£

ATLANTIS

PRESS International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

Combination Replicas Placements Strategy for*Data sets from Cost-effective View
in the Cloud

Xiuguo Wu

School of Management Science and Engineering, Shandong University of Finance and Economics,
No. 7366, Erhuan Road, Jinan, Shandong 250014, China
E-mail: xiuguosd@163.com

Received 25 July 2015

Accepted 13 December 2016

Abstract

In the cloud storage system, data sets replicas technology can efficiently enhance data availability and thereby
increase the system reliability by replicating commonly used data sets in geographically different data centers. Most
current approaches largely focus on system performance improvement by placing replicas for an independent data
set, omitting the generation relationship among data sets. Furthermore, cost is an important element in deciding
replicas number and their stored places, which can cause great financial burden for cloud clients because the cost
for replicas storage and consistency maintenance may lead to high overhead with the number of new replicas
increased in a pay-as-you-go paradigm. In this paper, we propose a combination strategy of real-replicas and
pseudo-replicas (by computation from its provenance) from cost-effective view in order to achieve the minimum
data set management cost, not only for the independent data sets but also for related data sets with generation
relationships. We first define cost models that fit into the cloud computing paradigm, including data sets storage,
computation and transfer costs, and then develop a new data set management cost model, helping to achieve a
multi-criteria optimization of data set management. After that, a minimum cost benchmarking approach for the best
trade-off between real-replicas and pseudo-replicas is proposed once decision to add a replica has been made. Then,
a more practical and reasonable genetic algorithm as an alternative procedure for generating optimal or near-
optimal solution is given in order to identify the suitable replicas storage places. Finally, we present simulations
setups and results that provide a first validation of our strategy. Both the theoretical analysis and simulations
conducted on general (random) data sets as well as specific real world applications have shown efficiency and
effectiveness of the improved system brought by the proposed strategy in cloud computing environment.

Keywords: Cloud environment, Cost-effective, Replicas placements, Pseudo-replicas, Replicas

1. Introduction

Cloud service providers, such as Amazon S3 [1],
Google Cloud Storage (GCS) [2], and Microsoft Azure
[3] offer storage as a service by providing storage
resources in several data centers distributed around the

world. Clients (users) can store and retrieve data sets
without dealing with the complexities associated with
setting up and managing the underlying storage
infrastructures [4, 5]. On the same time, replication
techniques have been commonly used to minimize the

*This work is partly supported by Shandong Provincial Natural Science Foundation (ZR2016FMO1), China; the Doctor Foundation of Shandong
University of Finance and Economics under Grant (2010034), and the Project of Jinan High-tech Independent and Innovation (201303015), China.

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

521

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

communication latency, increase fault tolerance,
improve data availability and thereby increase the
system reliability by bringing the data sets closer to the
clients [6-9].

Nevertheless, there are still two important challenges
if we applied these technologies directly to the data sets
replicas management in the cloud: (1) in theory, clients
can get unlimited storage resources in the cloud.
However, they also have to pay for resource
consumption due to cloud’s “pay-as-you-go” model.
Meanwhile, replicas mean extra storage resource
consumption, and the more replicas in the system, the
higher storage cost will be. In this way, existence of
data set replicas can improve system performance at the
expense of much more storage cost, and further result in
the increase of data sets management cost [11-12]. Also
the number of replicas and their store placements are
important questions to be solved from cost-effective
view. Unfortunately, most of the existing works only
focused on system performance
creating/deleting replicas [6-8]. Although, some works
have been studied placing replicas from cost-effective in
the data grid, while these algorithms can not be directly
used in the cloud storage system due to hierarchical

improvement by

network structure and special data access patterns [9-10].

And (2) in the cloud, each data center only hosts a
subset of the whole data sets, and these data sets can
generate other related data sets at the expense of
computation resource consumption. In anther words,
there exist generation (derivation) relationships [13-14]
among data sets. Therefore, it is an intelligent way to
generate a data set from its provenance immediately and
then transfer it after receiving clients’ requests. That is
to say, the retrieved data set is not from the real data set
or its replicas but generation from its provenance, which
effectively reduce data storage cost despite of increased
extra computation cost. For example, there is a data set
d; stored on data center dc,, and d; can be generated
from data set d; while the application runs. In this way,
if a decision to create d;’ s replica d;' and store it on dcy
has been made, then a more intelligent approach is to
first compare the storage cost of d;' and computation
cost from data set d; with all else equal, then to choose
the one with less data manage cost between real replica
and generation data set. Hence, the better performance
and lower cost can be achieved. It should be pointed out
that generation relations are common among data sets in
cloud environment. Although there are many works

522

related to data sets replicas placements in the past years,
relatively few approaches related to the replicas
placements optimization from the cost view. And all the
current solutions are based assuming that data sets are
independent of each other, omitting the generation
relationships among data sets.

In this paper, our research objective is to develop a
minimum benchmarking approach for the best trade-off
between data set’s real-replicas and pseudo-replicas
(that means the replica is not a static data set stored on
data center, but regenerate from its predecessors
immediately if necessary) from cost-effective view. In
particular, we intend to construct an overall cost model
that can be used to decide the real replicas numbers and
their stored places, or the provenance if pseudo-replicas
needed. This cost model comprises a comprehensive set
of cost factors, necessary for making reasonable cost
estimation for running applications in an in-house data
center or on a public cloud. To achieve this, we first
perform a systematic literature review of papers on data
sets replicas and cost models in cloud computing.
Second, we design cost models for storing, transferring
and computing over wide cloud architecture. Based on
these results, we perform a cost-benefit analysis to
design a comprehensive overall cost model for data
management. Then, we propose a combination strategy
involving real and pseudo-replicas technique, which
leads to the theoretical minimum data management cost
using generic algorithm (GA). Finally, we apply this
combination data sets replicas strategy to demonstrate
its working.

The contributions of this research include: (i)
develops a data set management cost model in the cloud
and show that replicas placements can be done in a
distributed manner; (ii) proposes a combination data
sets replicas placements strategy from cost-effective
(ii1) gives a heuristic algorithm for the
combination replicas placements strategy in the widely
cloud system and prove that it can stabilize and
converge to optimal in a bounded time period.

view;

2. Related works

In this section, we first introduce data sets replicas
placements technology, and then describe a typical data
sets management pricing model, illustrated by some of
Amazon Web Services (AWS). At last, we briefly
recall the data sets types in the cloud.

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

2.1. Data sets replicas placements technology

With the advancement and development of various
technologies, data sets replicas placements in distributed
systems have been studied in many works, which are
referenced and adopted in cloud data set replication.
Data replication algorithms can be classified into two

groups: static replication [15] and dynamic replication
algorithms [16-17]. In a static replication model, the
replication strategy is predetermined and well defined.
On the other hand, dynamic replication automatically
creates and deletes replicas according to changing
access patterns. Table 1 summarizes the related replicas
placements technologies in recent years.

Table 1. Comparison of replicas placements technologies

Replication

No. Methodology Classificati Network Simulator Evaluation Parameters Performance
on used used

1 Branch Replication Distributed Tree data Omnet++ Usage, Number of Improved data access
Scheme(BRS)[18] grid intercommunications, performance than hierarchical

bandwidth consumption, (HRS) and server-directed
Response time, Network (SDRS).
Latency

2 No Replication, Distributed Graph OptorSim Communication Cost Reduced communication cost
Best Client, than K-replication, No
Cascading replication and complete
Replication, Plain replication.

Caching, Caching
plus Cascading
Replication and Fast
Spread Strategy [19]

3 Replica Placement Not Free-Scale OptorSim Storage used, Makespan Better than Simple Replication.
based on social mentioned Topology Always Replicate.
ability [20]

4 SWORD: A Distributed Cloud Amazon minimize query span and Improves transaction latencies
workload-aware EC2 replication resource and overall throughput
data placement and medium consumptio
replication approach instances
[21]

5 Hierarchical Distributed ~ Hierarchical OptorSim Total job Execution Time, Total job execution time is 40%
Replication Scheme Cluster grid and computing Resource faster than BHR optimizer than
(HRS)[22] Structure Taiwan LRU and LFU

Unigrid

6 FindR, MaxR, Centralized Hierarchica Taiwan Makespan, Tree balance, Ratio FindR and MinMaxLoad are
AffinityR and 1 Grid knowledg of Feasible Placement, Number best in terms of number of
MinMaxLoad[23] (Unconstrain ~ © of Replica Servers, Capacity of replicas and balancing the

ed mode, innovatio a Replica Server (CRS), Mean workload. MMxR and Affinity R

Constrained n National ~of Data Request Distribution are comparative in reducing the

mode) Grid on the client (MDR) number of replicas and MaxR is
superior to AffinityR in
balancing workload.

7 Latest Access Distributed Hierarchical Optorsim Storage element utilization, Mean job execution is about
Largest Weight Architecture Total number of replications, 15% faster than simple
(LALW)[24] Average job time, Network Optimizer. ENU is 16% lower

utilization than LFU and also saves storage
space.

8 Economy-based File Distributed Not OptorSim Total job execution time Improved performance of
Replication Mentioned economic model compared to
Strategy[25] traditional replication

algorithms.

2.2. Data sets management pricing policies

Cloud service providers (CSPs) supply a pool of
resources, such as hardware (CPU, storage, networks,
etc.), development platforms and services [26] with
different pricing policies. This paper relies on a limited,

523

yet representative enough model that include the main,
commonly billed elements in data sets management, i.e.,
CPU, storage and bandwidth consumption. In order for
readers to have an overview of pricing policy, we
present a simplified version of AWS offer.

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

The Amazon Simple Storage Service (S3) supplies
storage capabilities [1]. In this model, the price varies
with respect to data set size, with an earned rate when
data size increase, as is shown in Table 2.

Table 2. Amazon storage prices

Data set size Price per month per GB
First 1TB $0.14

Next 49 TB $0.125

Next 450 TB $0.11

Network bandwidth consumption is billed with
respect to data set volume, as illustrated in Table 3. In
this model, input data sets transfers are free; whereas
output data set transfer cost varies with respect to data
volume, with an earned rate when volume increases.
When applying this pricing model, the cost of
bandwidth consumption can be acquired if storage time
and data size are known.

Table 3. Amazon bandwidth prices

Data set size Price per time

Input data set

Any input data free
Output data set
First 1GB free
Up to 10 TB $0.12 per GB
Next 40 TB $0.09 per GB
Next 100TB $0.07 per GB

Finally, In AWS, Elastic Compute Cloud (EC3)
provides computing resources [1]. Different instances
configurations can be rent (micro, small, large, extra
large, etc.) at various prices. As illustrated in Table 4.

Table 4. EC2 computing prices

Instance configuration Price per hour

Micro $0.03
Small $0.12
Large $0.48
Extra large $0.96

3. Data sets cost models in the cloud

In this section, we will present data sets models used in
this paper. Specifically, we first introduce some
definitions related to cloud computing environment.
Then, we describe data sets provenance and data
dependency graph, which are used to depict the data sets
generation relationships.

3.1. Cloud computing environment

Ideally, clients of cloud services do not need to worry
about scalability because the resource provided is
virtually infinite and the network links are virtually
capable to quickly transfer any quantity of data sets
between the available servers. Data centers and their
connections, which provide clients with the physical
infrastructures need to host their computer systems, are
main components of cloud computing environment.

Definition 1. Cloud computing environment (CCE).
Cloud computing environment can be described as a
pair: (DC, B), where,

(1) DC is a set of distributed data centers, written as
DC= U{dc[}, and dc; denotes the /" data center. The

i=1,2,...|DC|

detailed description of data center will be given in
Definition 2.

(i1) B is a matrix, representing bandwidth between
data centers, and the element b; means the bandwidth
between two data centers dc; and dc;, indicating the
network transmission capacity.

bt bi2 -+ b1 - b
b1 b2 -+ b2j -+ b
B= . N . N N .
bii b2 -+ bij -+ bin
bni bn2 bnn

The bandwidth may fluctuate from time to time
according to peak or off-peak data access time in
practice. In this paper, we simplify the problem and
regard the bandwidth as a static value, ignoring the
volatility during different access time. On the other
hand, the value of bandwidth means the time of
transferring data from one data center to another. So, we
will use the bandwidth as a basis for calculating the
transfer time in the following section. Fig 1 depicts a

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

typical architecture of a cloud computing environment
with 7 data centers.

O Data center

Data transport line

& User

Fig. 1. Architecture of cloud computing environment.

Data centers provide the basic ingredients such as
storage, CPUs, and network bandwidth as a commodity
by specialized service providers at low unit cost. In this
paper, we define the data center as follows.

Definition 2. Data center (DC). Each data center
dc;eDC can be described as a 7-tuple (dc,, sp;, cp;, tpi, D,
ts;, vs;), where,
(1) dc; is the identifier of a data center, and is
unique in CCE;

(il) sp; means the storage price policy of data center
dc;;

(ii1) c¢p; means the computation price policy of data
center dc;;

(iv) tp; means the transfer price policy of data center
dc;. Usually, sp;, c¢p; and tp; are all determined
by the cloud service providers;

(V) D=DggUDy,, is a set of original data set and
generated data sets on the data center dc;;

(vi) ts; is the total space of data center dc;, whose
unit is TB; and,

(vii) vs; is the size of vacant space on data center;

means the extra storage capacity of dc;.

A data set involves its size, stored places and its
provenance. In this paper, we define a data set as
follows.

Definition 3. Data set (D). A data set d,eD can be
described as a 5-tuple (d,,, s, Sp, f;, provSet,,), where,
(i) d, is the identifier of data set, which is unique
in the cloud;

525

(i) s, is the size of data set d,,;

(i) speDC, is the data set d,,’s storage place;

(iv) f; is a flag, which denotes the status whether
data set d,, is stored or deleted in the system;
and,

(v) provSet, is the set of stored provenances that
are needed when regenerating data set d,,. The
detailed description of provSet,, will be given in
Definition 5.

3.2. Data sets dependency graph and data set

provenance

Data sets provenance is a kind of important metadata
which records the dependencies among data sets, i.e. the
information of how the data sets were generated. Taking
advantage of data sets provenance, we can build a data
sets dependency graph.

Definition 4. Data sets dependency graph (DDG). Data
sets dependency graph is a directed acyclic graph, and
can be described as a 3-tuple (Vp, E, ¢), where,
(i) Vp={d\, d>, ...}, is a set of nodes; and each
node denotes a data set;

(i) E={ey, ey, ...}, is a set of edges between pair of
nodes;
(iii) ¢ is a mapping from each edge e, to pair of

nodes (d;, d)) if these two data sets, d; and d},
have generation relationship, in other words, d;
is a predecessor data set of d,.

Fig 2 shows a simple DDG, where each node in the
graph denotes a data set.

Fig. 2. A simple data dependency graph.

In Fig 2, data set d pointing to data set ¢, means that
d, is used to generated dp; and d, pointing to d; and ds
means that d, is used to generate d; and ds based on
different operations. Also, data set d4 and ds pointing to
dataset d; means that d, and ds are used together to
generate d;. Meanwhile, we denotes a data set d,, in
DDG as d,eDDG, and to better describe the

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

relationships of data sets in DDG, we define two
symbols — and ¢ :

(i) > denotes that two data sets have a generation
relationship. In other words, d,—d,, means that d, is a
predecessor data set of d,, in DDG. For example, in the
DDG depicted in Fig 2, we have d) > d>, di > dy, ds—d7,
etc. Furthermore, generation relationship is transitive,
ie. d—d—d, o d—d, AN d—dg di—d A
d—dy=d—d,.

(i) «» denotes that two data sets do not have a
generation relationship. In other words, d, <5 d,, means
that d, and d, are in different branches in DDG. For
example, in the DDG depicted in Fig 2, we have ds < ds,
dy «» dg, etc. Furthermore, <5 is commutative, i.e.
du<pd, = d,<pd,

Obviously, DDG records the provenances of how
datasets are derived in the system as time goes on. To
generate a dataset in the cloud, we need to find its stored
predecessors and start the computation from them.

Definition 5. Data set provenance (provSef). Formally,
we can describe a data set d,,’s provenance provSet,, as
follows:
provSet,={d,|Vd,eDDG A f,="stored” \ d,—d,,
A ((—3d,eDDG A d,—d;—d,,)
V (3d,eDDG A d,—dy—d, N fi="deleted”))}

In this way, provSet, is the set of nearest stored
predecessors of d,, in DDG. Fig 3 describes the

provSet,,

(a)

provSet,,

Fig. 3. provSet,, of data set dm in different DDG.

526

provSet,, of a data set d, in different situations.
Therefore, the regeneration of a data set includes not
only the computation of the data set itself, but also the
regeneration of its deleted predecessors, if any. In other
words, data set provenance is the set of references of
stored predecessor data sets that are adjacent to d,, in the
DDG.

4. Data sets management cost models in the
cloud

The cloud service providers (CSPs) use different pricing
models to supply data sets requests services. In this
section, we will first propose general data sets
management cost models, and then present each element
in detail.

4.1. Data set d,,’s total management cost

In the cloud, customers rent resources from a CSP to
run some applications. Fig 4 describes the costs
involved, i.e., bandwidth consumption for data set
transfer, data storage, and applications’ processing time.

Data center

Storage cost

Tansfer cost

’gw /(c<‘:' Computation
*{%‘ o

Dala center

Client

Cloud

Fig. 4. Data access pattern in the cloud.

In a commercial cloud computing paradigm, if clients
want to deploy and run applications, they need to pay
for the resource used. In practice, especially in science
workflow application, the traditional remote call mode
is not suitable, for the reason that various applications
may be done with the data sets. The best way is to move
data sets to clients’ nearest data center. Also, each data
center has many requests for data sets transfers at the
same time. We use m; representing the number of clients
(tasks) requesting d,, via data center dc; during a certain
time period 7.

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

In practical application, the total management cost of
data set d,, includes storage, computation and bandwidth
consumption. Based on these factors, we propose a
comprehensive cost model that covers all aspects of data
set management.

Definition 6. Total data set management cost of data
set d,, . The total data set management cost of data set d,
during a time period t, is the sum of its storage cost,
transfer cost, and generation cost if needed, written as:
TCosty,=tc_strgg,~ttc_trsfy,tpxtc_gen,,, where,

(i) TCosty, is the total management cost of data
set d,, in period ;

(i) tc_strgg,, the sum of storage cost, is the total
cost used to store the data sets on data centers;

(ii1) tc_trsfy,, the sum of transfer cost, is the total
cost for transfer data d,, to another data center;

(iv) pe{0,1}, p=0 means the status of data set d,, is
“stored”, while p=1 means the status is
“deleted”;

(v) tc_geng,, the sum of computation cost, is the

total cost for regeneration data set d,, from its
provSet,,.

Next, we will present these costs computational
approaches separately in detail.

4.2. Data set storage cost model

The total storage cost tc_strgrefers to the disk resource
consumption to store data sets, depending on parameters
such as CSP’s pricing policy, the size of the data
(original data set) and storage time. And the storage cost
ration is not a fixed value, but a piecewise function.

Definition 7. Storage cost function (scf). Storage cost
function (scf) on data center dc,, can be described as a 4-
tuple (itvy, sizey, sizey, pr), where,

(i) ity is interval identifier, and £ is a integer value
from integer 1 to n;
sizey is the lower storage bound of interval £;
sizey; s the upper storage bound of interval £;
Py 1s storage price per unit time in interval & .

(i)

(iii)

(iv)

)

The total storage cost is the storage cost function scf’
multiplied by data set sizes and their respective storage
time during the intervals. Consequently, the data storage
cost on data center dc,, can be defined as follows.

527

Definition 8. Total storage cost (fc_strg). The storage
cost of data set d,, during a certain time period 7 can be
defined as follows:

lc_strgam= Z ((itv.sizen — itve.sizen) x scf (k) x T)»

k=1
where,
(i) [is the minimum integer that guarantees the
folllowing condition:

Z (itve.sizew — itvi.sizei) 2dy.Sms

(i1) iz{c;,i, sizey, and sizey, have the same meaning as
in Definition 7,

(iii) scflk) is the CSP’s storage cost function as
defined in Definition 7;

(iv) 7 1is the storage time.

In this model, the price varies with respect to data
size and storage time on data center. For example, using
Amazon S3 for storage pricing (referred to Table 2) and
considering that d,, has been stored for 6 months with
2TB (2048 GB) data size, then the storage cost is:

te strag, = (1024x0.14x6)+(1024x0.125x6) = $1628.16.

Compared to the other storage cost models, interval
storage cost ratio is the change in the total cost that
arises when the quantity produced changes by one unit.
So, it can effectively reflect the real storage cost of a
data set.

4.3. Data set transfer cost model

Bandwidth is another type of resource in the cloud.
Studies have shown that requests usually follow a fixed
shortest path routing to data sources and most routes are
stable in days or weeks [25]. And data transfer cost
depends on several parameters, such as the data set size,
the data set type and the price model applied by CSPs.
We first present the data transfer cost function.

Definition 9. Data transfer cost function (zcf). Data
transfer cost function (¢cf) can be defined as a 5-tuple
(itvi, type, sizey, Sizey, pi), where,

(i) itvy is interval identifier, and k is a integer value
from integer 1 to n;

(1) typee{input, output}, means the type of
transferred data sets;

(iii) sizey, sizey, means the lower and upper transfer

size bound of interval k separately;
(iv) py is the data transfer cost ration in interval £.

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

In this way, the total transfer cost fc_ trsfy, is the
product of the CSP’s atomic transfer cost function by
the total size of transferred data.

Definition 10. Data transfer cost (fc_trsf,,). Data set
transfer cost of data set d,, can be defined as:

1c_trsfan= Z ((itv.sizew — itvi.sizelr) x tcf (k)) >

k=1
where,
(i) itv, sizey and size; have the same meaning as
in Definition 9;

(i) «cf(k) is the CSP’s transfer cost function as
defined in Definition 9, where £ is the interval
index;

(iii)) [is the minimum integer that guarantee the

following condition:

I
. Z(ika.SiZEhk —itvk.sizew) 2dy-Sp-
k=1

Moreover, recall the Amazon EC3’s transfer cost is
variable. It is free for the first GB. Then, it becomes
$0.12 up to 10TB, and so on (Section 2.2). For example,
using Amazon EC3’s data sets transfer cost model and
considering that d,, with 10TB data size is transferred

from current data centers to another, and then the cost is:

te_trsfy,=0x1+0.12x(10-1)=$1.08.

4.4. Data set computation cost

Computation cost, also called generation computation
cost, is taken by the computation resources consumption
on data center. Each data center may bear different
performance (with respect to CPUs’ number of CPUs,
its available RAM, etc.), and thus different computation
cost policy. In this way, to calculate this cost, we have
to multiply the time of generating data set d,, by the
price of computation resources.

Definition 11. Computation cost function (ccf).
Computation cost function (ccf) can be defined as a 3-
tuple (k, type, pi), where,

(i) & means index identifier;

(il) type is data center configurations types;

(ii1) py is the computation cost in configuration type.

Based on the computation cost function, we can
define the data set generation cost from its direct
predecessor.

528

Definition 12. Data set computation cost from its direct
predecessor (dp_gen). Generation cost for a data set d,
is proportional to its CPU instance time ¢ and CPU
computation cost function ccfidc;), and can be
described as:

dp_geng,=ccf(dc;)*t, where,

(i) dp_geny, denotes the generation cost of data set

d,, from its direct predecessors;

(i1) ccf(dcy) is computation cost function, where dc;
is i"data center;
(iii) ¢ is the amount of time spent for generating

data set d,, can be obtained from the system
logs.

In this paper, we only consider the linear generation
relation for the sake of simplification. And further, not
all the data sets are stored in the cloud, in other words,
some data sets’ status are “deleted” according to their
usage frequency and other cost constraints. In this case,
when we want to regenerate a data set in DDG, we have
to start the computation from the data set in its provSet.
Hence, for data set d,,, its generation cost can be defined
as follows.

Definition 13. Generation cost for data set d,, (tc_gen).
A data set d;’s generation cost from its provSet can be
described as:

te_gengy,=dp_geng,ty’ (dp_genam)

{dk|dje proSetindj—>dk—di}
where,
(i) tc_geny, is the total generation cost each time;

(1) dp_gen,, is the generation cost from its direct
predecessor;
(iii) dy is a data set from d,,’s provSet,, whose states

are “deleted”.

From above, we can easily know that #c_gen,, is a
total cost of (1) the generation cost of data set d,, from
its direct predecessor data set, and, (2) the generation
costs of d,’s deleted predecessors that need to be
regenerated as well.

5. Trade-off between data set replicas and
pseudo-replicas placements from cost view

Different replicas placements strategies lead to different
management costs in the cloud. In this section, we will
present a trade-off between real-replicas and pseudo-

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

replicas from cost-effective view, if a decision to add a
replica has been made.

It must be noted that optimal replicas placements
solutions may not be unique. Our goal is to decide real-
or pseudo-replicas for data set d,,, such that overall data
management cost, is minimized for a given client access
pattern. Such an ideal solution is shown in Fig 5.

Fig. 5. An Example of data access domain.

In Fig 5, we define a data set d,,’s placement dc; and
its neighbor data centers accessing d,, from dc; as a
domain SD,. For example, domain SD; and SD, supplies
a real data set replica in data center dc, and dc,
separately, while SD; is an access domain with a
pseudo-replica and its provenance is stored in dc,.

5.1. Data set management cost with real replicas

For simplicity, we will ignore the dynamic changes of
factors, such as usage frequencies from different data
centers, and regard as static values during a certain time
period 1. Also, we assume that the d,,’s access times via
data center dc; follow Poisson distributions with
parameter A; within a certain time period z. It is known
that the Poisson distribution can be represented as:

P(x=k)= %e"‘ .

Then, the probability of accessing k times is P{x = k),
abbreviated as P(k). And the expectations of total access
times N; from data center dc; during 7 can be obtained
by following expression:

]\/i:kz:;(kx ':;!e”")

=0xP(0)+1xP(1) +2xP2)+ 3xP(3)+......

529

2
=0x £e—ﬂi +1x ile_li +2x ie_"i +...
o It 2

N R A
ﬂfxg((k_l)!e)
:/1,'.

From this way, the total transfer cost of data set d,
can be easily obtained theoretically by calculation using
the following expressions:

tc_trsfy,= z (N, xtc_ tm;f,;m) R
0

where f¢_trsfi is the cost for transfer data set d,,
one time.

It is obvious that the storage cost will be increased
with the existence of data set d,,’s replica d,’, for the
reason that replica d,," also cause extra storage resource
consumption on destination data center. Therefore, the
total storage cost is the sum cost for storage data set d,,
and its replicas, and can be represented as follows:

tc_strggm= Z (ic srg;") ,
i=1
where s is the number of data centers that deployed
replicas. Consequently, the data set d,,’s management
cost with data set replicas can be described using
Definition 6 as follows:

TCosty,= tc_strgg,~+ tc_trsfay,

=3 (rgl) TR, xte_irsfl):

=1

5.2. Data set cost model with pseudo-replicas

Next, consider the situation that there is no real data set
replicas but a pseudo-replica, in other words, the data
set d,, will be generated instantly once a request comes
for data set d,,. As a consequence, the total cost of data
set d,, includes the generation cost and the transfer cost
(the provenance’s storage cost has nothing to data set
d,’ management cost). This tactic can efficiently save
storage resource and benefit from the computing
performance of the cloud. Without the replicas created
in the cloud, the storage cost is only caused by data set
d,, (as an original data set, d,, always be stored).

In general, the generation cost is directly
proportional to the regeneration times required for
client’s requests during a certain time period z. Then, to
calculate the regeneration cost of data set d,, (as defined

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

in Definition 13), we have to multiply the times of
generation d,, by the price of computation cost each
time. In addition, total transfers cost is the cost from the
data center occupied its provenance provSet, to the
client’s side.

In this way, the total data management cost for data
set d,, can be represented using the following formula:

TCost'y,=tc_strggnttc_trsf g, tpxtc_genyy,
=ftc_Strgguttc_trsfy,T1xnxtc_geny,,

where n is generation times; and fc geny, is
generation cost for one time. We need to point out that
the transfer cost tc_trsf'y, is not the same as tc_trsfy,,
which is the cost for transfer generated data set from the
data center with provenance to its client.

5.3. Algorithm for tradeoff between data set
replica and pseudo-replica

In practice, it is not an easy decision for data set d,,’s
real- or pseudo-replicas strategy, for the reason of
complex data dependency relations and dynamic usage
frequencies. However, to find the tradeoff between a
real and pseudo-replica, no matter how complex the
data sets relationships are, we can deduce the problem
to a simple one: measuring the cost by calculation and
comparing them.

As a preliminary approach, we first measure the
tradeoff between data set replicas or regeneration
necessity with only one replica. The main idea is to
compare the data set replica cost and generation cost,
then to choose the one with less expense. Algorithm 1
presents the way how to decide real or pseudo-replica
from cost-effective view.

In the end of Algorithm 1, a result of real or pseudo
replica will be presented by comparing the different
management cost, along with the real replica or its
stored place. In Line 23, function
min(tc_trsfa., dp_geng, +tc_trsf'y;) returns the small
value from real replica and its generation approach.

And then, we will analyze the time complexity of
Algorithm 1. A simple implementation using an
adjacency matrix graph representation and searching an
array of weights to find the minimum weight edge to
add requires O(/V|") running time. And tentatively
placing data set replica on different data centers such as
Line 12 takes n” steps. So, the total time complexity of
Algorithm 1 is O(n?).

provenance

530

Algorithm 1: One real or pseudo replica measurement from cost-
effective view

Input: Data set d,, its stored data center dc; and its provenance

provSets,;

Testing period T;

Data access frequency parameter 4; via data center dc;;
Data centers’ storage, transfer and computation pricing
policy.

Output: The replica strategy: real or pseudo-replica; if real
replica then output the replica storage location r Loc,
else output the provenance location.

0l. Calculate the storage cost fc_strgu, based on Definition

8;

02. Calculate the transfer cost trsfy, based on Definition 10;

03. For each data center dc; (except data center dc)

04. Set tc_trsfon= tc_trsfam A< trsfam;

05. EndFor

06. Set TCost=tc_strgam + tc_trsfam;

07. For each data center dc; (except data center dco)

08. Begin

09. Create a temporary replica d,’ and store it on
data center dcj;

10. Calculate the storage cost tc_strg,,’ based on
Definition 8;

11. For each data center dci(except data center dcgand
dc)

12. Set te_trsfom=tc_trsfa,"thx<min(tc_trsfi,

te_trsfa);

13. EndFor

14. Set TCost'= tc_strgam+tc_strgam'+ tc_trsfan";

15. If TCost> TCost' Then

16. Set TCost=TCost'

17. Set r_Loc=j;

18. EndIf

19. EndFor

20. Calculate the computation cost dp_gen,, based on

Definition 12;

21. For each data center dc; (except data center 7)

22. Begin

23. Tc _trfs _gen= Tc_trfs _genth>xmin(tc_trsfic
dp_gengy +tc_trsfla);

24. EndFor

25. Set TCost"= Tc_trfs_gen +tc_strgum;

26. If TCost> TCost" Then

27. Print “Create a replica on data center ”+r_Loc

28. Else

29. Print “Pseudo-replica strategy, and data provenance ”

30. EndIf

3L End

6. GA-based combination replicas placements
strategy in cloud environment

In the previous sections, we will present the preliminary
cost benchmarking approaches in the cloud, which is the
theoretical minimum cost with only one replica.
However, it is not an easy question to determine the
number and storage places for real-replicas and pseudo-
replicas configurations to make sure the total
management cost is minimal during a certain time
period 1, for the dynamic nature of the cloud computing
system, i.e. (i) new data sets may be generated in the

http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Big-O_notation

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

cloud at any time; and (ii) the usage frequencies of the
data sets may also change as time goes on.

In this part, we will propose a general replicas
placements strategy generating optimal or near-optimal
solutions for replicas based Genetic algorithms,
including fitness function, selection-procedure, mutation
operator and replacement population method.

6.1. Minimum management cost model for
replicas placements strategy

In this paper, we do not consider nodes capacity
constraint, message losses, nodes failures, and the
consistency maintenance issues. The communication
cost introduced by replicas placements and de-allocation
is also not considered. In this way, the data sets replicas
placements strategy with minimum cost is NP-hard.
Hence, calculating the minimum cost benchmark
between real- and pseudo-replicas is a seemingly NP-
hard problem based on the cost models introduced in
Section 4.

Theorem 1. For a data set d,, its replicas placements
problem with the minimum cost is NP-Hard.

Proof. We can map the data centers to a graph G(V, E):
the data set dc; are mapped as node v, and all nodes
constitute a set V={dc,dc,, dcs,..., dc,};

E={ei, e, e, ..., e,}, e represents the connection
from dc; to dc;, and the weigh is transfer cost multiplied
by transfer times;

S represents the data centers set with data set replicas,
Sc;

VseS, Ds={dc,, dcg, ... } means the data centers
access from data center Ds.

Then, the minimum cost replicas placements strategy
can be modeled as follows:

Min(Z tc Srgdc+ Z z (Aixte _trsf,,))
da€Ds i
s.t.

(1) Ds#J, and U Ds» 18 a covering of set with all
dcieDsm
data centers;
(i1) A; is the request times on data center dc;;
(iii) tc_trsfy, is the transfer cost each time;

It is obvious that the objective function of the data
management cost with replicas is identical to the
location problems. However, the major models, such as
Fixed Charge Location Model, the Covering Model in

531

None-Competitive Location Theory and the Medianoid
and Centroid Model [28,29] from Competitive Location
theory, are all NP-Hard, i.e. computationally difficult,
combinatorial optimization problems. In this way, for a
data set d,, its replicas placements problem with the
minimum cost is NP-Hard.

Theorem 2. For a data set d,, the minimum cost real-
and pseudo-replicas placements strategy is NP-Hard.

Proof. As a specific circumstance, we define each data
set’s generation cost as 0, then the minimum cost for
real and pseudo replicas strategy is the same as the
minimum cost for replicas placements strategy, as is
shown in Theorem 1. Accordingly, we know that the
minimum cost for replicas and pseudo-replicas
placements strategy is NP-Hard.

Therefore, exact algorithms are computationally
feasible only for medium sized problems or for special
cases, not include the general cases [30]. As a result,
much research has been devoted to devising heuristic
solution procedures which run in reasonable computer
time and yield solutions of acceptable quality.

6.2. GA-based heuristics for replicas placements
strategy in cloud environment

Genetic algorithms (GAs) are a family of randomized-
search optimization heuristics, which are based on the
biological process of mnatural selection [31, 32].
However, applications of GAs to data sets replicas
placements have been relatively few. Furthermore, to
the best of our knowledge, a comprehensive study on
the comparative performance of GAs on replicas
placements models has not been attempted before. This
is particularly significant in view of the fact that GAs
have proven to be very effective on non-convex
optimization problems for which it is relatively easy to
assess the quality of a given feasible solution but
difficult to solutions by
deterministic iterative methods [33-34]. Motivated by
these considerations, this paper will present the GA-
based heuristics for data sets replicas placements
strategy from cost view.

systematically improve

6.2.1 Representation scheme and fitness function

The first step in designing a genetic algorithm for a data
sets problem is to devise a suitable representation
scheme. The representation scheme developed is an n,~

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

bit string as the chromosome structure, where ny is the
number of potential data sets replicas placements. A
value of 1 for the ith bit implies that a replica is located
in the ith data center. The representation of an indi-
vidual’s chromosome (solution) is illustrated in Fig 6.

. Data center with replica
O Replica place

[t [ofofr]o]ofo]r]
(®)

Fig. 6. Example of replicas chromosome

representation.

placements

The data centers network illustrated in Fig 6. has
eight data centers. The case (a) represents the situation
when three replicas are located in data centers dcy, dc,
and dcs, and case (b) illustrates the situation when
replicas are located in data centers dcy, and dcs. In
addition, data center dc; can generate data set from its
provenance. The respective binary representations for
cases (a) and (b) are also shown in the same figure.

The fitness function in a GA is a measure of
goodness of a solution to the objective function. In our
modified GA, the fitness of an individual is directly
related to its objective function value, which is defined
as minimum management cost.

The fitness function value of each possible solution to
the replicas placements problem is calculated by finding
the set of data centers belonging to the solution being

532

evaluated and adding the demands that are covered by
these data centers. Care must be taken in order to avoid
demands being counted several times since each data
center belongs to only one d; (d; € DC).

6.2.2 Parents selection-procedure and crossover

We will now address the parents’ selection, i.e.,
solutions chosen for crossover. And we chose the
Binary Tournament Selection Method, for the reasons
that: (i) it can be implemented very efficiently; (ii) it has
been shown that this method gives solutions whose
quality compare favorable to the ones proposed by other
methods.

In this paper, we chose the crossover operator fitness-
based fusion proposed in [31]. This operator is more
capable of generating new solutions when two parent
solutions are similar in structure than the one-point
crossover operator, since it focuses on the difference in
the two structures. However, the possibility of getting
an offspring identical to one of its parents still remains.
As a result of this problem, the following modification
was made to the over all crossover operator. The
crossover algorithm can be described as in Algorithm 2.

Algorithm 2: Crossover

Input: Parents
Output: Crossover result
01. Select parents p; and p»;
02. Apply the fusion operator to obtain an offspring c;;
03. Compare ¢, with its parents. If it is not identical to
both of p; and p,, then go to Step 05. Otherwise, go to
Step 4.
04. Apply mutation to the parent with the lesser fitness.
05. End

6.2.3 Mutation

Mutation is a process that reverses the structure of a
chromosome and hence produces albinos,
individuals with different chromosome properties from
the majority in a population. In this work, the mutation
operator works by selecting randomly one of the data
centers and transferring this to destination data center.
The new stored place is also picked randomly from the

set of empty possible places to located data storage.

Once new child solutions have been constructed
through the GA operators, the child solutions will
replace “less fit” members of the population. The
average fitness of the population will improve if the
child solutions have better fitness than those of the
solutions being replaced.

ie.,

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

In our GA, we used the incremental replacement
method. Using this method, the best solutions are
always in the population and the newly created solutions

are immediately available for selection and reproduction.

Note that when replacing a solution, care must be taken
to prevent excessive copies of a solution from entering
the population. Allowing too many duplicate solutions
to exist in the population may be undesirable because a
population could come to consist of identical solutions,
thus severely limiting the GAs ability to generate new
solutions.

6.3. GA algorithm for minimum data set replicas
placements strategy

One of the most obvious questions related to GA
performance is how it is influenced by population size.
In principle, it is clear that small populations run the
disk of seriously uncovering the solution space, while
large populations incur severe computational penalties.
The experimental work by Alander[35] suggests that a
value between n and 2n is optimal for the problem type
considered, where n is the length of a chromosome. In
this way, we chose a value of n and in our situation the
length of a chromosome coincided with the number of
possible replicas storage places.

Algorithm 3: GA algorithm for minimum data set replicas
placements strategy

Input: Configuration of data set and Data centers
Output: Data set replicas placement strategy

01. Set #:=0;

02. Generate initial population, P(f) randomly;

03. Evaluate each of the strings in P(f) according to the
kind of problem being solved.

04. while (number of generations <=maximum value) or
(improvement in objective function value <=107)
do

05. Set t:=t+1;

06. Select two solutions P; and P, from the population

using binary tournament selection.

07. apply genetic operators t String P; and P,

If Crossover: Combine P, and P, to form a
offspring O, using the fusion crossover operator. If
O, is identical to any of its parents, then apply
mutation operator to the parent with the best fitness.
If Mutation: Apply mutation operator to the parent
with the best fitness to form an offspring O.

08. Repeat steps 6 and 7 until a new set of children is
created which is of same size as the parent
population.

09. Evaluate this new child set according to the kind of
problem being solved.

10. Utilize the incremental replacement method to
create P(f) from the parent population and set of
children.

Thus, the GA that we implemented can be described
algorithmically as follows.

7. Simulations and results analysis

In this section, we describe the overall setup for our
preliminary simulations and the results obtained from it.
After that, we will present the simulations analysis.

7.1. Simulations setup

The simulations were conduced on a cloud computing
simulation environment built on the computing
facilitates at Cloud Computing Research Laboratory,
Shandong University of Finance and Economics
(SDUFE), China, which is constructed based on
SwinDeW [36] and SwinDeW-G [37]. The cloud
system contains 8 servers (data centers) and 50 high-end
PCs (clients), where we install VMWare
(http://ww.vmware.com), so that it can offer unified
computing and storage resources. The heuristics were
coded in Java and executed on a PC computer DELL
OptiPlex 3020, which is equipped with 1GB of RAM
and an Inter ® Core ™ i5-4570M CPU running at
3.2GHz.

We used in our experiments a subset of the data set
from our real practice, with each size in the range of [10,
512] GB. And their properties are shown in Table 5.
Fig 7 describes the dependency relations of data set d,
d,, ds, dy and ds. At the very beginning, the number of
replicas of each data set is 1 and placed randomly. In
order to meet the general requirements, the data sets
management price policy is as the same as in the
Amazon Simple Storage Service (S3).

Computation cost of data set is another important
element in decide replicas placements strategy, which is
depended on the provSet and computational resources
price model. Table 6 gives data set d,,’s provSet,, their
store places and computation costs.

Table 5. Properties of data sets

Dszta Size(G) S;?;ife Stsor';g ¢ provSet;
d, 160 dcy 134.40)
d, 10 de, 8.40)
ds 80 dey 67.20 {d,, d>}
d, 512 des 537.6 (dy}
ds 32 deq 26.88 {d,, d»}, {ds, ds}

533

http://www.baidu.com/link?url=A0LEC5pQe0cOBo4tyvTAo5zH8QUXDNBaP2doz5I9V2W6w01EYdL_rpy9ZFA3SLVd9hhAtbc3NicCxdjr2zNSXa

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 521-539

Fig . 7. Dependency relation among data sets.

Table 6. Computation cost of data set d,,,

Dataset provSet, Computatio Computat.ion
n place cost per time
d) / /
dy) / /
4 {di} de, 89.2
} {d} de, 120.8
dy {d>} de, 180.6
d {ds} dey 32.1
3 {dy} dcg 24.8

For calculating the data set transfer cost from its
source to the destination, we analyze the data sets
transfer process by finding their shortest path. Table 7
gives the data set transfer cost between each pair of data
centers.

Table 7. Data set transfer cost each time

Dsga d, d, ds d, ds
dg 0 26 14 4 52
dy, 14 14 24 166 24
de, 34 0 3 132 16
d 4 12 10.6 3
de, 14 46 0 44 36
des 5.6 3 32 56 2
de, 44 12 0 1.4
d, 26 26 3 52 0

Also, the average monthly data transfer requests be-
tween these data centers has been illustrated in Table 8.

On the other hand, the storage cost on each data
center is an important element to be considered. In order
to simplify problem, all the data centers take the same
storage price model, which varies with respect to its
data size. Note that original data sets are stored for the

whole considered storage period of six months.

In this way, by using these values, we can apply the
total data management cost per month for the case
without replicas. Such is illustrated in Table 9.

534

Table 8. Data sets requests frequencies on different
data centers

Dsztta d, A ds dy ds
deo 8 10 12 4 6
dey 8 20 16 8 8
de, 10 18 18 2

des 18 16 14 6 12
dey 4 30 10 8 18
des 20 20 8 40
deg 10 10 8)
de, 6 12 4 12 8

Table 9. Data sets transfer cost each time

Data set d, d, ds dy ds
Storage Cost 134.4 8.4 672 537.6 26.88
Transfer Cost 588.8 684.8 3232 7624 599.2

Total Cost 7232 6932 3904 1300 626.08

7.2. Simulations

Based on the configurations above, three kinds of
different were applied to replicas
placements strategy. First, the data management cost
elements and their comparison with different access
frequencies. Second, the validity and feasibility of real-
replicas and pseudo-replicas strategy were compared
against that of sole replicas strategy achieved in the past.
Third, in order to see the characteristics of convergence
of heuristic proposed a