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ABSTRACT
We consider a sequence of independent random variables X1,X2, … ,Xm, … ,Xn (n ≥ 3) exhibiting a change in the probability
distribution of the data generating mechanism. We suppose that the distribution changes at some point, called a change point,
to a second distribution for the remaining observations. We propose Bayes estimators of change point under symmetric loss
functions and asymmetric loss functions. The sensitivity analysis of Bayes estimators are carried out by simulation and numerical
comparisons with R-programming.
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1. INTRODUCTION

It is generally recognized that a physical entity experiences a structural change as it evolves over time. Such structural change problem
are often used to describe abrupt changes in the mechanism underlying a sequence of random measurements. Further, in many real-life
problems theoretical or empirical deliberations suggestmodels with occasionally changing one ormore of its parameters. There is enormous
frequentist and Bayesian literature on problems of detecting the change, inference concerning the change point, and related problems for
various statistical models.

Control charts are one of the most important tools in statistical process control to monitor manufacturing processes and services. When a
control chart shows an out-of-control condition, a search begins to identify and eliminate the root cause(s) of the process disturbance. The
time when the disturbance has manifested itself to the process is referred to as change point. Identification of the change point is considered
as an essential step in analyzing and eliminating the disturbance source(s) effectively.

Nonstandard mixture inverse Weibull (IW) distribution happens in many applied situations, for instance; life of a unit may have a IW
distribution but some of the units fail instantaneously. In the study of tooth decay, the number of surfaces in a mouth which are filled,
missing, or decayed are scored to produce a decay index. Healthy teeth are scored (0) for no evidence of decay. The distribution is a mixture
of a mass point at (0) and a nontrivial continuous distribution of decay score. In the study of tumor characteristics, two variates can be
recorded. A discrete variable to indicate the absence (0) or presence (1) of a tumor and a continuous variable measuring the tumor size.

A sequence of random variables X1,X2, … ,Xm, … ,Xn has a change point atm (1 ≤ m ≤ n − 1) , if Xi (i = 1, … ,m) has a probability distri-
bution F1

(
xi|𝜃1

)
andXi (i = m + 1, … , n) has a probability distribution F2

(
xi|𝜃2

)
,where F1

(
xi|𝜃1

)
≠ F2

(
xi|𝜃2

)
and 𝜃1 ≠ 𝜃2.Change point

inference has a long history. Many of statisticians like Ganji [1], Chernoff and Zacks [2], Kander and Zacks [3], Smith [4], Jani and Pandya
[5], Pandya and Jani [6], Pandya and Jadav [7], and Ebrahimi and Ghosh [8] studied the change point models in Bayesian framework. The
monograph of Broemeling and Tsurumi [9] is also useful reference.

2. CHANGE POINT MODEL

Let the sequence of observations X1,X2, … ,Xm come from mixture of IW and degenerate distribution. The probability density function of
the sequences is as follows

f
(
xi; 𝛼1, 𝛽, p1

)
=
(
1 − p1

)
I{xi=0} (xi) +

(
p1𝛽𝛼−𝛽1 x−𝛽−1

i e(−𝛼1xi)
−𝛽)

I{xi>0} (xi) ;

  𝛼1 > 0, 𝛽 > 0, 0 < P1 < 1, i = 1, 2, … ,m,
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and later (n −m) observations Xm+1, … ,Xn come from mixture of IW and degenerate distribution. The probability density function of the
sequences is as follows:

f
(
xi; 𝛼2, 𝛽, p2

)
=
(
1 − p2

)
I{xi=0} (xi) +

(
p2𝛽𝛼−𝛽2 x−𝛽−1

i e(−𝛼2xi)
−𝛽)

I{xi>0} (xi) ;

  𝛼2 > 0, 𝛽 > 0, 0 < P2 < 1, i = m + 1,m + 2, … , n.

 
3. BAYES ESTIMATORS OF PARAMETERS

The likelihood function of the given sample information is

L
(
𝛼1, 𝛼2, 𝛽, p1, p2,m|x

)
=

(
1 − p1

)Nm pAm
1

(
1 − p2

)N−Nm pBm
2 𝛽n−N𝛼−𝛽Am

1

×𝛼−𝛽Bm
2 u−𝛽−1

Am
e−𝛼

−𝛽
1 vAmu−𝛽−1

Bm
e−𝛼

−𝛽
2 vBm ,

where

uAm
=

Am

∏
i=1

yi; uBm
=

Bm

∏
j=1

zj; vAm
=

Am

∑
i=1

y−𝛽i ; vBm
=

Bm

∑
j=1

z−𝛽j ;

Let N be a number of observations equal to zero, Nm be a number of observations equal to zero before change point m, Am be a number of
the nonzero observations before change pointm, Bm be a number of the nonzero observations after change pointm. Denote by y1, y2, … , yAm
the nonzero observations before the change point m, and denote by z1, z2 … , zBm

the nonzero observations after the change point m.

For Bayesian estimation, we need to specify a prior distribution for the parameters. As in Broemeling and Tsurumi [9], suppose that the
marginal prior distribution for m is discrete uniform over the set {1, 2, … , n − 1}.
As in Calabria and Pulcini [10] and Erto and Guida [11], we assume that some prior information on the mechanism of failures in terms
of reliability level at a prefixed time value are available. In addition, we assume that these prior technical information are given in terms of
mean values 𝜇1 and 𝜇2. Following Pandya and Jadav [12] let a log inverse exponential density be represent this prior knowledge on R1t and
R1t at a common prefixed time t with respective means 𝜇1 and 𝜇2,

g (R1t) =

(
Ln

(
1

1−R1t

))a1−1

Г (a1)
, 0 ≤ R1t ≤ 1, a1 > 0

g (R2t) =

(
Ln

(
1

1−R2t

))a2−1

Г (a2)
, 0 ≤ R2t ≤ 1, a2 > 0.

If the prior information is given in terms of the prior means 𝜇1 and 𝜇2 then the parameters ai, i = 1, 2 can be obtained as ai =
Ln

(
1

1−𝜇i

)
Ln(2)

,
 i = 1, 2.

Making change of variables Rit = 1 − e(−𝛼it)−𝛽 , densities on Rit can be converted into conditional prior densities on 𝛼1 and 𝛼2 as

gi
(
𝛼i|𝛽

)
=

t−𝛽ai𝛽𝛼−𝛽ai−1
i exp [(−𝛼it)−𝛽]

Γ (ai)
, ai > 0,

Suppose the marginal prior distributions of p1 and p2 are Beta priors with respective means 𝜇3, 𝜇4 and common standard deviation σ1,

g
(
p1
)
=

pa3−1
1

(
1 − p1

)b3−1

B (a3, b3)
; a3, b3 > 0; 0 ≤ p1 ≤ 1,

g
(
p2
)
=

pa4−1
2

(
1 − p2

)b4−1

B (a4, b4)
; a4, b4 > 0; 0 ≤ p2 ≤ 1,

Mean and standard deviation of p1 and p2 are

𝜇i =
ai

ai + bi
; 𝜎1 =

aibi
(ai + bi)

2 (ai + bi + 1)
; i = 3, 4,
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then,

ai =
(1 − 𝜇i)𝜇2

i − 𝜇i𝜎1
𝜎1

; bi =
(1 − 𝜇i) ai

𝜇i
; i = 3, 4. (1)

For 𝛽, consider the uniform density on [𝛽1, 𝛽2], that is,

g (𝛽) = 1
𝛽2 − 𝛽1

, 𝛽1 ≤ 𝛽 ≤ 𝛽2.

Then, the joint prior distribution of 𝛼1, 𝛼2, 𝛽, p1, p2, and m is given by

g
(
𝛼1, a2, 𝛽,m, p1, p2

)
= kt−𝛽(a1,a2)β2𝛼−𝛽a1−1

1 exp [− (t𝛼1)−𝛽]

× 𝛼−𝛽a2−1
2 exp [− (t𝛼2)−𝛽]

× 𝛼−𝛽a2−1
2 exp [− (t𝛼2)−𝛽]

× pa3−1
1

(
1 − p1

)b3−1 pa4−1
2

(
1 − p2

)b4−1 ,

where

k = 1
Γ (a1)Γ (a2) (𝛽2 − 𝛽1) (n − 1)B (a3, b3)B (a4, b4)

. (2)

Also, the joint posterior distribution of 𝛼1, 𝛼2, 𝛽, p1, p2, and m is given by

g
(
𝛼1, 𝛼2, 𝛽,m, p1, p2|x

)
= kt−𝛽(a1+a2)pAm+a3−1

1
(
1 − p1

)Nm+b3−1

×
(
1 − p2

)N−Nm+b4−1 pBm+a4−1
2 𝛽n−N+2

×𝛼−𝛽(Am+a1)−1
1 𝛼−𝛽(Bm+a2)−1

2 u−𝛽−1
Am

× e−𝛼
−𝛽
1

(
vAm+t−𝛽

)
u−𝛽−1
Bm

e−𝛼
−𝛽
2

(
vBm+t−𝛽

)
[h(x)]−1 ,

where

h (x) = k
n−1

∑
m=1

I1 (m) ,

and I1 (m) = ∫
𝛽2

𝛽1

u−𝛽−1
Am

u−𝛽−1
Bm

𝛽n−N
(
vAm

+ t−𝛽
)−(Am+a1) (

vBm
+ t−𝛽

)−(Bm+a2)

×B (Am + a3,Nm + b3)Γ (Am + a1)B (Bm + a4,N − Nm + b4)Γ (Bm + a2) d𝛽.

So, the marginal posterior distribution of p1, p2 and m is given by

g
(
m|x

)
= I1 (m)

n−1

∑
m=1

I1 (m)

, (3)

g
(
p1|x

)
= k

n−1

∑
m=1

pAm+a3−1
1

(
1 − p1

)Nm+b3−1 k2 (m) J (m) [h (x)]−1 , (4)

g
(
p2|x

)
= k

n−1

∑
m=1

(
1 − p2

)N−Nm+b4−1 pBm+a4−1
2 k3 (m) J (m) [h (x)]−1 , (5)
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where 

k2 (m) = Γ (Am + a1)Γ (Bm + a2)B (Bm + a4,N − Nm + b4) , (6)

  k3 (m) = Γ (Am + a1)Γ (Bm + a2)B (Am + a3,Nm + b3) , (7)

 and

J (m) = ∫
𝛽2

𝛽l

u−𝛽−1
Am

u−𝛽−1
Bm

𝛽n−N
(
vAm

+ t−𝛽
)−(Am+a1) (

vBm
+ t−𝛽

)−(Bm+a2)
d𝛽. (8)

3.1. Point Estimation under Symmetric Loss Functions

In Bayesian framework a loss function is used to minimize the expected loss an estimator generates. The Bayes estimator of a generic
parameter (or function thereof) 𝜃 based on symmetric loss function (SEL) function

L1 (𝜃, d) ∝ (𝜃 − d)2 , 𝜃, d𝜖ℜ,

is the posterior mean, where d is the decision rule to estimate 𝜃. For estimation of change point m, which has a nonnegative integer value,
the loss function L1 (m, 𝜈) is defined only for integer value m and 𝜈. Hence, Bayes estimator of change point under SEL function,m∗, is the
posterior mean. The posterior mean is

Posteriormean =

n−1

∑
m=1

m.I1 (m)

n−1

∑
m=1

I1 (m)

(9)

The Bayes estimators of p1 and p2 under SEL function are as follows:

p∗1 = k
n−1

∑
m=1

B (Am + a3 + 1,Nm + b3) k2 (m) J (m) [h (x)]−1 , (10)

and

p∗2 = k
n−1

∑
m=1

B (Bm + a4 + 1,N − Nm + b4) k3 (m) J (m) [h (x)]−1 . (11)

Other Bayes estimators of change point under loss functions,

L2 (m, d) = |m − d|,

and

L3 (m, d) = {0, if |m − d| < 𝜀, 𝜀 > 0,
1, otherwise

are the posterior median and the posterior mode, respectively.

3.2. Point Estimation under Asymmetric Loss Functions

In this section, we obtain Bayes estimator of change point under Linex loss function. The Linex loss function, proposed by Varian [13] and
discussed its behavior by Zellner [14], is defined as

L4 (𝜃, d) ∝ exp [q1 (d − 𝜃)] − q1 (d − 𝜃) − 1, q1 > 0, 𝜃, d𝜖ℜ,
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where d is the decision role to estimate parameter 𝜃. It was found to be appropriate in the situation where over estimation is considered
more heavily penalized than underestimation and vice versa. The Bayes estimate of change point, m, under Linex loss function ism∗

L as

m∗
L = −

(
1
q1

)
Ln [

n−1

∑
m=1

(e−q1mI1 (m))
/

n−1

∑
m=1

I1 (m)] . (12)

Calabria and Pulcini [13] introduced the following asymmetric loss function

L5 (𝜃, d) = [
(
d
𝜃

)q2
] − q2 [Ln

(
d
𝜃

)
] − 1.

This loss function is known as general entropy loss function (GEL). The Bayes estimate of change point, m, under GEL ism∗
E

m∗
E = [

n−1

∑
m=1

I1 (m)
/

n−1

∑
m=1

(m−q2 I1 (m))]

1
q2
. (13)

Also, the Bayes estimates of p1 and p2 are given by

p∗1E = [k
n−1

∑
m=1

B
(
Am + a3 − q2,Nm + b3

)
k2 (m) J (m) [h (x)]−1]

−
1
q2
, (14)

 
p∗2E = [k

n−1

∑
m=1

B
(
Bm + a4 − q2,N − Nm + b4

)
k3 (m) J (m) [h (x)]−1]

−
1
q2
. (15)

4. MAXIMUM LIKELIHOOD ESTIMATORS

In this section,we obtain themaximum likelihood estimate of change point.We suppose𝛽,𝛼1, and𝛼2 are known. Logarithmof the likelihood
function is

Ln
(
L
(
𝛼1, 𝛼2, 𝛽, p1, p2,m|x

))
= NmLn

(
1 − p1

)
+ AmLn

(
p1
)
+ (N − Nm) Ln

(
1 − p2

)
+BmLn

(
p2
)
+ (n − N ) Ln𝛽 − 𝛽AmLn (𝛼1)

−𝛽BmLn (𝛼2) + (−𝛽 − 1) Ln
(
uAm

)
− 𝛼−𝛽1 vAm

+ (−𝛽 − 1) Ln
(
uBm

)
− 𝛼−𝛽2 vBm

.

Then, the maximum likelihood estimates of p1 and p2 are given by

p̂1 =
Am

Nm + Am
, p̂2 =

Bm
N − Nm + Bm

. (16)

So, the maximum likelihood estimate of change point is the value of m which maximize the likelihood function

L
(
𝛼1, 𝛼2, 𝛽, p̂1, p̂2,m|x

)
=

(
1 − p̂1

)Nm p̂Am
1

(
1 − p̂2

)N−Nm p̂Bm
2 𝛽n−N𝛼−𝛽Am

1

×𝛼−𝛽Bm
2 u−𝛽−1

Am
e−𝛼

−𝛽
1 vAmu−𝛽−1

Bm
e−𝛼

−𝛽
2 vBm . (17)

5. NUMERICAL STUDY, SENSITIVITY ANALYSIS OF BAYES ESTIMATES

The data given in Table 1 is a random sample of size n = 20 which is generated by using R-programming from the introduced change point
model. We considered m = 10, its mean that, the change point in sequence is occurred after 10th observation. The first 10 observations from
mixture of IW and degenerate distribution with 𝛽 = 1, 𝛼1 = 0.06, p1 = 0.8, R1t = 0.96 at t = 5 and next 10 observations from mixture
of IW and degenerate distribution with 𝛽 = 1, 𝛼2 = 9.5, p2 = 0.6, R2t = 0.02 at t = 5. The posterior median and the posterior mode of
change point, m, under informative prior are also calculated. The results are shown in Table 2. We calculated Bayes estimators proportions
p1 and p2 under squared error loss function and GEL by making programs in R-Programming which is a statistical software. The results are
shown in Tables 3 and 4.
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Table 1 Generated observations from mixture of IW and degenerate distribution.

i 1 2 3 4 5 6 7 8 9 10

Xi 2.72 4.40 11.94 6.91 25.15 4.53 261.35 0 46.18 0
i 11 12 13 14 15 16 17 18 19 20
Xi 0 0.10 0.12 0.07 0.16 0.06 0 0 0.17 0
IW, inverse Weibull.

Table 2 The values of Bayes estimators of change point.

Prior
Bayes estimates of change point

m∗ Posterior median Posterior mode

Informative 10 10 10

Table 3 The values of Bayes estimators of proportions p1 and p2.

Prior

Bayes estimates of proportions

Posterior mean Posterior mean
p1 p2

Informative 0.83 0.62

Table 4 The Bayes estimates using general entropy loss.

Prior
Bayes estimates of proportions p1 and p2

q2 p∗1E (t0) p∗2E (t0)

−2 0.84 0.63
−1 0.83 0.62

Informative 0.09 0.82 0.60
0.5 0.81 0.59
0.9 0.84 0.58

Table 5 The Bayes estimates using asymmetric loss functions.

Prior
Shape parameter Bayes estimates of change point

q1 q2 m∗
L m∗

E

2 −2 11 10
−1 −1 10 10

Informative 0.09 0.09 9 10
0.5 0.5 9 9
0.9 0.9 8 9

The results of Bayes estimates of change point, m, under Linex Loss function and GEL function by considering the different values of the
shape parameters q1 and q2, which are shown in Table 5. Also, the sensitivity of the Bayes estimators of change point and proportions p1 and
p2 with respect to the parameters of prior distribution have been studied. In Tables 6 and 7, we computed Bayes estimator of change point
under SEL function considering different set of values of (𝜇1, 𝜇2) and (𝜇3, 𝜇4). In addition, Table 8 contains Bayes estimates of proportions
under GEL function by considering different set of the values of (𝜇3, 𝜇4). The mean square error (MSE) of the estimators are given in
Table 9. The results of Tables 6–8 lead to the conclusion that, Bayes estimates of change point and proportions are robust with appropriate
choice of parameters of the prior distribution. From Fig. 1, by repeated the experiment 1000 times, we see that the Bayes estimator is better
than MLE.
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Table 6 The Bayes estimates of m under SEL function for different values of 𝝁1 and 𝝁2.

𝜇1 𝜇2 m∗

0.95 0.05 10
0.85 0.05 9
0.75 0.05 9
0.95 0.04 10
0.95 0.03 10
0.95 0.02 9
0.85 0.01 9
0.75 0.01 9
SEL, symmetric loss function.

Table 7 The Bayes estimates of m under SEL function for different values of 𝝁3 and 𝝁4.

𝜇3 𝜇4 m∗

0.8 0.6 10
0.7 0.6 10
0.6 0.6 10
0.8 0.5 10
0.8 0.4 10
0.8 0.3 10
0.7 0.5 10
SEL, symmetric loss function.

Table 8 Bayes estimates of proportions.

q2 = 1.2  q2 = 0.5  q2 = −2 

𝜇3 𝜇4 p∗1E p∗2E p∗1E p∗2E p∗1E p∗2E
0.8 0.6 0.83 0.62 0.81 0.59 0.84 0.63
0.8 0.5 0.84 0.59 0.85 0.57 0.84 0.61
0.7 0.6 0.80 0.60 0.79 0.59 0.82 0.63
0.7 0.5 0.80 0.60 0.79 0.56 0.82 0.61
0.6 0.6 0.78 0.61 0.76 0.60 0.79 0.63
0.6 0.5 0.77 0.60 0.77 0.56 0.79 0.62

Table 9 The values of MSE estimates of change point.

m mMLE MSE
(
mMLE

)
mB MSE

(
mB

)
1 1 0.15 2 2.3
2 2 0.17 2 0.90
3 3 0.20 3 0.5
4 4 0.25 4 0.30
5 5 0.26 5 0.25
6 6 0.29 6 0.24
7 7 0.31 7 0.27
8 8 0.35 8 0.22
9 9 0.37 9 0.21
10 10 0.38 10 0.16
11 11 0.39 11 0.15
12 12 0.40 12 0.18
13 13 0.40 13 0.23
14 14 0.42 14 0.24
15 15 0.45 15 0.22
16 16 0.48 16 0.30
17 17 0.48 17 0.33
18 18 0.35 18 0.34
19 19 0.10 18 2.9
MSE, mean square error.
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Figure 1 Comparison of Bayes and Maximum
Likelihood Estimators.
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