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ABSTRACT
In this paper, we consider a partially linear single-index model when missing responses and nonlinear regressors with mea-
surement error are taken into account. Utilizing data imputation for missing values and regression calibration for error-prone
regressors, we not only estimate the parameters in the linear part as well as the single-index part, but also estimate the nonpara-
metric link function by local linear fit. Under normalization, all the proposed estimators for the regression coefficients and the
link function are proven to be asymptotically normal, and some illustrative simulations are provided to justify our methods.
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1. INTRODUCTION

To avoid the so called “curse of dimensionality” in the nonparametric or semiparametric regression analysis, partially linear single-index
models (PLSIM) emerged as an effective device for dimension reduction; see, for example, Härdle and Stoker [1], Powell et al. [2], Newey and
Stoker [3], Ichimura [4], Carroll et al. [5], Xia and Härdle [6], Lu and Cheng [7], and many others. Served as an effective way of modelling a
nonlinear relationship between several covariates and their response, PLSIM, however, might obtain biased estimations when the covariates
and/or their response are not complete.

When one collects data (e.g., survival data), due to many practical problems, he may obtain an incomplete data set which, to such an
extent, may lead to a biased estimation. Therefore, the augmentation of the missing data becomes more and more important in the data
demanded world. In general, missing data might emerge in both of the responses and covariates, while in this paper we will mainly focus
on the case when solely the response is missing. According to the nature of missing data, Little and Rubin [8] firstly classified the types
of missingness into three categories—missing completely at random (MCAR), missing at random (MAR), and missing not at random
(MNAR). In the present paper, we will consider the MAR mechanism (see, e.g., Wang et al. [9], Yun et al. [10]) which kicks in when the
probability that a response is missing dose not depend on the unobservedmeasurements. A very important type ofmissingness is censoring;
in particular, for the censoring case in PLSIM, Lu and Cheng [7] adopted a Kaplan–Meier-like transformation to overcome the biasedness of
the estimation of the coefficients and link function. Besides, Cheng et al. [11] considers a more difficult problem concerning the estimation
of the parameters and nonparametric function for a PLSIMwith censored response and covariates having measurement error. However, for
general missingness of the responses in PLSIM, there’s not a paper studying on it.

Another important issue concerning incomplete data is about measurement error. Measurement error models have been largely studied in
the literature, for example, Fuller [12], Carroll [13], Carroll and Stefanski [14], Carroll and Li [15], Lue [16], and Fan andTroung [17], among
others. It was indicated by Carroll et al. [18] that, there are three effects caused by measurement errors: first, it causes bias in parameter
estimation for statistical models; second, it leads to a loss of power, sometimes profound, for detecting interesting relationship among
variables; finally, it makes the features of the data, making graphical model analysis difficult. Especially, the effects of biasedness of the
parameters become severer especially when the relationship between the covariates and responses appear to be nonlinear.

In this paper, we consider the following PLSIM

Y = 𝛽T
0 V + 𝜆0

(
𝛼T
0X

)
+ 𝜎 (V,X) 𝜀, ‖𝛼0‖ = 1, (1)
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where Y is the response variable, X =
(
X1, … ,Xp

)T and V =
(
V1, … ,Vq

)T are predictors, 𝛼0 and 𝛽0 are parameters to be estimated, 𝜆0 (⋅)
is an unknown smooth function, and 𝜎 (⋅, ⋅) denotes the conditional variance representing the possible heteroscedasticity. Throughout this
paper, ‖ ⋅ ‖ denotes the Euclidean norm. The restriction ‖𝛼0‖ = 1 assures identifiability. Suppose that (Vi,Xi) and 𝜀i are independent,
and 𝜀i are assumed to have mean E (𝜀i) = 0 and variance Var (𝜀i) = 1, for i = 1, … , n. Suppose that we obtain a random sample of
incomplete data

(Yi, 𝛿i, Vi, Xi) , i = 1, 2, … , n

frommodel Eq. (1), where 𝛿i = 0 ifYi ismissing, otherwise 𝛿i = 1. TheMAR assumption implies that 𝛿 andY are conditionally independent
given V and X, that is, p

(
𝛿 = 1|Y,V,X

)
= p

(
𝛿 = 1|V,X

)
.

Among the wide variety of procedures to handle missing data, data imputation is an important step. By imputing a plausible value for each
missing datum, under mild conditions, the problem can be dealt with as if they were complete. Different categories of imputations can be
found in Schulte Nordholt [19]. The first classification, roughly speaking, comprises the deterministic as well as the stochastic imputations
[20]. The second classification is a distinction between naive and principled approaches. The naive imputations, mainly based on analyzing
complete cases (listwise or pairwise), are a quick option. For example, the imputation of an unconditional mean is a naive approach. It might
lead to a biased estimate even if the data are randomly missing. Little and Rubin ([8] Chapter 3) indicated that the obvious corrections of
this biasedness will obtain the same estimates as found with available case procedures. The principled approaches adopt models for both
the observed and missing data on which the imputations are based.

Besides, there is a distinction between imputations according to “explicit” and “implicit” models [21, 22]. Examples can be referred to the
hot-deck procedures [23], in which missing values are imputed with donor cases from the set of completely observed cases. There are
still many other imputation methods, for example, linear regression imputation [24], multiple imputation [20, 25], nonparametric kernel
regression imputation[26, 27]), nearest neighbor imputation [28], ratio imputation [29], regression calibration [30], and semiparametric
regression imputation [9], and so on. Wang and Sun [31] adopted semiparametric imputation, semiparametric regression surrogate and
inverse marginal probability weighted (IMPW) approaches, separately, to estimate 𝛽 and g (⋅) simultaneously in the partial linear model

Y = X𝜏𝛽 + g (T) + 𝜀, (2)

where Y is a scalar response MAR, X and T are complete covariates, 𝛽 is a unknown regression parameter, g (⋅) is an unknown measurable
function, and 𝜀 is the prediction error independent of X and T. As mentioned above, Wang and Sun adopted three imputation methods to
the partial linearmodel.Whenwe consider PLSIM, it is found that the third imputation approach, that is, the IMPWapproach, doesn’t work
good according to our simulation study. Therefore, we drop the IMPW approach and adopt the other two approaches in the PLSIM setting.
In this paper, we consider not only the missing responses, but also the regressors with measurement errors. Suppose that we can’t observe
the real covariate X but its contaminantsW instead. In a general framework, the relationship between X andW can be described as below:

W = 𝛾 + ΓX + e, (3)

where Γ is a q × pmatrix, p ≤ q, whichmay be known, unknown, or partly known. An important case is when Γ equals the identitymatrix I.
No additional assumption is made except that 𝛿, which has mean zero and constant covariance matrix ∑𝛿 , is independent of (X,V, 𝜀).
When X is a scalar and 𝛼0 = 1, model Eq. (1) is a partially linear model. Partially linear model has many applications, in which Engle et al.
[32] is the first to consider this kind of models. A more general case than model Eq. (1), was studied by Carroll et al. [5] in which model Eq.
(1) is replaced by g−1 {E

(
Y|X,V

)
}, with a known link function g. Model Eq. (1) reduces to that of Carroll et al. [5] when the link function g

becomes identity. Recently, partially linear single-index model with measurement error was studied by Liang andWang [33]. They assumed
the linear predictor V to be subjected to measurement errors, while in our setting not only the response is MAR but also the nonlinear
regressor X has measurement errors. The paper is organized as follows: in Section 2, we depict the estimation procedures for model Eq. (1);
Section 3 states the results on the asymptotic properties of our estimators; in Section 4, we present some illustrative simulations. All related
proofs and theorems can be found in Appendix I. The estimation outcomes will be presented in Appendix II.

2. PROCEDURES OF ESTIMATIONS

2.1. Carroll and Li’s Transformation

As mentioned in the introduction, how to calibrate the contaminated regressors to be unbiased is a very important issue. The Carroll and
Li’s [15] transformation, as stated in the following, is nothing more than a simple linear prediction of X byW,

U∗ = LW = cov (X,W)Σ−1
W W, (4)

where ΣW is the covariance matrix of W. Suppose that the individuals in a study are indexed by i = 1, … , n, with the first m individuals
being the validation sample, for which either the true X are observed in addition to the contaminated W or there are replicates of W.
Conventionally, we refer the data consisting of i.i.d. sample (Yi,Wi) (i = m + 1, … , n) to be as the primary data. Typically, m is much lessPdf_Folio:47
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than n. In general, L is unknown, and it can be estimated from a validation sample. Suppose that X and W are observed in Eq. (3) for a
sample with validation data. L can be estimated by

L̂ = côv (X,W) Σ̂−1
2W,

where côv (X,W) is the sample covariance matrix between X and W and Σ̂2W denotes the sample covariance matrix of W based on the
validation sample (Xi,Wi) , i = 1, 2, … ,m. Each row of L̂ is the usual least squares regression slope of the corresponding coordinate of X
against W with intercept included. Set Û∗

i = L̂Wi for i = m + 1, … , n and define the associated sample covariance matrix Σ̂U∗ = L̂Σ̂1WL̂’
based on the primary sample. Hereafter, the U∗

i can be replaced by Û∗
i when L is unknown.

Suppose on the other hand that, we have a replicated data rather than a validation sample. As in Carroll and Li [15] and Lue [16], we consider
an important special case when Γ is known and p = q. W.L.O.G. we take Γ = I. Let

Wij = 𝛾 + Xi + eij
(
j = 1, 2, i = 1, … ,m

)
(5)

If Σe is the covariance matrix of eij, then L = cov (X,W)Σ−1
W = cov (X, 𝛾 + X + e)Σ−1

W = ΣXΣ−1
W = (ΣW − Σe)Σ−1

W = I − ΣeΣ−1
W . Let Σ̂e and

Σ̂W − 1
2
Σ̂e be the sample covariance matrices of (Wi1 −Wi2) /√2 and (Wi1 +Wi2) /2, respectively; and let

L̂ = I − Σ̂eΣ̂−1
W .

With this choice of L, some similar results could be obtained.

2.2. Estimations of PLSIM with Missing Response and Error-Prone Predictors

Consider the PLSIM model defined by Eq. (1). In this section, we assume that we are given a data set with partially missing response
and error-prone regressors in the nonlinear single-index term. In order to remedy the biasedness of estimations caused by missing and
measurement error, we propose a modified quasi log-likelihood estimation procedure via an iterative minimization algorithm.

Let 𝜃 = (𝛼, 𝛽) be the vector of model parameters. If 𝜆 (⋅) were known and the data is free of measurement error and missing, the quasi
log-likelihood estimator of 𝜃0 = (𝛼0, 𝛽0) and 𝜆0 is the one to minimize

n (𝜃, 𝜆) =
n

∑
i=m+1

[Yi − {𝛽TVi + 𝜆
(
𝛼TXi

)
}]2 with ‖𝛼‖ = 1. (6)

In the casewhen the data consists ofMAR response variables and error-prone regressors, some auxiliary treatment of the data set is necessary.
A difficulty common to single-indexmodel is that, minimizing Eq. (6) involves the estimation of the nonparametric function 𝜆.We partition
Y into two parts Y = (Yobs,Ymis), with Yobs indicating the observed values, and the s × 1 vector Ymis, indicating values that are missing.
Assume that the observations are {(Yi, 𝛿i, Vi, Wi) ∶ i = m + 1, … , n}, which is a random sample from the population {(Y, 𝛿,V,W) defined
by Eqs. (1) and (2).

We denote the transformed Ui to be U∗
i , i = m + 1, … , n. Note that the transformed regressors U∗

i = LW, where L = cov (X,W)Σ−1
W if L is

known and L̂ = côv (X,W) Σ̂−1
W otherwise. First, assume that Y is not missing and can be observed completely. For fixed u ∈ ℜ and v in a

near neighborhood of u, one may approximate the unknown smooth function 𝜆(v) by

𝜆 (v) ≈ 𝜆 (u) + 𝜆′ (u) (v − u) ≡ a0 + a1 (v − u) , (7)

which is called a “local linear fit.” Thus, finding 𝜆 (u) is tantamount to finding the intercept a0 of the approximating regression line. Around
u, model Eq. (1) is approximately becoming

Y = 𝛽TV + 𝜆 (u) + 𝜆′ (u)
(
𝛼TX − u

)
+ 𝜎 (V,X) 𝜀. (8)

In order to claim that, when we replace X in model Eq. (1) by LW, the estimated 𝛼 is unchanged, we reduce our problem to the following
simple linear case. Consider the following model

Y∗ = a0 + a1
(
𝛼TX − u

)
+ 𝜀∗, (9)

where Y∗ = Y−𝛽TV, X is the same as that in Eq. (1) and is uncorrelated with 𝜀∗ = 𝜎 (V,X) 𝜀, and a0 and a1 are constants. LetW satisfy Eq.
(3), we may consider the following model

Y∗ = a0 + a1
(
𝛼TU∗ − u

)
+ 𝜀∗, (10)

where U∗ = LW. It is clear that model Eqs. (9) and (10) have the same estimate of 𝛼 when L is known. Moreover, even if L is unknown,
utilizing the validation data to obtain L̂ = côv (X,W) Σ̂−1

w , model Eqs. (9) and (10) still have approximately the same estimate of 𝛼.Pdf_Folio:48
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Now we return to the case as Y is partially missing. Let Z = (V,X), 𝜎2 (Z) = E
(
𝜀2|Z

)
and Δ (z) = P

(
𝛿 = 1|Z = z

)
. Motivated byWang and

Sun [31], we have Y[Im]i = 𝛿iYi + (1 − 𝛿i)
(
𝛽T
0 Vi + 𝜆0

(
𝛼T
0Xi

))
, that is, Y[Im]i = Yi if 𝛿i = 1, otherwise, Y[Im]i = 𝛽T

0 Vi + 𝜆0
(
𝛼T
0Xi

)
. By MAR

assumption, we have E [Y[Im]|Z] = E [𝛿Y + (1 − 𝛿)
(
𝛽T
0 V + 𝜆0

(
𝛼T
0X

))
|Z] = 𝛽T

0 V + 𝜆0
(
𝛼T
0X

)
= E [Y|Z]. But Y[Im]i contains unknown 𝛼0,

𝛽0 and 𝜆0 (⋅). Naturally, we might replace Y[Im]i by

Y(I)
i = 𝛿iYi + (1 − 𝛿i)

(
̂𝛽0 (obs)TVi + ̂𝜆(obs)0

(
�̂�(obs)T

0
Xi

))
(11)

where �̂�(obs)
0

, ̂𝛽(obs)
0

and ̂𝜆(obs)0 are obtained by our estimation algorithm below by replacing Y∗∗ with Yobs. Similarly, we may define

Y(R)
i = ̂𝛽(obs)T

0
Vi + ̂𝜆(obs)0

(
�̂�(obs)T
0 Xi

)
(12)

to be as the semiparametric regression surrogate. Then we substitute these synthetic data, Y(I) andY(R), into Step 1 to estimate both paramet-
ric component 𝜃0 and nonparametric function 𝜆0 by using the local linear fit and denote the corresponding estimator by ̂𝜃(I)

0
=
(
�̂�(I)

0
, ̂𝛽(I)

0

)
,

̂𝜆(I)
0
, ̂𝜃(R)

0
=

(
�̂�(R)

0
, ̂𝛽(R)

0

)
, ̂𝜆(R)0 , respectively. With the local model Eq. (8), we may estimate 𝜆 (ũ) by minimizing the following modified local

quasi-likelihood

n

∑
i=m+1

[Y∗∗ − {𝛽TVi + a0 + a1
(
𝛼TU∗

i − ũ
)
}]2 Kh

(
𝛼TU∗

i − ũ
)

with respect to a0 and a1, whereKh (⋅) = h−1K (⋅/h), h is a suitable bandwidth, ũ is a fixed real number, and Y∗∗ may be Y(I) or Y(R) according
to which augmentation is used. Fan and Gijbels [34] proposed a nonparametric estimator of 𝜆 (ũ), which is defined by

̂𝜆 (ũ) =
n

∑
i=m+1

wi (ũ)Y∗∗/
n

∑
i=m+1

wi (ũ) ,

with

wi (ũ) = K

(
ũ − 𝛼TU∗

i

h

)
[sn,2 −

(
ũ − 𝛼TU∗

i
)
sn,1] .

where

sn,l =
n

∑
i=m+1

K

(
ũ − 𝛼TU∗

i

h

)(
ũ − 𝛼TUi)l , l = 1, 2.

Our estimation algorithm consists of the following steps:

• Step 1: Treat the synthetic data Y∗∗ and U∗ as complete data and obtain initial guess of 𝜃0 = (𝛼0, 𝛽0) by Xia and Härdle’s [6] algorithm.
Let ̂𝜃 =

(
�̂�, ̂𝛽

)
be the initial guess of 𝜃0. Set ‖�̂�‖ = 1.

• Step 2: Find ̂𝜆
(
ũ; h, ̂𝜃

)
= â (ũ) as a function of ũ by minimizing

n

∑
i=m+1

[Y∗∗ − {𝛽TVi + a0 + a1
(
𝛼TU∗

i − ũ
)
}]2 Kh

(
𝛼TU∗

i − ũ
)
. (13)

• Step 3: Update ̂𝜃 by minimizing

n

∑
i=m+1

[Y∗∗ − {𝛽TVi + ̂𝜆
(
𝛼TU∗

i ; h, ̂𝜃
)
}]2

with respect to 𝜃 = (𝛼, 𝛽).
• Step 4: Iterate Steps 2 and 3 until convergence is achieved.Pdf_Folio:49
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3. ASYMPTOTIC THEOREMS FOR THE ESTIMATORS

In this section, we will establish the asymptotic normality of the estimators of the parameters emerging in the PLSIM model. Condition A
is given to ensure the asymptotic properties of the estimators to hold.

Condition A.

i. The kernel K is a symmetric function on [-1,1], and satisfies uniform Lipschitz condition of order 1 on R.

ii. The random vectors V and U∗ = L (X + e) are bounded.

iii. The marginal density f (ũ) of Ũ = 𝛼T
0U∗ is positive, and has a continuous second derivative on its compact support D ⊂ R.

iv. The random vector U∗ = L (X + e) has a compact support ℵ ⊂ Rp, D𝜆0 is an open interval containing ∪ {𝛼Tu∗ ∶ ‖𝛼‖ = 1, u∗ ∈ ℵ}.
The second derivative of 𝜆0 (ũ) exists, is continuous and bounded on D𝜆0 .

v. The functions E {U∗|Ũ = ũ} and E {V|Ũ = ũ} are twice differentiable in ũ ∈ D, and their second derivatives satisfy Lipschitz condition
of order 1. On the boundaries, the continuity and differentiability mean left or right continuity and differentiability.

vi. For a given ̂𝜆, assume that �̂�−𝛼0 and ̂𝛽−𝛽0 = Op
(
n−1/2), that is, the initial estimates are in a√n-neighborhood of the true parameter

values in probability, respectively.

vii. Let

Ψ =
(
U∗𝜆′0

(
Ũ
)

V

)
, H = Ψ − E

(
Ψ|Ũ

)
, 𝜖∗∗ = Y∗∗ − {𝛽T

0 V + 𝜆0
(
𝛼T
0U∗)} ,

both Q = E {H⊗2 } andΩ = E {(H𝜖∗∗)⊗2 } are positively definite, Y∗∗ may be Y(I) or Y(R) and 𝜖∗∗ may be 𝜖(I) or 𝜖(R) according to which
augmentation is used.

Theorem 1. Under Condition A and the following conditions on the bandwidth: nh4 → 0 and nh3 = O
(
logn

)
, as n →∞, hold. Then, the

estimator ̂𝜃(I)0 =
(
�̂�(I)
0 , ̂𝛽(I)

0

)
from the iterative algorithm satisfies

n1/2
(
�̂�(I)
0 − 𝛼0
̂𝛽(I)
0 − 𝛽0

)
D→ N

(
0,Q−1ΩQ−1) ,

where Q andΩ are defined in ConditionA (vii),”
D→ ” denotes convergence in distribution.

Theorem 2. Under the same conditions as given in Theorem 1, the estimator   ̂𝜃(R)0 =
(
�̂�(R)
0 , ̂𝛽(R)

0

)
from the iterative algorithm satisfies 

n1/2
(
�̂�(R)
0 − 𝛼0
̂𝛽(R)
0 − 𝛽0

)
D→ N

(
0,Q−1ΩQ−1) .

It is interesting to note that
(
�̂�(I)
0 , ̂𝛽(I)

0

)
have the same asymptotic variance as

(
�̂�(R)
0 , ̂𝛽(R)

0

)
, which has been shown byWang and Sun [31]. All

these related theorems are referred to Appendix I.

By the root-n consistency of
(
�̂�, ̂𝛽

)
and the assumptions for the bandwidth h and the kernel function K (⋅), we may prove that ̂𝜆

(
ũ; �̂�, ̂𝛽

)
−

̂𝜆 (ũ; 𝛼0, 𝛽0) = Op
(
n−1/2). When 𝛼0 and 𝛽0 are known, we can easily prove the asymptotic normality of ̂𝜆 (ũ; 𝛼0, 𝛽0) using the results in Fan

and Gijbels [34]. Therefore, the asymptotic normality for the local linear estimator ̂𝜆
(
ũ; �̂�, ̂𝛽

)
with estimated parameters �̂� and ̂𝛽 can be

stated as follows:

Theorem 3. Let f (⋅) be the density function of Ũ = 𝛼T
0U ∗. If h = O

(
n−1/5) and K (⋅) has third-order continuous derivatives and its third-

order derivative is bounded on D, then under Condition A, on the covariates {Ũ1, … , Ũn}, for any interior point ũ ∈ D,

√nh
( ̂𝜆

(
ũ; �̂�, ̂𝛽

)
− 𝜆0 (ũ) − 𝜆”0 (ũ) cKh2/2

) D→ N (0, dK)𝜎∗2 (ũ) ,

where 𝜎∗ (ũ) = Var {
(
Y∗∗ − 𝛽T

0 V
)
|Ũ = ũ}, cK = ∫+∞−∞ v2K (v) dv and dK = ∫+∞−∞ K2 (v) dv.

Pdf_Folio:50
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4. SIMULATION

Example

In this example, we conduct some Monte Carlo simulations to estimate the regression coefficients for an partially single-index model with
incomplete data, and q = dim (V) = 2 and p = dim (X) = 2. Let X = (X1,X2)

T, X1 ∼ Uniform (−2, 2), X′

1 ∼ Triangular (−2, 2),
X2 =

(
1
3

)
X1+

(
2
3

)
X′1 andV = (V1,V2)

T, whereV1 andV2 ∼ Bernoulli
(
p = 0.5

)
are independent. Assume in addition that the covariates

V and X are independent. One would notice that X1 and X2 are dependent. Let the data be generated from the following model:

Y = 𝛽T
0 V + 𝜆0

(
𝛼T
0X

)
+ 𝜀, (14)

where 𝜀 ∼ N
(
0, 𝜎2

0 = 0.52
)
, the true parameters are 𝛽0 = (−1, 2)T and 𝛼0 =

(
√2/2, √2/2

)T
and the true unknown function is

𝜆0 (ũ) = (−1/2)
(
ũ −√2/2

)2
+ 6, ũ = 𝛼T

0 u∗. First, we consider the case as Y is MAR. We generate, respectively, 300 replicates of random
sample of size n = 60, 120, and 240 for the following three mechanisms:

Case 1:Δ1 (z) = P
(
𝛿 = 1|V = (v1, v2) ,X = (x1, x2)

)
= 0.8+0.2

(
|v1| + |v2| + |x1| + |x2|

)
if |v1|+|v2|+|x1|+|x2| ≤ 1, and= 0.90 elsewhere.

Case 2: Δ2 (z) = P
(
𝛿 = 1|V = (v1, v2) ,X = (x1, x2)

)
= 0.9 − 0.2

(
|v1| + |v2| + |x1| + |x2|

)
if |v1| + |v2| + |x1| + |x2| ≤ 1.5, and = 0.80

elsewhere.

Case 3:Δ3 (z) = P
(
𝛿 = 1|V = (v1, v2) ,X = (x1, x2)

)
= 0.8−0.2

(
|v1| + |v2| + |x1| + |x2|

)
if |v1|+|v2|+|x1|+|x2| ≤ 1, and= 0.50 elsewhere.

By conducting Monte Carlo simulations, the mean response rates of the above three cases are EΔ1 (z) ≈ 0.90, EΔ2 (z) ≈ 0.78, and
EΔ3 (z) ≈ 0.51, respectively. Accordingly, our missing proportions are about 10%, 22%, and 49%, respectively. Second, we focus on the case
when the response Y is MAR and the covariate X of nonparametric part has a validation data concerning its contamination W and itself.
We assume that the primary sample size is n′ and the sample size of the validation data is m, 𝛾 = 0, Γ = I, and the distribution of e are
normal with mean 0, variance√3/4.

In Table A.1 (resp. Table A.4), we report the results of
(
�̂�(I)
0 , ̂𝛽(I)

0

)(
resp.

(
�̂�(R)
0 , ̂𝛽(R)

0

))
when Y is MAR and X is without measurement

error. In Table A.2 (resp. Table A.5), we consider the case as X has measurement error with 𝜎2
e of e taken to be √3/4. After calibrating

W into U∗, we report the results of
(
�̂�(I)
0 , ̂𝛽(I)

0

)(
resp.

(
�̂�(R)
0 , ̂𝛽(R)

0

))
. While in Table A.3 (resp. Table A.6), the error-prone W is not cali-

brated and the other assumptions about missing are preserved. We conduct 300 simulations totally for each table. In these tables the sam-
ple mean (MEAN), standard derivation (SD), root-mean-square error (RMSE), and the median (MED) are represented as a function of
the sample size n, primary size n′, validation size m, and the missing proportion p. We use the well-known Epanechnikov kernel function
K (v) =

(
3
4

) (
1 − v2

)
I [|v| ≤ 1] to do the kernel smoothing. Figures A.1–A.6 illustrate the true nonparametric curve and the fitted curve

(dotted curve).

From Tables A.1 and A.4, all the proposed estimates of (𝛼0, 𝛽0) have similar SD and RMSE. �̂�(I)
0 and �̂�(R)

0 perform similarly and ̂𝛽(I)
0 performs

slightly better than ̂𝛽(R)
0 . From Tables A.2, A.3, and Tables A.5, A.6, those estimates of (𝛼0, 𝛽0) with calibrated outperform those with W

uncalibrated. From Figures A.1 and , A.4 ̂𝜆(I)0 and ̂𝜆(R)0 perform similarly. From Figures A.2, A.3 and Figures A.5, A.6, both approaches work
to relieve the effect upon missingness and measurement error.
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APPENDIX I

Proof of Theorem 1. and 2. The proof of Theorem 2 is just a part of arguments used in the proof of Theorem 1, therefore we omit it. Here,
we give a detailed proof of Theorem 1 only.

Denote

Ψ =
(
U∗𝜆′0

(
Ũ
)

V

)
, Λ =

(
U∗𝜆′0

(
Ũ
)
0

0 V

)
,

and

Ω = E [{
(
Ψ − E {Ψ|Ũ}

)
𝜖(I)} {

(
Ψ − E {Ψ|Ũ}

)
𝜖(I)}T] ,

where Ũ = 𝛼T
0U∗ and 𝜖(I) = Y(I) − {𝜆0

(
Ũ
)
+ 𝛽T

0 V} . Let Q = B𝛼0,𝛽0
− A𝛼0,𝛽0

, with

A𝛼0,𝛽0
= −E [ΨΨT] , B𝛼0,𝛽0

= −E [E
(
Ψ|Ũ

)
E
(
ΨT|Ũ

)
] .

The proof consists of two steps. The first step is to obtain an expansion for ̂𝜆. For simplicity, let a0 = a0 (ũ) = 𝜆0 (ũ), a1 = a1 (ũ) = h𝜆′0 (ũ),
𝜖(I)∗i = Y(I)

i − {a0 + a1
(
Ũi − ũ

)
/h + 𝛽T

0 Vi} . Without loss of generality, suppose that D = [c, d] for −∞ < c < d < ∞, and define
D0 = [c + h, d − h] and D1 = D ∖ D0, where h is the bandwidth. Let

Ln (ũ) = n−1
n

∑
i=1

Kh(Ũi − ũ)
𝜖(I)∗i

f(ũ)
− (�̂�T − 𝛼T

0 )E{U∗𝜆′0(Ũ)|Ũ = ũ}

−
( ̂𝛽T − 𝛽T

0
)
E {V|Ũ = ũ} . (A.1)

We will show that

sup
ũ∈|D0

| ̂𝜆
(
ũ; �̂�, ̂𝛽

)
− 𝜆0 (ũ) − Ln (ũ) | = op

(
n−1/2) + Op

(
h2
)
,

sup
ũ∈|D0

| ̂𝜆
(
ũ; �̂�, ̂𝛽

)
− 𝜆0 (ũ) − Ln (ũ) | = op

(
n−1/2) + Op

(
h2
)
+ Op (h) . (A.2)

Denote the k × k identity matrix by Ik and P𝛼0
by

P𝛼0
= [ Ip − 𝛼0𝛼T

0 0
0 Iq

] .

Then, we will obtain the following representation:

P𝛼0
Qn1/2

(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)
= n−1/2

n

∑
i=1

P𝛼0
[Ψi − E {Ψi|Ũi}] 𝜖(I)i + op (1)

= Sn + op (1) , (A.3)

where 𝜖(I)i = Y(I)
i − {𝜆0

(
Ũi
)
+ 𝛽T

0 Vi}. The second step is to show that the first term on the right-hand side of Eq. (A.3) has an asymptotic
variance–covariance matrix P𝛼0

ΩP𝛼0
. Therefore,

n1/2
(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)
=
(
P𝛼0

Q
)− (Sn) +

(
P𝛼0

Q
)− op (1) ,

where A− denotes the generalized inverse of a square matrix A,
(
P𝛼0

Q
)− (Sn) has an asymptotic variance–covariance(

P𝛼0
Q
)− P𝛼0

(Ω) P𝛼0
{
(
P𝛼0

Q
)T}− = Q− (Ω)Q− = Q−1 (Ω)Q−1,

(
P𝛼0

Q
)− op (1) = op (1) since the elements of

(
P𝛼0

Q
)− are finite. To the

end, Theorem 1 is proved by applying the central limit theorem. Now, we start to derive the desired results in each step.

Proof of (A.2). Let a0 = 𝜆0 (ũ), a1 = h𝜆′0 (ũ). The local linear estimates of a0 and a1 are obtained from solving

0 = n−1
n

∑
i=1

Kh

(
ˆ̃Ui − ũ

)
[

1(
ˆ̃Ui − ũ

)
/h] ̂𝜖(I)∗i ,
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where ̂𝜖(I)∗i = Y(I)
i − {â0 + â1

(
ˆ̃Ui − ũ

)
/h + ̂𝛽TVi}, ̂. indicates the estimated error and ̂.∗ indicates a local version of the estimated error. By

this convention, we define ̂𝜖(I)∗i = Y(I)
i − { ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
+ ̂𝛽TVi} . Using a Taylor expansion approximately and eliminating higher order

term, we get uniformly for ũ ∈ D,

by Eqs. (A.5) and (A.7), we obtain

Substituting the kernel terms in the linearized Eq. (A.4) by their asymptotic counterparts, we obtain Eq. (A.2).

Pdf_Folio:54

0 = n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
[ 1(

Ũi − ũ
)
/h] { ̂𝜖

(I)∗
i − (â0 − a0) −

((
Ũi − ũ

)
/h
)
×

(â1 − a1) − (a1/h)
(
�̂�T − 𝛼T

0
)
U∗

i −
( ̂𝛽T − 𝛽T

0
)
Vi + op

(
n−1/2) + Op

(
h2
)
.

Solving the above equation for â0 − a0, we have uniformly for ũ ∈ D,

â0 − a0 = [1/ {n−1
n

∑
i=1

Kh(Ũi − ũ)}] [n−1
n

∑
i=1

Kh(Ũi − ũ){𝜖(I)∗i − (a1/h) ×(
�̂�T − 𝛼T

0
)
Ui −

( ̂𝛽T − 𝛽T
0
)
Vi} + op

(
n−1/2) + Op

(
h2
)
] . (A.4)

Let ̂f (ũ) = n−1∑n
i=1 Kh

(
Ũi − ũ

)
be the kernel estimator of f (ũ), we have the following results about the kernel density estimators (proofs

are put in Sections I.1 and I.2):

sup
ũ∈D

|n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
(a1/h)U∗

i / ̂f (ũ) − E {U∗|Ũ = ũ} 𝜆′0 (ũ) = Op (h) ,

sup
ũ∈D

n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
Vi/ ̂f (ũ) − E {V|Ũ = ũ} = Op (h) , (A.5)

sup
ũ∈D

n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)∗i / ̂f (ũ) − 0| = Op (h) , (A.6)

and

sup
ũ∈D0

| ̂f (ũ) − f (ũ) | = Op (h) , sup
ũ∈D1

| ̂f (ũ) − f (ũ) | = Op (1) . (A.7)

Since

n−1∑n
i=1 Kh

(
Ũi − ũ

)
𝜖(I)∗i

n−1∑n
i=1 Kh

(
Ũi − ũ

) −
n−1∑n

i=1 Kh
(
Ũi − ũ

)
𝜖(I)∗i

f (ũ)

=
n−1∑n

i=1 Kh
(
Ũi − ũ

)
𝜖(I)∗i

̂f (ũ)
× f (ũ) − ̂f (ũ)

f (ũ)
,

sup
ũ∈D0

n−1∑n
i=1 Kh

(
Ũi − ũ

)
𝜖(I)∗i

n−1∑n
i=1 Kh

(
Ũi − ũ

) −
n−1∑n

i=1 Kh
(
Ũi − ũ

)
𝜖(I)∗i

f (ũ)
= Op

(
h2
)

and

sup
ũ∈D1

n−1∑n
i=1 Kh

(
Ũi − ũ

)
𝜖(I)∗i

n−1∑n
i=1 Kh

(
Ũi − ũ

) −
n−1∑n

i=1 Kh
(
Ũi − ũ

)
𝜖(I)∗i

f (ũ)
= Op (h) .

|

|

| |

| |

|

|
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Proof of (A.3). By a Taylor expansion, we have

̂𝜆
(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)

= ̂𝜆
(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− ̂𝜆

(
𝛼T
0U∗

i ; �̂�, ̂𝛽
)
+ ̂𝜆

(
𝛼T
0U∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)

= ̂𝜆′
(
�̂�T
0U∗

i ; �̂�, ̂𝛽
) (
�̂�T − 𝛼T

o
)
U∗

i + ̂𝜆
(
𝛼T
0U∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
+ op

(
n−1/2)

= 𝜆′0
(
𝛼T
0U∗

i
) (
�̂�T − 𝛼T

o
)
U∗

i + ̂𝜆
(
𝛼T
0U∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
+ op

(
n−1/2) . (A.8)

With 𝜉 being the Lagrange multiplier, we know that
(
�̂�, ̂𝛽

)
is the solution to

0 = 𝜉
(
�̂�
0

)
+ n−1/2

n

∑
i=1

Λ̂iDi,

where

Λ̂i =
(

U∗
i
̂𝜆′
(
�̂�TU∗

i ; �̂�, ̂𝛽
)
0

0 Vi

)
, Di =

(
̂𝜖(I)i
̂𝜖(I)i ,

)
,

̂𝜖(I)i = Y(I)
i − { ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
+ ̂𝛽TVi} .

Let

D0i =
⎛⎜⎜⎝
𝜖(I)i

𝜖(I)i ,

⎞⎟⎟⎠ .
By Taylor expansion, we obtain

Di = D0i +
(
−1 −1
−1 −1

)( ̂𝜆
(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)

VT
i
( ̂𝛽 − 𝛽0

) )
+ op

(
n−1/2)

= D0i +
(
−1
−1

)
{VT

i
( ̂𝛽 − 𝛽0

)
}

+
(
−1
−1

)
{ ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
} + op

(
n−1/2) .

Since Λ̂i = Λi + op (1), we have

0 = 𝜉
(
�̂�
0

)
+ n−1/2

n

∑
i=1

ΛiD0i + n−1/2
n

∑
i=1

Λi

(
−1
−1

)
{VT

i
( ̂𝛽 − 𝛽0

)
}

+n−1/2
n

∑
i=1

Λi

(
−1
−1

)
{ ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
} + op (1) . (A.9)

By Eq. (A.8), we get

n−1/2
n

∑
i=1

Λi

(
−1
−1

)
{ ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
}

= n−1/2
n

∑
i=1

Λi

(
−1
−1

)
𝜆′0

(
𝛼T
0U∗

i
)
U∗

i
T (�̂� − 𝛼0)

+ n−1/2
n

∑
i=1

Λi

(
−1
−1

)
{ ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
} + op (1) .

Plugging this into Eq. (A.9) gives

0 = 𝜉
(
�̂�
0

)
+ n−1/2

n

∑
i=1

Λ̂iD0i + n−1/2
n

∑
i=1

Λ̂i

(
−1
−1

)
{VT

i
( ̂𝛽 − 𝛽0

)
}

+ n−1/2
n

∑
i=1

Λ̂i

(
−1
−1

)
𝜆′0

(
𝛼T
0U∗

i
)
U∗

i (�̂� − 𝛼0)

+ n−1/2
n

∑
i=1

Λ̂i

(
−1
−1

)
{ ̂𝜆

(
�̂�TU∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
} + op (1) .Pdf_Folio:55
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This leads to

0 = 𝜉
(
�̂�
0

)
+ n−1/2

n

∑
i=1

ΛiD0i + n−1/2
n

∑
i=1

Λi [
(
−1 −1
−1 −1

)
ΛT

i ]
(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)
+ n−1/2

n

∑
i=1

Λi

(
−1
−1

)
{ ̂𝜆

(
𝛼T
0U∗

i ; �̂�, ̂𝛽
)
− 𝜆0

(
𝛼T
0U∗

i
)
} + op (1) .

Note that by using matrix notation, Ln (ũ) in Eq. (A.2) can be written as

Ln (ũ) = n−1
n

∑
i=1

Kh
(
Ũi − ũ

) 𝜖(I)∗i

f (ũ)
+ E [{Λ

(
−1
−1

)
}
T

Ũ = ũ]
(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)
.

Then from Eq. (A.2) and the definition of A𝛼0,𝛽0
, we obtain

0 = 𝜉
(
�̂�
0

)
+ n−1/2

n

∑
i=1

ΛiD0i + A𝛼0,𝛽0
n1/2

(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)
+ n−1/2

n

∑
i=1

Λi

(
−1
−1

)
E [{Λi

(
−1
−1

)
}
T

Ũ = Ũi]
(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)

+ n−1/2
n

∑
i=1

Λi

(
−1
−1

)
[
n−1∑n

j=1 Kh
(
Ũj − Ũi

)
𝜖(I)∗i

f
(
Ũi
) ]

+ n−1/2
n

∑
i=1

Λi

(
−1
−1

)
{Op

(
h2
)
I [Ũi ∈ D0] + Op (h) I [Ũi ∈ D1]

+ op
(
n−1/2) + Op

(
h2
)
+ op (1) . (A.10)

It is easy to see that the sixth term is Eq. (A.10) is Op

(
√n h2

)
+ op (1) = op (1). The fifth term in Eq. (A.10) is essentially the same as

(a proof is given in Section I.3)

n−1/2
n

∑
i=1

E [{Λi

(
−1
−1

)
} |Ũ = Ũi] 𝜖(I)i + op (1) . (A.11)

From

−n−1
n

∑
i=1

Λi

(
−1
−1

)
E [{Λi

(
−1
−1

)
}
T

|Ũ = Ũi]

p
→ −E [E

(
{Λ

(
−1
−1

)
} |Ũ

)
E

(
{Λ

(
−1
−1

)
}
T

|Ũ
)
]

= B𝛼0,𝛽0

and the definition of Q, Eq. (A.10) can be written as

0 = 𝜉
(
�̂�
0

)
+ n−1/2

n

∑
i=1

[Λi

(
𝜖(I)i
𝜖(I)i

)
+ E {Λi

(
−1
−1

)
|Ũi} 𝜖(I)i ]

−Qn−1/2
(
�̂� − 𝛼0
̂𝛽 − 𝛽0

)
+ op (1) .

Multiplying both sides by P𝛼o
and noticing that Λi (1, 1)T = Ψi, we obtain the first equality in Eq. (A.3). At the moment, we focus on those

auxiliary results required to establish the first equality.

Section I.1. Proofs of (A.5) and (A.7)

Proof of (A.5). Let 𝜓∗ (⋅i) denote the quantity 𝜓
(
a0 (ũ) + a1 (ũ)

(
Ũi − ũ

)
/h + 𝛽T

0 Vi
)

and let 𝜓 (⋅i) denote the similar quantity
𝜓
(
a0

(
Ũi
)
+ 𝛽T

0 Vi
)
for some differential and bounded function 𝜓 (⋅) or one of the quantitiesVi andU∗

i shown up in Eq. (A.5).We will show
that

sup
ũ∈D

|n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜓∗ (⋅i) / ̂f (ũ) − n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
𝜓 (⋅i) / ̂f (ũ) | = Op (h) (A.12)
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and

sup
ũ∈D

|n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜓 (⋅i) / ̂f (ũ) − E {𝜓 (⋅) |Ũ = ũ} | = Op (h) . (A.13)

Equation (A.12) will be used in the proof of Eq. (A.6). First, we assume that Eq. (A.13) holds and we prove Eq. (A.12). Let 𝜓′ (t) = 𝜕𝜓 (t) /𝜕t,
then

𝜓∗ (⋅i) − 𝜓 (⋅i) = 𝜓
(
𝜆0 (ũ) + 𝜆′0 (ũ)

(
Ũi − ũ

)
+ 𝛽T

0 Vi
)
− 𝜓

(
𝜆0

(
Ũi
)
+ 𝛽T

0 Vi
)

= 𝜓′
(
𝜉i (ũ)

)
[𝜆0 (ũ) − 𝜆0

(
Ũi
)
+ 𝜆′0 (ũ)

(
Ũi − ũ

)
]

= 𝜓′
(
𝜉i (ũ)

)
[− {𝜆”0

(
𝜉i (ũ)

)
/2}

(
Ũi − ũ

)2]
= Op

((
Ũi − ũ

)2) , (A.14)

where 𝜉i (ũ) is between 𝜆0
(
Ũi
)
+ 𝛽T

0 Vi and 𝜆0 (ũ) + 𝜆′0 (ũ)
(
Ũi − ũ

)
+ 𝛽T

0 Vi, 𝜉i (ũ) is between Ũi and ũ. Therefore

sup
ũ∈D

|n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜓∗ (⋅i) / ̂f (ũ) − n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
𝜓 (⋅i) / ̂f (ũ) |

≤ Op (1) sup
ũ∈D

|n−1
n

∑
i=1

Kh
(
Ũi − ũ

) (
Ũi − ũ

)2 / ̂f (ũ) | = Op (h) .

using Eq. (A.13) by taking 𝜓 (⋅i) =
(
Ũi − ũ

)2 and noticing that E {
(
Ũi − ũ

)2 |Ũi = ũ} = 0, this proves Eq. (A.12).

Now we prove Eq. (A.13). Let ̂rh (ũ) = n−1∑n
i=1 Kh

(
Ũi − ũ

)
𝜓 (⋅i), then

n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜓 (⋅i) / ̂f (ũ) − E {𝜓 (⋅) |Ũ = ũ}

=
[ ̂r

h
(ũ) − E { ̂rh (ũ)}]E { ̂f (ũ)} − [ ̂f (ũ) − E { ̂f (ũ)}]E { ̂rh (ũ)}

[ ̂f (ũ) − E { ̂f (ũ)} + E { ̂f (ũ)}]E { ̂f (ũ)}

+ [E { ̂rh (ũ)}
E { ̂f (ũ)}

− E {𝜓 (⋅) |Ũ = ũ}]

≡ I1 (ũ) + I2 (ũ) . (A.15)

We consider I2 (ũ) first. Since

E { ̂rh (ũ)} = E {Kh
(
Ũi − ũ

)
𝜓 (⋅i)} = E [Kh

(
Ũi − ũ

)
E {𝜓 (⋅i) |Ũi}]

= 1
h ∫

d

c
K
(y − ũ

h

)
E{𝜓(⋅)|Ũ = y} f (y)dy

= ∫
d−ũ
h

c − ũ
h

K (t)E {𝜓 (⋅) |Ũ = ũ + ht} f (ũ + ht) dt

= {∫
d−ũ
h

c − ũ
h

K (t) dt}E {𝜓 (⋅) |Ũ = ũ} f (ũ) + O (h)

and

E { ̂f (ũ)} = {∫
d−ũ
h

c−ũ
h

K (t) dt} f (ũ) + O (h)

hold uniformly for ũ ∈ D, we have

sup
ũ∈D

|I2 (ũ) | = O (h) .

To finish the proof, it suffices to show

sup
ũ∈D

| ̂rh (ũ) − E { ̂rh (ũ)} | = Op (h) , (A.16)
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sup
ũ∈D

| ̂f (ũ) − E { ̂f (ũ)} | = Op (h) . (A.17)

We prove Eq. (A.16) but Eq. (A.17), since Eq. (A.17) is very easy to prove.We consider amore general case where𝜓 (⋅i)might be unbounded
but |𝜓 (⋅) | ≤ C𝜓CTT

g
i for some constant C𝜓, CT, g > 0 and some i.i.d. random variables Ti for which sup

i,ũ∈D
E {T (2s+1)g

i Ũi = ũ} < ∞ and

sup
i
E {T (2s+1)g

i } < ∞ for some s > 1. Taking Nn = h−1/s and writing

̂rh (ũ) = n−1
n

∑
i=1

Kh(Ũi − ũ)𝜓(⋅i)I[|𝜓(⋅i)| ≤ Nn]

+ n−1
n

∑
i=1

Kh(Ũi − ũ)𝜓(⋅i)I[|𝜓(⋅i)| > Nn]

≡ J1 (ũ) + J2 (ũ) ,

it suffices to shown

sup
ũ∈D

|J1 (ũ) − E {J1 (ũ)} | = Op (h) (A.18)

and

sup
ũ∈D

|J2 (ũ) − E {J2 (ũ)} | = Op (h) . (A.19)

When 𝜓 (⋅i) is bounded, Eq. (A.19) is trivial.
Suppose thatMn intervals {ũ ∶ |ũ − ũl| ≤ 𝜂n} , l = 1, 2, … ,Mn, cover the compact set D and the union of the these intervals equals D. Then,
for any ∇ > 0,

P {sup
ũ∈D

|J1 (ũ) − E {J1 (ũ)} | > ∇h}

= P { sup
l=1,…,Mn

sup
|ũ−ũl|≤𝜂n

|J1 (ũ) − E {J1 (ũ)} | > ∇h}

≤ P { sup
l=1,…,Mn

|J1 (ũl) − E {J1 (ũl)} | >
∇
2 h}

+ P { sup
l=1,…,Mn

sup
|ũ−ũl|≤𝜂n

|J1 (ũ) − J1 (ũl) − (E {J1 (ũ)} − E {J1 (ũl)}) | >
∇
2 h} . (A.20)

By Condition A(ii), there exists some constants CK > 0 and CL > 0 such that |K (u∗) | ≤ CK and |K
(
u∗1
)
− K

(
u∗2
)
| ≤ CL|u∗1 − u∗2 |. Taking

Mn = O
(
n2
)
and 𝜂n = O

(
n−2), when |ũ − ũl| ≤ 𝜂n, we have

|J1 (ũ) − J1 (ũl) | = | (nh)−1
n

∑
i=1

{K
(
Ũi − ũ

h

)
− K

(
Ũi − ũl

h

)
} 𝜓 (⋅i) I [𝜓 (⋅i) ≤ Nn] |

≤ (nh)−1 CL|
ũ − ũl
h

|nNn

= CLh−(2+1/s)𝜂n = O
((

nh3
)−2

)
⋅ O

(
h4−1/s) = op (h) .

Therefore, supl=1,…,Mn
sup|ũ−ũl|≤𝜂n

|J1 (ũ) − J1 (ũl) | = op (h) .

Similarly, supl=1,…,Mn
sup|ũ−ũl|≤𝜂n

|E {J1 (ũ)} − E {J1 (ũl)} | = o (h) .Hence, the second probability in Eq. (A.20) is negligible. Let

di (ũ) = K
(

Ũi−ũ
h

)
𝜓 (⋅i) I [|𝜓 (⋅i) | ≤ Nn] and Sn (ũ) = ∑n

i=1 [di (ũ) − E {di (ũ)}] . Then, |di (ũ) − E {di (ũ)} | ≤ 2CKNn and 𝜎2
n =

Var (Sn (ũ)) = n [E {K2
(

Ũi−ũ
h

)
𝜓2 (⋅i) I [|𝜓 (⋅i) | ≤ Nn]} − {E {K

(
Ũi−ũ
h

)
𝜓 (⋅i) I [|𝜓 (⋅i) | ≤ Nn]}}

2
] = O (nh) − O

(
nh2

)
= O (nh), because

E {𝜓2 (⋅i) |Ũi = ũ} ≤ C2
𝜓C

2
TE {T

2g
i |Ũi = ũ} < M < ∞ for some constants C𝜓 > 0 andM > 0 by the the preceding assumptions. Without loss

of generality, we assume 𝜎2
n = nh. By Bernstein’s inequality, for any 𝜔 > 0, we get

P
(
|Sn (ũl) | ≥ 𝜔𝜎n

)
≤ 2exp [− 𝜔2

2 + 2
3
2CKNn
𝜍n

𝜔
] .
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Taking 𝜔 = (∇h𝜎n) /2 and noticing 𝜎n = √nh and Nn = h−1/s, s > 1, we get

P
(
|Sn (ũl) | ≥ (nh) (∇/2) h

)
≤ 2exp

⎡
⎢
⎢
⎣
−

(∇h𝜍n

2

)2

2 + 2
3
2CKNn
𝜍n

(∇h𝜍n

2

)⎤⎥⎥
⎦

= 2exp
⎡
⎢
⎢
⎣
−

(∇h𝜍n

2

)2

2 + 2
3
(CK∇) h1−1/s

⎤
⎥
⎥
⎦

= 2exp
⎡
⎢
⎢
⎣
−

(∇
2

)2
O
(
nh3

)
2 + 2

3
(CK∇) h1−1/s

⎤
⎥
⎥
⎦

≤ O
(
2n−(3/32)∇2) (

AssumeCK∇h1−1/s < 1
)
.

SinceMn = O
(
n2
)
, when ∇ is large enough so that 3

32∇
2 > 2, we get

P { sup
l=1,…,Mn

|
n

∑
i=1

[di (ũl) − E {di (ũl)}] | ≥
(
∇h
2

)
𝜎2
n } ≤ MnO

(
2n−(3/32)∇2) n→∞→ 0.

This implies

sup
l=1,…,Mn

| 1
nh

n

∑
i=1

[di (ũl) − E {di (ũl)}] | = Op (h) . (A.21)

Combining Eqs. (A.20) and (A.21) proves Eq. (A.18).

Now we prove Eq. (A.19). By Conditions A, |𝜓 (⋅i) | ≤ C𝜓CTT
g
i for some constant CT, C𝜓 > 0. From |K (u∗) ≤ CK|, we have

sup
ũ∈D

|J2 (ũ) − E {J2 (ũ)} | =
2C𝜓CKCT

h
1
n

n

∑
i=1

Tg
i I [T

g
i > Nn] (A.22)

since E {Tg
i I [T

g
i > Nn]} = ∫

t>N1/g
n
tgdFT (t), where FT (t) is the c.d.f. of T, and Nn = h−1/s, s > 1. Let Qn = N1/g

n = h−1/(sg), we get

∫t>Qn

tgdFT(t)

h2
=

∫t>Qn

tgdFT(t)

Q−2sg
n

≤ ∫t>Qn

t(2s+1)gdFT(t)
n→∞→ 0,

because E {T(2s+1)g} < ∞ by the preceding assumptions. This implies (1/nh)∑n
i=1 TigI [T

g
i > Nn] = Op (h). Therefore, by Eq. (A.22), we

obtain Eq. (A.19).

Proof of (A.7). Since

sup
ũ∈D0

| ̂f (ũ) − f (ũ) | ≤ sup
ũ∈D0

| ̂f (ũ) − E { ̂f (ũ)} | + sup
ũ∈D0

|E { ̂f (ũ)} − f (ũ) |,

sup
ũ∈D1

| ̂f (ũ) − f (ũ) | ≤ sup
ũ∈D1

| ̂f (ũ) − E { ̂f (ũ)} | + sup
ũ∈D1

|E { ̂f (ũ)} − f (ũ) |,

sup
ũ∈D1

|E { ̂f (ũ)} − f (ũ) | ≤ sup
ũ∈D1

|E { ̂f (ũ)} | + sup
ũ∈D1

| f (ũ) | = O (1) ,

using Eq. (A.17) and noticing that sup
ũ∈D0

|E { ̂f (ũ)} − f (ũ) | = O
(
h2
)
, we obtain Eq. (A.7).
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Section I.2. Proof of (A.6)

Proof of (A.6).

Since 𝜖(I)∗i = Y(I)
i − {𝜆0 (ũ) + 𝜆′0 (ũ)

(
Ũi − ũ

)
+ 𝛽T

0 Vi}, it suffices to show

sup
ũ∈D

| n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)∗i / ̂f (ũ) − n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)i / ̂f (ũ) | = Op (h) (A.23)

and

sup
ũ∈D

|n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)i / ̂f (ũ) − 0 | = Op (h) . (A.24)

The proof of Eq. (A.23) is similar to that of Eq. (A.12), we omit it. Now we prove Eq. (A.24). Note that E {n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)i } = 0, by

the same arguments used in the proof of Eq. (A.13), it suffices to show

sup
ũ∈D

| n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)i − E {n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
𝜖(I)i } | = Op (h) . (A.25)

By decomposition, it suffices to show

sup
ũ∈D

| n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝜆0

(
Ũi
)
− E {n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
𝜆0

(
Ũi
)
} | = Op (h) , (A.26)

sup
ũ∈D

| n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
𝛽T
0 Vi − E {n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
𝛽T
0 Vi} | = Op (h) (A.27)

and

sup
ũ∈D

| n−1
n

∑
i=1

Kh
(
Ũi − ũ

)
Y(I)
i − E {n−1

n

∑
i=1

Kh
(
Ũi − ũ

)
Y(I)
i } | = op (1) . (A.28)

We shall apply the similar techniques used in the proof of Eq. (A.16) to prove the preceding three equalities. By Conditions A(ii) and (iv),
𝜆0

(
Ũi
)
and 𝛽T

0 Vi are bounded random variables, the proofs of Eqs. (A.26) and (A.27) are straightforward. And we can obtain Eq. (A.28) by
observing that

E {n−1
n

∑
i=1

[Kh
(
Ũi − ũ

)
Y(I)
i − E {Kh

(
Ũi − ũ

)
Y(I)
i }]}

2

= n−2
n

∑
i=1

E {Kh
(
Ũi − ũ

)
Y(I)
i − E {Kh

(
Ũi − ũ

)
Y(I)
i }}

2 → 0. (A.29)

Section I.3. Proof of (A.11)

Proof of Eq. (A.11).

To prove Eq. (A.11) is equivalent to prove the following equality:

𝜖(I)∗i = 𝜖(I)i + op (1) . (A.30)

Noting that

𝜖(I)i = Y(I)
i − E {Y(I)

i |Vi,U∗
i } = Y(I)

i − {𝜆0
(
Ũi
)
+ 𝛽T

0 Vi}

and

𝜖(I)∗i = Y(I)
i − {𝜆0 (ũ) + 𝜆′0 (ũ)

(
Ũi − ũ

)
+ 𝛽T

0 Vi} ,
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we have

𝜖(I)i − 𝜖(I)∗i = 𝜆0 (ũ) + 𝜆′0 (ũ)
(
Ũi − ũ

)
− 𝜆0

(
Ũi
)

= O
((

Ũi − ũ
)2) = O

(
h2
)
.

It implies that n−1∑n
i=1 𝜖

(I)∗
i = n−1∑n

i=1 𝜖
(I)
i + op (1), which leads to Eq. (A.30).

Now we return to the proof of Theorem 1. In Eq. (A.3), Ψi − E {Ψi|Ũi} is a vector with p+ q elements. LetHi = Ψi − E {Ψi|Ũi} and suppose
its elements are Hi,l = Hi,l

(
U∗

i ,Vi, Ũi
)
, l = 1, 2, … , p + q, then we consider

Ml
1n = n−1/2

n

∑
i=1

Hi,l𝜖(I)i , l = 1, 2, … , p + q. (A.31)

Therefore, by Eq. (A.31), we have shown that

lim
n→∞

E [{M1n}⊗2] = Ω, (A.32)

whereM1n =
(
M1

1n, … ,M
p+q
1n

)T
. Theorem 1 is then proved by the central limit theorem for sums of independent random vectors.

APPENDIX II

Table A.1 Descriptive statistics of
(
�̂�(I)
0 , ̂𝛽(I)

0

)
with missing response as a function of missing proportion p and sample sizes.

𝛼0 MEAN SD RMSE MED 𝛽0 MEAN SD RMSE MED

p = 10%, n = 60
0.707 0.710 0.061 0.061 0.707 −1 −0.998 0.148 0.147 −0.999
0.707 0.699 0.064 0.065 0.707 2 2.003 0.149 0.148 2.007

p = 22%, n = 120
0.707 0.709 0.044 0.044 0.707 −1 −0.995 0.107 0.107 −0.994
0.707 0.703 0.045 0.045 0.707 2 2.005 0.114 0.114 2.005
p = 49%, n = 240
0.707 0.704 0.038 0.038 0.707 −1 −1.002 0.096 0.096 −0.998
0.707 0.708 0.037 0.037 0.707 2 2.006 0.095 0.095 2.003
MED, median; SD, standard derivation ; RMSE, root-mean-square error.

Table A.2 Descriptive statistics of
(
�̂�(I)
0 , ̂𝛽(I)

0

)
with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors whenW calibrated and primary size n′,

validation sizem, and missing proportion p.

𝛼0 MEAN SD RMSE MED 𝛽0 MEAN SD RMSE MED

p = 10%, n′ = 60,m = 20
0.707 0.686 0.165 0.166 0.707 −1 −0.992 0.202 0.202 −1.009
0.707 0.682 0.192 0.193 0.707 2 2.011 0.194 0.194 2.011
p = 22%, n′ = 120,m = 40
0.707 0.673 0.127 0.131 0.707 −1 −0.995 0.152 0.152 −0.989
0.707 0.718 0.122 0.122 0.707 2 2.007 0.149 0.149 2.014
p = 49%, n′ = 240,m = 80
0.707 0.665 0.105 0.113 0.695 −1 −1.005 0.137 0.136 −1.001
0.707 0.733 0.095 0.098 0.719 2 1.993 0.127 0.127 1.993
MED, median; SD, standard derivation ; RMSE, root-mean-square error.

Pdf_Folio:61



62 T-L. Cheng et al. / Journal of Statistical Theory and Applications 18(1) 46–64

Table A.3 Descriptive statistics of
(
�̂�(I)
0 , ̂𝛽(I)

0

)
with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors whenW, not calibrated and primary size,

validation size and missing proportion.

𝛼0 MEAN SD RMSE MED 𝛽0 MEAN SD RMSE MED

p = 10%, n′ = 60,m = 20
0.707 0.741 0.105 0.110 0.715 −1 −1.000 0.206 0.205 −1.003
0.707 0.651 0.129 0.140 0.699 2 1.973 0.203 0.204 1.964
p = 22%, n′ = 120,m = 40
0.707 0.747 0.080 0.089 0.740 −1 −0.977 0.138 0.140 −0.981
0.707 0.653 0.097 0.111 0.673 2 1.995 0.150 0.150 1.987
p = 49%, n′ = 240,m = 80
0.707 0.752 0.065 0.079 0.748 −1 −1.017 0.127 0.128 −1.014
0.707 0.651 0.077 0.095 0.663 2 1.984 0.127 0.128 1.985
MED, median; SD, standard derivation ; RMSE, root-mean-square error.

Table A.4 Descriptive statistics of
(
�̂�(R)
0 , ̂𝛽(R)

0

)
with missing response as a function of missing proportion and sample sizes n.

𝛼0 MEAN SD RMSE MED 𝛽0 MEAN SD RMSE MED

p = 10%, n = 60
0.707 0.709 0.046 0.046 0.707 −1 −1.002 0.144 0.144 −1.004
0.707 0.702 0.049 0.049 0.707 2 1.992 0.151 0.151 1.985
p = 22%, n = 120
0.707 0.710 0.040 0.040 0.707 −1 −0.989 0.108 0.108 −0.992
0.707 0.701 0.042 0.042 0.707 2 2.000 0.102 0.102 1.996
p = 49%, n = 240
0.707 0.710 0.038 0.039 0.707 −1 −0.994 0.097 0.097 −0.988
0.707 0.702 0.041 0.041 0.707 2 2.004 0.092 0.092 2.005
MED, median; SD, standard derivation ; RMSE, root-mean-square error.

Table A.5 Descriptive statistics of
(
�̂�(R)
0 , ̂𝛽(R)

0

)
with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors when calibrated and primary size,

validation size and missing proportion .

𝛼0 MEAN SD RMSE MED 𝛽0 MEAN SD RMSE MED

p = 10%, n′ = 60,m = 20
0.707 0.696 0.136 0.136 0.707 −1 −1.005 0.230 0.230 −0.985
0.707 0.689 0.151 0.151 0.707 2 2.002 0.183 0.183 2.003
p = 22%, n′ = 120,m = 40
0.707 0.672 0.113 0.118 0.707 −1 −1.008 0.168 0.168 −1.001
0.707 0.724 0.109 0.110 0.707 2 1.999 0.154 0.154 2.002
p = 49%, n′ = 240,m = 80
0.707 0.675 0.105 0.109 0.707 −1 −1.014 0.129 0.130 −1.019
0.707 0.724 0.102 0.103 0.707 2 1.988 0.133 0.133 1.995

MED, median; SD, standard derivation ; RMSE, root-mean-square error.

Table A.6 Descriptive statistics of
(
�̂�(R)
0 , ̂𝛽(R)

0

)
with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors when not calibrated and primary size

n′, validation sizem and missing proportion.

𝛼0 MEAN SD RMSE MED 𝛽0 MEAN SD RMSE MED

p = 10%, n′ = 60,m = 20
0.707 0.748 0.095 0.104 0.729 −1 −0.977 0.195 0.196 −0.965
0.707 0.645 0.125 0.140 0.684 2 2.021 0.210 0.210 2.021
p = 22%, n′ = 120,m = 40
0.707 0.751 0.070 0.083 0.738 −1 −1.001 0.147 0.146 −0.998
0.707 0.651 0.087 0.103 0.674 2 2.008 0.161 0.161 2.011
p = 49%, n′ = 240,m = 80
0.707 0.754 0.073 0.087 0.750 −1 −1.013 0.136 0.137 −1.016
0.707 0.647 0.087 0.106 0.661 2 1.984 0.134 0.135 1.996
MED, median; SD, standard derivation ; RMSE, root-mean-square error.
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n=60, p=10% n=120, p=22% n=240, p=49%

Figure A.1 Simulated curves of �̂�(I)
0 with missing response, different sample sizes n and different missing proportions

p (the title for the x axis: Single-index �̂�(I)T
0 X, solid circle: the response is observed, circle: the response is missing, solid

line: the true curve, dashed line: the fitted curve).

n =60, m=20, p=10% n =120, m=40, p=22% n =240, m=80, p=49%

Figure A.2 Simulated curves of �̂�(I)
0 with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors whenW

calibrated and primary size n′, validation sizem and missing proportion p (the title for the x axis: Single-index �̂�(I)T
0 U∗,

solid circle: the response is observed, circle: the response is missing, solid line: the true curve, dashed line: the fitted
curve).

n =60, m=20, p=10% n =120, m=40, p=22% n =240, m=80, p=49%

Figure A.3 Simulated curves of �̂�(I)
0 with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors whenW not

calibrated and primary size n′, validation sizem and missing proportion p (the title for the x axis: Single-index �̂�(I)T
0 W,

solid circle: the response is observed, circle: the response is missing, solid line: the true curve, dashed line: the fitted
curve).
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n=60, p=10% n=120, p=22% n=240, p=49%

Figure A.4 Simulated curves of �̂�(R)
0 with missing response, different sample sizes n and different missing proportions

p (the title for the x axis: Single-index �̂�(R)T
0 X, solid circle: the response is observed, circle: the response is missing, solid

line: the true curve, dashed line: the fitted curve).

n =60, m=20, p=10% n =120, m=40, p=22% n =240, m=80, p=49%

Figure A.5 Simulated curves of �̂�(R)
0 with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors whenW

calibrated and primary size n′, validation sizem and missing proportion p (the title for the x axis: Single-index
�̂�(R)T
0 U∗, solid circle: the response is observed, circle: the response is missing, solid line: the true curve, dashed line: the

fitted curve).

n =60, m=20, p=10% n =120, m=40, p=22% n =240, m=80, p=49%

Figure A.6 Simulated curves of �̂�(R)
0 with missing response and error-prone

(
𝜍2
e = √3/4

)
predictors whenW

calibrated and primary size n′, validation sizem and missing proportion p (the title for the x axis: Single-index
�̂�(R)T
0 U∗, solid circle: the response is observed, circle: the response is missing, solid line: the true curve, dashed line: the

fitted curve).
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