)
]
−(n+aj)

]. (15)

4.2. Entropy Loss Function

The entropy loss function is given by

L (𝛿, 𝜆) = (𝛿/𝜆) − ln (𝛿/𝜆) − 1, 𝛿 ∈ 𝔻, 𝜆 ∈ Θ.

The Bayes estimator under this loss function is

𝛿*BE =
(
E
(
𝛿−1))−1 .

So, Bayes estimator of 𝛼 is

𝛼*
BE =

(
E
(
𝛼−1))−1 .

E
(
1
𝛼

)
= ∫

∞

0

𝜋(𝛼|𝜃j; r)𝜋(𝜃j|r)
𝛼 d𝛼

=
k

∑
j=1

Pj ∫
∞

0

1
𝛼
[I(rn, 𝜃j)]

(n+aj)

Γ(n + aj)
𝛼(n+aj−1)e−𝛼I(rn,𝜃j)d𝛼

=
k

∑
j=1

Pj
[I(rn, 𝜃j)]

(n+aj)

Γ(n + aj)
Γ(n + aj − 1)

[I(rn, 𝜃j)]
(n+aj−1)

=
k

∑
j=1

Pj
[I(rn, 𝜃j)]

(n + aj − 1) .

Hence

𝛼*
BE =

1

∑k
j=1 Pj

[I(rn,𝜃j)](
n+aj−1

) .

Similarly, the Bayes estimator for 𝜃 is

𝜃*BE = [∫
∞

0

k

∑
j=1

Pj
1
𝜃j
𝜋
(
𝛼|𝜃j; r

)
d𝛼]

−1

= [
k

∑
j=1

Pj
𝜃j
]
−1

.

The Bayes estimator of reliability function is given by

R* (t)BE = [
k

∑
j=1

Pj ∫
∞

0
[1 − F

(
t; 𝛼, 𝜃j

)
] 𝜋

(
𝛼|𝜃j; r

)
d𝛼]

−1

.
Pdf_Folio:6
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Using the binomial expansion in the above expression, we have

R*(t)BE = [
k

∑
j=1

Pj ∫
∞

0

∞
∑
s=0

[F(t; 𝛼, 𝜃j)]
s𝜋(𝛼|𝜃j; r)d𝛼]

−1

4.3. LINEX Loss

The LINEX loss function is

L (𝛿, 𝜆) = ec(𝛿−𝜆) − c (𝛿 − 𝜆) − 1 c ≠ 0, 𝛿 ∈ 𝔻, 𝜆 ∈ Θ,

where c ≠ 0 is the parameter of loss function. The Bayes estimator under this loss function is

𝛿*BE = −1
c ln

(
E
(
e−c𝛿)) , c ≠ 0.

The Bayes estimator for 𝛼 is

�̂�BL = −1
c ln [

k

∑
j=1

Pj ∫
∞

0
e−c𝛼 [I(rn, 𝜃j)]

(n+aj)

Γ(n + aj)
𝛼n+aj−1e−𝛼I(rn,𝜃j)d𝛼]

= −1
c ln [

k

∑
j=1

Pj
(
1 + c

I(rn, 𝜃j)

)−(n+aj)

].

The Bayes estimator for 𝜃 is

= −1
c ln [

k

∑
j=1

Pje−c𝜃j] .

The Bayes estimator of reliability function is given by

R (t)*BL = −1
c ln

(
E
(
e−cR(t))) .

To solve this, we will use exponential series expansion

e−cR(t) = e−c
(
1−F(t;𝛼,𝜃j)

)
= e−cecF(t;𝛼,𝜃j)

= e−c
∞
∑
s=0

cs[F(t; 𝛼, 𝜃j)]
s

s! .

Hence

R (t)*BL = −1
c ln [e

−c
k

∑
j=1

∞
∑
s=0

csPj
s!

(
1− s ln[G(t/𝜃j)(2−G(t/𝜃j))]

I(rn,𝜃j)

)−
(
n+aj

)
] .

5. PREDICTION INTERVAL

In this section, we will predict the future lower record Rs while already having R1,R2, … ,Rn for n < s. For this problem, we will use Bayesian
procedure andMarkovian property of record statistics. The conditional distribution of Rs given Rn is obtained by usingMarkovian property
(see Arnold et al. [13]).

fRs/Rn
(rs/rn; 𝛼, 𝜃) =

[H (rs) −H (rn)]s−n−1

Γ (s − n)
f (rs; 𝛼, 𝜃)
F (rn; 𝛼, 𝜃)

, −∞ < rs < rn < ∞,
Pdf_Folio:7

= [
k

∑
j=1

∞
∑
s=0

Pj 1 −
s ln [G(t/𝜃j)

(
2 − G(t/𝜃j)

)
]

I(rn, 𝜃j)

−(n+aj)

]

−1

.

( )

𝜃*BL = −1
c ln

(
E
(
e−c𝜃))
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where H (⋅) = − ln F (⋅). For TLG family of distribution, with pdf given by Eq. (1), the function fRs/Rn
(rs/rn; 𝛼, 𝜃) is given by

fRs/Rn
(rs/rn; 𝛼, 𝜃) =

2
𝜃

𝛼s−n

Γ (s − n) [ln
(
G (rn/𝜃) (2 − G (rn/𝜃))
G (rs/𝜃) (2 − G (rs/𝜃))

)
]
s−n−1

× g (rs/𝜃) (1 − G (rs/𝜃))
G (rs/0a) (2 − G (rs/𝜃))

[ G (rs/𝜃) (2 − G (rs/𝜃))
G (rn/𝜃) (2 − G (rn/𝜃))

]
𝛼
, −∞ < rs < rn < ∞.

The Bayes predictive density function of Rs given Rn = rn is given by

f (rs/rn) = ∫𝛼 fRs/Rn
(rs/rn; 𝛼, 𝜃)

k

∑
j=1

Pj𝜋
(
𝛼|𝜃j; r

)
d𝛼. (16)

Using Eq. (12) in Eq. (16), we get

where B (a, b) is the complete beta function. Now we will find the lower and upper 100(1−𝛼)% prediction bounds for Rs. First, we will find
the predictive survival function P

(
Rs ≥ d|rn

)
for some positive constant d

P(Rs ≥ d|rn) = ∫
rn

d
f(rs/rn)drs

=
k

∑
j=1

Pj
(
1 −

IB(n + aj, s − n, 𝜒)
B(n + aj, s − n)

)
,

where 𝜒 =
d

, and IB
(
n + aj, s − n, 𝜒

)
is the incomplete beta function defined by

IB (a, b, 𝜒) = ∫
𝜒

0
ua−1 (1 − u)b−1 du.

Let L (rn) and U (rn) be two constants such that

P [Rs > L (rn) |rn] = 1 − 𝛼
2 and P [Rs > U (rn) |rn] =

𝛼
2 . (17)

Using Eq. (17), we obtain two-sided 100 (1 − 𝛼)% predictive bounds for Rs as (L (rn) ,U (rn)), that is,

P [L (rn) < Rs < U (rn)] = 1 − 𝛼.

We are considering here a special case when s = n + 1, which is of our interest practically because after getting n records we want the next
record n + 1. The predictive survival function of Rn+1 is given as

P
(
Rn+1 ≥ d|rn

)
=

k

∑
j=1

Pj [1 −
(
I
(
rn, 𝜃j

)
I
(
d, 𝜃j

) )n+aj

] .
Pdf_Folio:8

f (rs/rn) =
k

∑
j=1

Pj ∫
∞

0

2
𝜃j

𝛼s−n

Γ(s − n) [ ln
(G(rn/𝜃j)

(
2 − G(rn/𝜃j)

)
G(rs/𝜃j)

(
2 − G(rs/𝜃j)

) )]s−n−1

×
g
(
rs/𝜃j

) (
1 − G

(
rs/𝜃j

))
G
(
rs/𝜃j

) (
2 − G

(
rs/𝜃j

)) [ G (
rs/𝜃j

) (
2 − G

(
rs/𝜃j

))
G
(
rn/𝜃j

) (
2 − G

(
rn/𝜃j

))]𝛼

×
[I
(
rn, 𝜃j

)
]
(
n+aj

)
Γ
(
n + aj

) 𝛼
(
n+aj−1

)
e−𝛼I(rn,𝜃j)drs

=
k

∑
j=1

2Pj
𝜃jB(n + aj, s − n)

[ ln
(G(rn/𝜃j)

(
2 − G(rn/𝜃j)

)
G(rs/𝜃j)

(
2 − G(rs/𝜃j)

) )]s−n−1

×
g
(
rs/𝜃j

) (
1 − G

(
rs/𝜃j

))
G
(
rs/𝜃j

) (
2 − G

(
rs/𝜃j

)) [I (rn, 𝜃j)]n+aj

[I
(
rs, 𝜃j

)
]s+aj

, −∞ < rs < rn < ∞,

I
(
rn, 𝜃j

)
I
(
, 𝜃j

)
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Here we are assuming the case when the scale parameter is known (WLOG, 𝜃 = 1). For this case, predictive survival function can be
written as

P
(
Rn+1 ≥ d|rn

)
= 1 −

(
b − ln (G (rn)) (2 − G (rn))
b − ln (G (d)) (2 − G (d))

)n+a

. (18)

From Eqs. (17) and (18) we have lower and upper limits as

L(rn) = G−1{1 ±
√√
√

1 − exp [b −
(
b − ln [G(rn)

(
2 − G(rn)

)
]
(
𝛼
2

)−1/(n+a))
]}

U(rn) = G−1{1 ±
√√
√

1 − exp [b −
(
b − ln [G(rn)

(
2 − G(rn)

)
]
(
1 − 𝛼

2

)−1/(n+a))
]}

6. NUMERICAL COMPUTATIONS

In this section, a simulation study is conducted to illustrate all the estimation and prediction methods described in the preceding sections.
We consider exponential distribution with df

G (x; 𝜃) = 1 − e−x/𝜃, x > 0, 𝜃 > 0,

as a special case for the baseline df in the model (1), named TL-Exp distribution.

Example 6.1.

We generate lower records of size n = 9 from TL-Exp distribution for 𝛼 = 5 and 𝜃 = 3. The lower record values are

7.0752, 4.6823, 4.0686, .9577, 3.3374, 1.6600, 1.5436, 1.1236, 0.6410.

The MLE for 𝛼 and 𝜃 are 4.014078 and 2.885522, respectively, obtained by solving nonlinear Eqs. (6) and (7), in R software by Newton–
Raphson method. Using these estimates we get the MLE of reliability function at t = 0.5 as R̂ (0.5) = 0.9928 and t = 1 as R̂ (1) = 0.9381.
Here we assume that scale parameter 𝜃, takes finite values as 2.0 (0.1) 2.9, with equal probability 0.1 for each 𝜃j, j = 1, 2, … , 10.

For obtaining the Bayes estimators for different parameters, first it is necessary to obtain the hyper-parameters
(
aj, bj

)
for each 𝜃j, j =

1, 2, … , 10. The hyper parameters
(
aj, bj

)
can be obtained based on the expected value of the reliability function R (t) conditional on 𝜃 = 𝜃j,

using

E𝛼|𝜃j [R(t)|𝜃 = 𝜃j] = ∫
∞

0

(
1 − (1 − e−2t/𝜃j )𝛼

)bajj 𝛼aj−1e−𝛼bj

Γ(aj)
d𝛼

= 1 −
(
1 − ln (1 − e−2t/𝜃j )

bj

)−aj
. (19)

For the two values of (R (t1) , t1) and (R (t2) , t2), the values of aj and bj for each value of 𝜃 can be obtained numerically from Eq. (19). A
nonparametric approach R̃ (ti = Ri) = (n − i + 0.625) / (n + 0.25) , i = 1, 2, 3… , n can be used to estimate any two different values of the
reliability function R (t1) and R (t2) (see Martz and Waller [29]). In this case, we use R̃ (5.9577) = 0.6081081 and R̃ (1.1236) = 0.1756757.
These two values are substituted into Eq. (19), where aj and bj are solved numerically for each 𝜃j, j = 1, 2, … , 10, using the Newton–Raphson
method. After that, posterior probabilities are calculated for each 𝜃j, and presented in Table 1. The MLEs, Bayes estimators, and reliability
function (for different t = 0.5, 1, 1.5) are also calculated and presented in Tables 2 and 3.

Pdf_Folio:9
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Table 1 Prior information and posterior probabilities.

 j   1 2 3 4 5

𝜃 2 2.1 2.2 2.3 2.4
p 0.1 0.1 0.1 0.1 0.1
a 5.273678 5.069663 4.893300 4.739474 4.604236
b 1.0022315 0.9941453 0.9855453 0.9765224 0.9671572
u 1.347749e−14 3.602815e−14 8.744126e−14 1.952425e−13 4.054791e−13
P 0.07127739 0.08399823 0.09474197 0.10297468 0.10845833

 j  6 7 8 9 10

𝜃 2.5 2.6 2.7 2.8 2.9
p 0.1 0.1 0.1 0.1 0.1
a 4.484489 4.377778 4.282129 4.195944 4.117911
b 0.9575209 0.9476757 0.9376761 0.9275691 0.9173958
u 7.904341e−13 1.457474e−12 2.558572e−12 4.299937e−12 6.951137e−12
P 0.11121071 0.11144265 0.10949040 0.10575451 0.10065113

Table 2 Estimates of 𝛼 and 𝜃. 

(*)ML (*)BS (*)BE (*)BL

c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

𝛼 4.014078 5.307494 4.900998 5.937348 4.831392 4.454377 4.145928 3.887385
𝜃 2.885522 2.475928 2.444745 2.494692 2.456996 2.438097 2.419431 2.401179

Table 3 Estimates of reliability for different t.

t (*)UMVUE (*)ML (*)BS (*)BE (*)BL
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

0.5 0.9902 0.9928 0.9836 0.9830 0.9838 0.9835 0.9834 0.9832 0.9831
1 0.6737 0.9381 0.9064 0.9007 0.9075 0.9052 0.9041 0.9028 0.9016
1.5 0.3092 0.8265 0.7699 0.7543 0.7725 0.7672 0.7645 0.7617 0.7589

Using the prediction procedure described in Section 5, the 95% prediction interval for the next lower record R8 is (0.10889, 0.2756101) .

1. Samples of lower records with different size of n ∈ {6, 7, 8} are generated from the TL-Exp distribution for 𝜃 = 3 and different
𝛼 ∈ {1.5, 1.8, 2}.

2. The values of aj and bj for a given value of 𝜃j, j = 1, 2, 3, … , 10 are obtained using the procedure discussed.

3. Estimates of 𝛼, 𝜃 and R (t) are obtained.

4. Above steps are repeated 10,000 times to evaluate the MSEs of these estimates and also estimated risks are compared under different
loss functions using

ER (𝛿) = 1
m

m

∑
i=1

L (𝛿i, 𝜆) .

All these the result are presented in Tables 4 to 8.

From Tables 4 through 6, we observe that Bayes estimates for asymmetric loss functions are performing better than Bayes estimates for
symmetric loss function and MLEs. UMVUE of reliability function is better than Bayes estimates of reliability and MLE. From Tables 7
and 8, comparison of risk for Bayes estimates of 𝛼, 𝜃 and reliability function can be seen, and it is clear that, estimators for asymmetric loss
function are again performing better than estimators for symmetric loss function.

Pdf_Folio:10

ML, maximum likelihood estimator; BS, Bayes estimator under squared error loss; BE, Bayes estimator under entropy loss; BL, Bayes estimator under
LINEX loss.

UMVUE, uniformly minimum-variance unbiased estimator; ML, maximum likelihood estimator; BS, Bayes estimator under squared error loss; BE, Bayes
estimator under entropy loss; BL, Bayes estimator under LINEX loss.

The mean squared error (MSEs) and risks of estimators and reliability function are compared according to following steps:
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Table 4 MSE of the MLEs and UMVUE for (𝜃, t) = (3, 0.5).

n 𝛼 MSE (�̂�) MSE
(

̂𝜃
)

MSE
(

̂R (t)
)

 MSE (ℜ (t))

1.5 0.6073 7.4651 0.6497 0.0199
6 1.8 0.5958 7.4469 0.6484 0.0199

2 2.1409 7.7985 0.7996 0.005

1.5 0.4598 7.3734 0.637 0.0199
7 1.8 1.1648 7.5737 0.7389 0.0088

2 1.8346 7.6939 0.7917 0.005

1.5 0.3375 7.2909 0.6245 0.0199
8 1.8 1.0045 7.5234 0.7311 0.0088

2 1.6336 7.6652 0.7856 0.005

Table 5 MSEs of the Bayes estimates of 𝛼 and 𝜃. 

(𝛼, 𝜃) = (1.5, 3)
n MSE(𝛼)BS MSE(𝛼)BE MSE(𝛼)BL

c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.1873 0.1981 0.1845 0.1901 0.193 0.1958 0.1986
7 0.1872 0.198 0.1844 0.1901 0.1929 0.1957 0.1985
8 0.1872 0.1979 0.1843 0.19 0.1928 0.1956 0.1985

n MSE(𝜃)BS MSE(𝜃)BE MSE(𝜃)BL
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.5442 0.5825 0.5205 0.5666 0.5878 0.6077 0.6263
7 0.5733 0.6098 0.5507 0.5947 0.6147 0.6334 0.6508
8 0.6007 0.6354 0.5791 0.6209 0.6398 0.6573 0.6736(

𝛼, 𝜃
)
= (1.8, 3)

n MSE(𝛼)BS MSE(𝛼)BE MSE(𝛼)BL
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.537 0.5551 0.5322 0.5417 0.5465 0.5513 0.556
7 0.5368 0.5549 0.532 0.5416 0.5464 0.5511 0.5559
8 0.5371 0.5547 0.5323 0.5413 0.5462 0.5509 0.5557

n MSE(𝜃)BS MSE(𝜃)BE MSE(𝜃)BL
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.5516 0.5897 0.5281 0.5739 0.595 0.6146 0.633
7 0.5811 0.6173 0.5586 0.6023 0.6221 0.6405 0.6577
8 0.6098 0.6434 0.5886 0.6293 0.6479 0.6652 0.6811(

𝛼, 𝜃
)
= (2, 3)

n MSE(𝛼)BS MSE(𝛼)BE MSE(𝛼)BL
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.8701 0.8931 0.8639 0.8761 0.8822 0.8882 0.8943
7 0.8709 0.8928 0.864 0.8758 0.8819 0.888 0.894
8 0.8726 0.8918 0.8675 0.8746 0.8809 0.8872 0.8933

n MSE(𝜃)BS MSE(𝜃)BE MSE(𝜃)BL
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.554 0.5919 0.5305 0.5762 0.5972 0.6168 0.635
7 0.5877 0.6209 0.5629 0.606 0.6257 0.644 0.661
8 0.6218 0.6482 0.5975 0.6332 0.6518 0.669 0.6849

Pdf_Folio:11

MLE, maximum likelihood estimation; UMVUE, uniformly minimum-variance unbiased estimator; MSE, mean
squared error.

MSE, mean squared error.
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Table 6 MSEs of the estimates of R (t).

= (1.5, 3, 0.5)
n MSE(R (t))BS MSE(R (t))BE MSE(R (t))BL

c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.0352 1.1539 0.035 0.0354 0.0357 0.0359 0.0361
7 0.036 1.1162 0.0358 0.0363 0.0365 0.0367 0.0369
8 0.0367 1.0875 0.0365 0.0369 0.0371 0.0374 0.0376

(𝛼, 𝜃, t) = (1.8, 3, 0.5)

6 0.0554 1.0537 0.0551 0.0556 0.0559 0.0562 0.0565
7 0.0566 1.0107 0.0563 0.0568 0.0571 0.0574 0.0577
8 0.0576 0.9769 0.0573 0.0578 0.0581 0.0584 0.0586

(𝛼, 𝜃, t) = (2, 3, 0.5)

6 0.0669 1.0006 0.0666 0.0672 0.0675 0.0678 0.0681
7 0.0682 0.9591 0.0679 0.0685 0.0688 0.0691 0.0694
8 0.07 0.9341 0.0723 0.0709 0.07 0.0701 0.0704

(𝛼, 𝜃, t) = (1.5, 3, 1)

6 0.0532 0.0059 0.0529 0.0535 0.0538 0.0541 0.0544
7 0.0545 0.0048 0.0542 0.0548 0.0551 0.0554 0.0557
8 0.0559 0.0038 0.0556 0.0562 0.0565 0.0567 0.057

(𝛼, 𝜃, t) = (1.8, 3, 1)

6 0.0883 0.0003 0.0879 0.0887 0.0891 0.0895 0.0898
7 0.0902 0.0002 0.0898 0.0906 0.0909 0.0913 0.0917
8 0.0919 0.0003 0.0918 0.0923 0.0926 0.093 0.0933

(𝛼, 𝜃, t) = (2, 3, 1)

6 0.1116 0.0011 0.1112 0.1121 0.1125 0.113 0.1134
7 0.1139 0.0019 0.1141 0.1146 0.1147 0.1151 0.1155
8 0.1161 0.0025 0.1168 0.1163 0.1165 0.1169 0.1173

Table 7 Estimated risks for Bayes estimates of  𝛼  and  𝜃. 

= (1.5, 3)

n ER (𝛼BS) ER (𝛼BE) ER (𝛼BL)

c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.1873 0.0553 0.0248 0.0221 0.0838 0.1787 0.3015
7 0.1872 0.0552 0.0248 0.0221 0.0838 0.1786 0.3013
8 0.1872 0.0552 0.0248 0.0221 0.0837 0.1785 0.3012

n ER
(
𝜃BS

)
ER

(
𝜃BE

)
ER

(
𝜃BL

)
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.5438 0.8625 0.0737 0.0627 0.2313 0.4799 0.7881
7 0.5738 0.8625 0.0783 0.0657 0.2406 0.4969 0.8126
8 0.6006 0.8625 0.0825 0.0683 0.2491 0.5121 0.8345(

𝛼, 𝜃
)
= (1.8, 3)

n ER (𝛼BS) ER (𝛼BE) ER (𝛼BL)

c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.537 0.1204 0.0754 0.0601 0.2167 0.4421 0.7164
7 0.5368 0.1203 0.0754 0.0601 0.2167 0.442 0.7162
8 0.537 0.1203 0.0754 0.0601 0.2166 0.4418 0.7161

(continued)

Pdf_Folio:12

(𝛼, 𝜃)

(𝛼, 𝜃)

MSE, mean squared error.
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Table 7 Estimated risks for Bayes estimates of  𝛼  and  𝜃.  (Continued)

= (1.5, 3)

n ER
(
𝜃BS

)
ER

(
𝜃BE

)
ER

(
𝜃BL

)
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.5508 0.8625 0.0747 0.0634 0.2334 0.4837 0.7937
7 0.5812 0.8625 0.0795 0.0664 0.2431 0.5014 0.8191
8 0.6113 0.8625 0.0841 0.0693 0.2522 0.5177 0.8427(

𝛼, 𝜃
)
= (2, 3)

n ER (𝛼BS) ER (𝛼BE) ER (𝛼BL)

c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.8701 0.1671 0.1269 0.0943 0.3302 0.6569 1.0422
7 0.87 0.167 0.1269 0.0942 0.3301 0.6568 1.0419
8 0.873 0.1669 0.1286 0.0942 0.3296 0.656 1.041

n ER
(
𝜃BS

)
ER

(
𝜃BE

)
ER

(
𝜃BL

)
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.554 0.8625 0.0752 0.0637 0.2344 0.4857 0.7966
7 0.5854 0.8625 0.0801 0.0668 0.2443 0.5035 0.8223
8 0.6224 0.8625 0.0866 0.0697 0.253 0.5194 0.8451
ER, estimated risk.

Table 8 Estimated risk for Bayes estimates of R(t).

(𝛼, 𝜃, t) = (1.5, 3, 0.5)

n ER(R
(
t)BS

)
ER(R

(
t)BE

)
ER(R

(
t)BL

)
c = −0.5 c = 0.5 c = 1 c = 1.5 c = 2

6 0.0351 0.4487 0.0045 0.0043 0.0172 0.0381 0.0662
7 0.036 0.4364 0.0046 0.0044 0.0176 0.0389 0.0675
8 0.0367 0.4263 0.0047 0.0045 0.0179 0.0395 0.0687

(𝛼, 𝜃, t) = (1.8, 3, 0.5)

6 0.0554 0.3808 0.0072 0.0067 0.0264 0.0576 0.0993
7 0.0565 0.3692 0.0073 0.0068 0.0269 0.0587 0.101
8 0.0576 0.3592 0.0076 0.007 0.0279 0.0614 0.1074

(𝛼, 𝜃, t) = (2, 3, 0.5)

6 0.0554 0.3808 0.0072 0.0067 0.0264 0.0576 0.0993
7 0.0565 0.3692 0.0073 0.0068 0.0269 0.0587 0.101
8 0.0576 0.3592 0.0076 0.007 0.0279 0.0614 0.1074

(𝛼, 𝜃, t) = (1.5, 3, 1)

6 0.0531 0.0063 0.0069 0.0064 0.0254 0.0557 0.0961
7 0.0545 0.0051 0.007 0.0066 0.026 0.057 0.0982
8 0.0558 0.0041 0.0072 0.0067 0.0266 0.0581 0.1001

(𝛼, 𝜃, t) = (1.8, 3, 1)

6 0.0883 3e-04 0.0115 0.0106 0.0409 0.0884 0.1508
7 0.0902 2e-04 0.0118 0.0108 0.0417 0.0901 0.1535
8 0.092 3e-04 0.012 0.011 0.0424 0.0915 0.1559

(𝛼, 𝜃, t) = (2, 3, 1)

6 0.1117 0.001 0.0147 0.0133 0.051 0.1094 0.1855
7 0.1138 0.0015 0.015 0.0135 0.0518 0.1112 0.1884
8 0.1165 0.0023 0.0158 0.0138 0.0541 0.1164 0.1985
ER, estimated risk.

Pdf_Folio:13

(𝛼, 𝜃)
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